Запуск трехфазного двигателя от однофазной сети: Подключение трехфазного двигателя к однофазной сети

Подключение трехфазного двигателя к однофазной сети

Здравствуйте,  дорогие читатели и гости сайта «Заметки электрика».

Частенько у каждого из нас возникает необходимость в гараже или на даче подключить трехфазный асинхронный двигатель, например, для наждачного или сверлильного станка, бетономешалки и т.п.

А в наличии имеется только источник однофазного напряжения.

Как быть в данной ситуации?

Все просто. Необходимо трехфазный асинхронный двигатель включить как конденсаторный по следующим классическим схемам.

Еще раз напоминаю, что это самые распространенные схемы подключения трехфазного двигателя к однофазной сети. Существует еще несколько способов включения, но о них в данной статье мы говорить не будем.

Как видно из схем, это осуществляется с помощью рабочего и пускового конденсаторов. Их еще называют фазосдвигающими.

Кстати, со схемой соединения звездой и треугольником обмоток асинхронного двигателя я Вас знакомил в прошлой статье. 

 

Выбор емкости конденсаторов

1. Выбор емкости рабочего конденсатора

Величина емкости рабочего конденсатора (Сраб.) рассчитывается по формуле:

Полученное значение емкости рабочего конденсатора получается в (мкФ).

Вышеприведенная формула может показаться Вам сложной, поэтому Вашему вниманию предлагаю более легкий вариант расчета емкости рабочего конденсатора для подключения трехфазного двигателя к однофазной сети. Для этого Вам необходимо лишь знать мощность (кВт) асинхронного двигателя.

Если сказать еще более проще, то на каждые 100 (Вт) мощности трехфазного двигателя необходимо порядка 7 (мкФ) емкости рабочего конденсатора.

При выборе емкости рабочего конденсатора необходимо контролировать ток в фазных обмотках статора в установившемся режиме. Этот ток не должен превышать номинального значения.

2. Выбор емкости пускового конденсатора

Если же у Вас пуск электродвигателя происходит при значительной нагрузке на валу, то параллельно рабочему конденсатору необходимо включать пусковой конденсатор. Включается он только на время пуска двигателя (примерно 2-3 секунды) с помощью ключа SA до набора номинальной частоты вращения ротора, а затем отключается.

Что случится, если забыть отключить пусковые конденсаторы?

Если забыть отключить пусковые конденсаторы, то возникнет сильный перекос по токам в фазах и двигатель может перегреться.

Величина емкости пускового конденсатора выбирается в 2,5-3 раза больше емкости рабочего конденсатора.

В таком случае пусковой момент двигателя становится номинальным и двигатель запустится без проблем.

Необходимая емкость набирается с помощью параллельного и последовательного соединения конденсаторов. Об этом я напишу отдельную статью в разделе «Электротехника«. Следите за обновлениями на сайте. Подписывайтесь на новые статьи.

Трехфазные двигатели мощностью до 1 (кВт) можно включать в однофазную сеть только с рабочим конденсатором. Пусковой конденсатор можно не применять.

Выбор типа конденсаторов

Как выбрать емкость рабочих и пусковых конденсаторов Вы уже знаете. Теперь необходимо разобраться, какой тип конденсаторов можно применять в представленных схемах.

Желательно использовать один и тот же тип конденсаторов, как для рабочих, так и для пусковых конденсаторов.

Чаще всего, для подключения трехфазного двигателя в однофазную сеть, применяют бумажные конденсаторы в металлическом герметичном корпусе типа МПГО, МБГП, КБП или МБГО.

Кое-что я нашел у себя в запасе.

Практически все они имеют прямоугольную форму.

На самом корпусе можно увидеть их параметры:

  • емкость (мкФ)
  • рабочее напряжение (В)

Но у бумажных конденсаторов есть один недостаток — они выпускаются слишком громоздкие и при этом имеют небольшую емкость. Поэтому при включении трехфазного двигателя небольшой мощности в однофазную сеть, батарея набранных конденсаторов получается «солидная».

Также вместо бумажных конденсаторов  можно применять и электролитические, но схема их подключения совершенно другая и содержит в себе дополнительные элементы в виде диодов и резисторов.

Применять Вам электролитические конденсаторы я Вам настоятельно не рекомендую!!!

У них есть недостаток в виде того, что при пробое диода через конденсатор пойдет переменный ток, что вызовет его нагрев и взрыв (выход его из строя).

Тем более, что в современной электронике вышли в свет новые металлизированные полипропиленовые конденсаторы переменного тока типа СВВ.

Вот например, СВВ60 в круглом корпусе.

Или СВВ61 в прямоугольном корпусе.

В основном, они выпускаются на напряжение 400-450 (В). Вот на них то и стоит обратить внимание — очень хорошо себя зарекомендовали. Нареканий к ним нет. Кстати, такой же конденсатор у меня стоит на сверлильном станке в мастерской.

 

 

Выбор напряжения конденсаторов

Также при выборе конденсаторов для трехфазного двигателя в однофазной сети важно правильно учитывать их рабочее напряжение.

Если выбрать конденсатор с большим запасом по напряжению, то это будет не целесообразно и приведет к дополнительным затратам и увеличению габаритных размеров нашей установки.

Если же выбрать конденсатор с рабочим напряжением меньше, чем напряжение сети, то это приведет к преждевременному выходу из строя конденсаторов (даже возможен взрыв).

Принято выбирать рабочее напряжение конденсаторов  для схем, указанных в данной статье, равное 1,15 напряжению сети, а еще лучше не менее 300 (В).

Вроде бы все ясно и понятно. Но не стоит забывать, что при использовании бумажных конденсаторов в сети переменного напряжения следует разделить их рабочее напряжение примерно в 1,5-2 раза.

Например, если на бумажном конденсаторе указано напряжение 180 (В), то его рабочее напряжение при переменном токе следует принять 90-120 (В).

 

Пример подключения трехфазного двигателя к однофазной сети

Чтобы закрепить теорию на практике, рассмотрим пример выбора конденсаторов для подключения трехфазного двигателя АОЛ 22-4 мощностью 400 (Вт) в однофазную сеть. Кстати я уже описывал устройство этого двигателя в предыдущих статьях. Прочитать про него можете здесь.

Цель нашего эксперимента — запустить этот двигатель от однофазной сети 220 (В).

Данные двигателя АОЛ 22-4:

Т.к. мощность этого двигателя небольшая (до 1 кВт), то для его запуска в однофазной сети достаточно будет применить только рабочий конденсатор.

Определим емкость рабочего конденсатора:

Исходя из формул, принимаем среднее значение емкости рабочего конденсатора равной 25 (мкФ).

Для эксперимента я буду использовать емкость 10 (мкФ). Заодно и посмотрим, можно ли использовать емкость чуть ниже расчетной.

Далее идем в кладовку и ищем подходящие конденсаторы. Нашлись конденсаторы типа МБГО.

Теперь нам необходимо, применив навыки электротехники

, собрать из этих конденсаторов необходимую нам емкость.

Емкость одного конденсатора составляет 10 (мкФ).

При параллельном соединении 2 конденсаторов мы получим емкость, равную 20 (мкФ). Но рабочее напряжение у них составляет всего 160 (В). Поэтому для увеличения рабочего напряжения до 320 (В), эти 2 конденсатора соединим последовательно с 2 такими же конденсаторами, соединенных параллельно. Общая их емкость получится 10 (мкФ). Вот как это получилось.

Подключаем полученную батарею рабочих конденсаторов согласно схемы, представленной в начале данной статьи и пробуем запустить трехфазный двигатель в однофазной сети.

Дальнейшие итоги нашего эксперимента смотрите на видео.

Эксперимент завершился УДАЧНО!!!

И вообще мне показалось, что запуск двигателя от однофазной сети с помощью конденсаторов произошел легче и быстрее, чем от трехфазной сети…Выслушаю и Ваше мнение по этому поводу!!!

При включении трехфазного асинхронного двигателя в однофазную сеть его полезная мощность не превысит 70-80% номинальной мощности, а частота вращения ротора  практически равна номинальной.

Примечание 1: если у Вас двигатель 380/220 (В), то подключать его в сеть 220 (В) необходимо только треугольником.

Примечание 2: если на бирке указана только схема звезды с напряжением 380 (В), то подключить такой двигатель в однофазную сеть 220 (В) получится только при одном условии. Нужно «распотрошить» общую точку звезды и вывести в клеммник 6 концов. Общая точка чаще всего находится в лобовой части двигателя.

Я думаю Вам будет интересно продолжение этой статьи о том, как осуществить реверс трехфазного двигателя, подключенного к однофазной сети.

P.S. Задавайте вопросы по данной теме в комментариях, я с удовольствием отвечу Вам. А также подписывайтесь на новые статьи. Дальше будет интереснее.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


Трехфазный двигатель в однофазной сети

Трехфазные асинхронные электродвигатели не требуют дополнительных устройств для запуска и работы. Нужны лишь контакторы или иные устройства подачи трехфазного напряжения. Однако при включении двигателя в однофазную сеть используются другие способы запуска.

Фазосдвигающий конденсатор

Существует простой способ, позволяющий запитать трехфазный двигатель от бытовой однофазной сети с напряжением 220 В. Трехфазное напряжение получают путем сдвига фаз с помощью фазосдвигающего конденсатора. Делается это так.

В однофазной сети имеются два провода (фаза и ноль), между которыми существует сдвиг фаз 180 градусов. Для включения трехфазного двигателя нужны три проводника, напряжения на которых должны иметь сдвиг фаз 120 градусов. Поэтому, если подключить один из выводов двигателя к фазному проводнику напрямую, а другой – через фазосдвигающий конденсатор, то в совокупности с нулевым проводником и обмотками такая система будет трехфазной. Другими словами, будет обеспечен нужный режим питания.

Для расчета номинала фазосдвигающего конденсатора можно воспользоваться приближенной формулой:

С = k*I / U,

где k – коэффициент, равный 4800 для схемы подключения «треугольник», 2800 – для «звезды», I – номинальный ток двигателя (указывается на шильдике), U – фазное напряжение (в нашем случае – 220 В).

Рабочее напряжение конденсатора следует выбирать не менее 400 В, при этом желательно использовать специальные конденсаторы для электродвигателей, на частоту 50 – 60 Гц.

Пусковой конденсатор

Приведенная выше формула справедлива для номинального тока. Но двигатель работает не только на номинале. При пуске его ток может превышать номинальное значение в 5-7 раз, а при работе – быть ниже в 2-3 раза (холостой ход). В результате момент на валу при включении будет мал, и двигатель будет разгоняться очень долго либо вообще не сможет запуститься. Поэтому для запуска используют дополнительный пусковой конденсатор, который подключают к рабочему (фазосдвигающему) на время разгона (3-5 секунд). Обычно емкость пускового конденсатора выбирают в 2-5 раз больше, в зависимости от требуемого момента при пуске и времени разгона.

Для подключения пускового конденсатора используют специальные ручные пускатели, в которых время пуска равно времени нажатия на двухпозиционную кнопку «Пуск». Пока оператор держит «Пуск» в позиции без фиксации, подключаются рабочий и пусковой конденсаторы. Как только оператор отпускает кнопку, она переходит в фиксированную позицию, и в схеме остается лишь рабочий конденсатор. Остановка двигателя производится кнопкой «Стоп». Кроме ручных пускателей могут использоваться релейные и электронные схемы.

Данный способ не применяется на практике для двигателей более 2,2 кВт из-за низкого КПД и большой емкости конденсаторов.

Двигатель с пусковой обмоткой

Конденсатор также используется в случае, когда двигатель имеет две обмотки – рабочую и пусковую. Рабочая обмотка подключается к питающему однофазному напряжению (220 В) напрямую. Пусковая обмотка имеет меньший ток и подключается через фазосдвигающей конденсатор. Совместно обе обмотки имеют такую конфигурацию, что формируют внутри статора вращающееся магнитное поле.

Емкость фазосдвигающего конденсатора обычно указывается на шильдике двигателя. На время пуска и разгона может применяться дополнительный конденсатор. Такой двигатель называют конденсаторным, и он предназначен для работы только в однофазной сети.

Другие полезные материалы:
Как определить параметры двигателя без шильдика?
Основные неисправности электродвигателя и способы их устранения
Преимущества векторного управления электродвигателем

Пуск трёхфазного двигателя без конденсаторов: 4 схемы

Асинхронные электродвигатели просты по конструкции, дешевы, массово применяются в различных производствах. Не обходятся без них домашние мастера, запитывая их от 220 вольт с пусковыми и рабочими емкостями.

Но, есть альтернативный вариант. Это — подключение трёхфазного двигателя к однофазной сети без конденсаторов, который тоже имеет право на существование.

Ниже я показываю 4 схемы реализации такого проекта. Вы можете выбрать для себя любой из них, более подходящий под ваши личные интересы и местные условия эксплуатации.

Содержание статьи

С этой темой я впервые столкнулся в конце 1998 года, когда к нам в электролабораторию РЗА пришел друг связист с журналом Радио за №6 от 1996 года и показал статью про безконденсаторный запуск.

Мы сразу решили испытать ее в деле, благо все детали, включая тиристоры и подходящий двигатель, у нас имелись. Как раз был перерыв на обед.

Для проверки спаяли электронный блок навесным монтажом. Справились где-то меньше, чем за час. Схема заработала практически без наладки. Оставили ее для наждака.

Порадовали маленькие габариты блока и отсутствие необходимости подбирать конденсаторы. Особых отличий в потере мощности по сравнению с конденсаторным пуском замечено не было.

Принципы работы электронной схемы: запуск трехфазного асинхронного электродвигателя без конденсаторов

Для подключения в однофазную сеть по этому методу подойдет любой асинхронный движок типового исполнения.

Автор Голик обращает внимание, что обороты ротора в минуту должны составлять не 3000, а 1500. Связано это с конструкцией обмоток статора.

Мощность устройства ограничена электрическими характеристиками силовых диодов и тиристоров — 10 ампер с величиной обратного напряжения более 300 вольт.

Три обмотки статора необходимо подключать по схеме треугольника.

Их выводы собираются на клеммной колодке тремя последовательными перемычками.

Напряжение 220 вольт подключается через защитный автоматический выключатель параллельно одной обмотке, назовем ее «A». Две другие оказываются последовательно соединенными между собой и параллельно — с ней.

Обозначим их «B» и «C». На выводы одной из них, например, «B» подключается электронный блок. Назовем его ключом «k».

Представим, что ее контакт всегда разомкнут, а напряжение подано. Тогда по цепочкам «A» и «B+C» станут протекать токи Ia и Ib+c. Мы знаем, что сопротивление всех обмоток статора (резистивно-индуктивное) одинаково.

Поэтому в цепи «A» ток станет в два раза превышать вектор Ib+c, а по фазе они будут совпадать.

Каждый из этих токов создаст вокруг себя магнитный поток. Но, они не смогут в этой ситуации привести во вращение ротор.

Чтобы электродвигатель стал работать, необходимо сдвинуть по углу два этих магнитных потока (или токи между собой). Эту функцию в нашем случае выполняет электронный ключ.

Его конструкция собрана так, что он кратковременно замыкается, а затем размыкается, шунтируя обмотку «B».

Для этого процесса выбирается момент времени, когда синусоида напряжения достигает максимального амплитудного значения, а сила тока в обмотке «C», ввиду ее индуктивного сопротивления, минимальна.

Резкое закорачивание сопротивления «B» в цепи «B+C» создает бросок тока через замкнутый электронный контакт по виткам обмотки «C», который быстро возрастает и затем снижается под влиянием уменьшения амплитуды напряжения до нуля.

Между токами в обмотках «A» и «C» образуется временной сдвиг, обозначенный буквой φ. За счет возникновения этого угла сдвига фаз создается суммирующий магнитный поток, начинающий раскрутку ротора двигателя.

Форма тока в обмотке «C» при работе электронного ключа отличается от гармоничной синусоиды, но она не мешает создать на валу ротора крутящий момент.

При переходе полуволны синусоиды напряжения в область отрицательных значений картина повторяется, а двигатель продолжает раскручиваться дальше.

Электронная схема В Голик: устройство запуска трехфазных электродвигателей на доступной элементной базе

Силовая выходная часть электронного ключа, осуществляющая коммутацию обмотки, выполнена на двух мощных диодах (VD1, VD2) и тиристорах (VS1, VS2), включенных по схеме обычного моста.

Однако здесь они выполняют другую задачу: своими плечами из одного тиристора и диода поочередно шунтируют обмотку подключенного электродвигателя при достижении амплитудного значения синусоиды напряжения на схеме.

За счет такого подключения создан электронный ключ двунаправленного действия, реагирующий на положительную и отрицательную полуволну гармоники.

Диодами VD3 и VD4 осуществляется двухполупериодное напряжение сигнала, поступающего на цепи управления. Оно ограничивается и стабилизируется резистором R1 и стабилитроном VD5.

Сигналы на открытие тиристоров электронного ключа поступают от биполярных транзисторов (VT1 и VT2).

Переменный резистор R7 с номиналом на 10 килоом предназначен для регулировки момента открытия силового тиристора. Когда его ползунок установлен в минимальное положение сопротивления, то электронный ключ срабатывает при наибольшем напряжении амплитуды на обмотке B.

Максимальное введение сопротивления резистора R7 закрывает электронный ключ.

Запуск схемы осуществляют при положении ползунка R7, соответствующем максимальному сдвигу фаз токов между обмотками. После этого его сдвигают, определяют наиболее устойчивый режим работы, который зависит от приложенной нагрузки и мощности двигателя.

Все электронные детали со своими номиналами приведены на схеме. Они не являются дефицитными. Их можно заменить любыми другими элементами, соответствующими по электрическим характеристикам.

Вариант их размещения на электронной печатной плате показан на картинке. Регулировочный резистор R7 показан справа двумя подключенными проводами, синим и коричневым. Сам он не виден на фото.

Силовая часть, созданная для работы с электродвигателями небольшой мощности, может выполняться без радиаторов охлаждения, как показано здесь. Если же диоды и тиристоры работают на пределе своих возможностей, то теплоотвод обязателен.

Электронный блок ключа работает под напряжением сети 220 вольт. Его детали должны быть надежно заизолированы и защищены от случайного прикосновения человеком. Меры безопасности от поражения электрическим током необходимо соблюдать.

2 схемы подключения трехфазного двигателя к однофазной сети без конденсаторов автора В Бурлако: в чем отличия

Здесь я полагаюсь на информацию из интернета, ибо вижу, что в принципе конструкции рабочие, а принципы управления токами в обмотках те же, что предложил В Голик.

Кстати, авторы статей ссылаются на автомобильный украинский журнал «Сигнал» №4 за 1999 год. Пришлось поискать его в интернете. Однако разочаровался, там оказалась полностью перепечатанная статья из журнала Радио под авторством В Голик. Вот так…

Если знаете, где можно найти первоисточник на эту информацию, то сообщите в комментариях.

Электронные ключи, выполненные по технологии Бурлако, работают так же. Они просто выполнены из других, более усовершенствованных полупроводников, как и силовая часть.

Схема запуска асинхронного двигателя от симисторного электронного ключа: усовершенствование конструкции В Голик

Картинка подключения трехфазного электродвигателя упростилась. Вместо двунаправленного силового блока из двух тиристоров и диодов здесь работает один симистор VS1 серии ТС-2-10.

Он также шунтирует одну обмотку «B» в момент достижения синусоидой напряжения амплитудного значения, когда ток параллельной цепочки минимален.

При этом создается сдвиг фаз токов в параллельных обмотках, как и в предыдущей схеме, порядка 50-80 угловых градусов, что достаточно для вращения ротора.

Работой симитора VS1 управляет ключ, выполненный на симметричном динисторе VS2 для каждого полупериода гармоники напряжения. Он получает команды от фазосдвигающей цепочки, выполненной из резистивно-емкостных элементов.

Сдвиг фазы сигнала конденсатором C дополняется общим сопротивлением R1+R2. Подстроечный резистор R2 на 68 кОм работает как R7 в предыдущей схеме, регулируя время заряда конденсатора и, соответственно, момент подключения VS2, а через него VS1 в работу.

Рекомендации автора по сборке и наладке

Схема испытывалась и предназначена для работы с электродвигателями, раскручивающими ротор до 1500 оборотов в минуту с электрической мощностью 0,5÷2,2 кВт.

На устройствах электронных ключей, работающих с мощными электродвигателями, необходимо обеспечивать теплоотвод с симистора VS1.

При наладке устройства обращают внимание на оптимальную подгонку угла сдвига фаз токов между обмотками, когда двигатель запускается и работает нормально: без шума, гула и вибраций. Для этого может потребоваться изменение номиналов у элементов фазосдвигающей цепочки.

Семисторы можно использовать другой марки. Важно, чтобы они соответствовали электрическим характеристикам. Вместо DB3 допустимо установить отечественный динистор KP1125.

Схема безконденсаторного запуска электродвигателей с большими пусковыми моментами

Она же хорошо подходит под управление двигателями, собранными для вращения со скоростью 3000 оборотов в минуту. С этой целью у нее изменена система подключения обмоток с треугольника на разомкнутую звезду.

На картинке ниже их полярность показана точками.

В этой ситуации создается больший крутящий момент для запуска ротора.

Рассматриваемая схема отличается от предыдущей дополнительным электронным ключом, подключенным к обмотке «A», создающим дополнительно сдвиг фазы тока. Он необходим для трудных условий работы.

Рекомендации автора по наладке и работе не изменились.

Преимущества схемы тиристорного преобразователя: автор В Соломыков

Эта разработка позволяет максимально эффективно сохранить мощность асинхронного двигателя при его подключении в однофазную сеть. Она является прообразом современных частотных преобразователей, но выполнена на старой и доступной элементной базе.

Тиристорный преобразователь позволяет сделать формы напряжений на каждой фазе очень похожими на идеальные, гармоничные синусоиды, под которые и создается асинхронный электродвигатель.

Питание от сети 220 вольт происходит через защиту — автоматический выключатель SF1 и диодный мост на базе Д233В.

Силовые выходные цепи образуются работой тиристорных ключей VS1-VS6.

Сдвиг фаз токов для питания каждой обмотки двигателя своим напряжением создается работой двух микросхем:

  1. DD1 — К176ЛЕ5;
  2. DD2 — К176 ИР2.

Они формируют такты сдвига напряжений сигналов в регистрах, а их сочетания подаются на входы управления тиристорами VS1÷VS6 через индивидуальные транзисторы VT1÷VT6 по запланированной временной диаграмме.

Логическая часть

Микросхема К176ИР2 вырабатывает по 2 раздельных 4-х разрядных регистра сдвига с четырьмя выходами Q от любого триггера. Каждый триггер двухступенчатый, типа D.

Ввод данных в регистр происходит через вход D. Также имеется вход для тактовых импульсов типа C. Они поступают через вход D 1-го триггера, а затем смещаются по ходу вправо на один такт.

Обнуление данных на выходе регистра Q происходит при поступлении на вход R (асинхронный сброс) напряжения логического уровня.

Таблица данных К176ИР2 и состояний регистров

Число разрядов

4х2

Входы

Выход

Сторона сдвига

Направо

C

D

R

Q0

Qn

Тип ввода

Последовательно

H

Н

H

Qn-1

Тип вывода

Параллельно

B

H

B

Qn-1

Тактовая частота

2,5MHz

X

H

Q1

Qn не меняется

Рабочая температура

-45÷+85

X

X

B

H

H

Работой микросхемы К176ИР2 управляет элементы DD1 на сборке К176ЛЕ5.

Они обеспечивают подачу импульсов на управляющие электроды тиристоров по следующей временной диаграмме.

Силовая часть схемы, принципы ее управления и наладки

При подаче напряжения на схему обнуляется регистр сдвига микросхемы DD2 до окончания заряда емкости C2 по цепочке через R5. В момент заряда срабатывает логический элемент DD1.1, разрешающий сдвиг импульса регистру DD2.

При переходе регистра в положение «логической 1» подается сигнал на базу его биполярного транзистора (VT1÷VT6). Последний открывается и подает команду на управляющий электрод своего тиристора.

В результате работы этой цепочки между выходными силовыми клеммами создается трехфазное напряжение (довольно близкое к синусоидальной форме) со сдвигом векторов между собой на 120 градусов.

Асинхронный двигатель, работающий по этой схеме, развивает наибольшую мощность по сравнению с тремя предыдущими вариантами.

Частота коммутации тиристоров подбирается экспериментально при наладке за счет выбора номиналов емкостей С4, С5, С6. Их номиналы зависят от мощности электродвигателя.

Емкость конденсаторов предварительно рассчитывают по формуле:

С = 0.01P (Вт) / n ∙ 1 / 30n (мкФ).

При номинальной частоте вращения ротора выставляют n=1.

Резисторы R3 и R4 после окончания настройки устройства демонтируют, а вместо R4 запаивают конденсатор с емкостью 0,68 микрофарад.

Затем к точкам A и B припаивают регулировочный резистор на 15 килоом. Его назначение — точное выставление частоты вращения ротора у двигателя.

Все четыре схемы, которые я привел, не содержат дефицитных деталей и могут быть собраны в домашних условиях людьми с начальным уровнем навыков электрика.

Для продвинутых мастеров могу порекомендовать схему, по которой выполнил подключение трехфазного двигателя к однофазной сети без конденсаторов на современной электронной базе владелец сайта Радиокот.

Он фактически собрал частотный преобразователь, которому отдал много времени. К тому же простым паяльником и обычным цифровым мультиметром там отделаться не получится. Нужны практические навыки, специальный инструмент, осциллограф для наладки.

Все это я написал, чтобы подвести вас к выводу: запустить асинхронный двигатель на 3 фазы в сеть 220 вольт без потерь мощности можно только через промышленный частотный преобразователь.

Рекомендую посмотреть два коротких видеоролика по этой теме и сравнить результат.

Видео владельца Kick Ass с самодельным регулятором по схеме В Голик.

Видео владельца Capricorn WorkShop о самом простом частотном преобразователе.

Выводы сделайте сами. А если остались еще вопросы и неясности, или заметили случайную ошибку, то воспользуйтесь разделом комментариев. Обязательно обсудим.

Как подключить электродвигатель 380В на 220В

В жизни бывают ситуации, когда нужно запустить 3-х фазный асинхронный электродвигатель от бытовой сети. Проблема в том, что в вашем распоряжении только одна фаза и «ноль».

Что делать в такой ситуации? Можно ли подключить мотор с тремя фазами к однофазной сети?

Если с умом подойти к работе, все реально. Главное — знать основные схемы и их особенности.

Конструктивные особенности

Перед тем как приступать к работе, разберитесь с конструкцией АД (асинхронный двигатель).

Устройство состоит из двух элементов — ротора (подвижная часть) и статора (неподвижный узел).

Статор имеет специальные пазы (углубления), в которые и укладывается обмотка, распределенная таким образом, чтобы угловое расстояние составляло 120 градусов.

Обмотки устройства создают одно или несколько пар полюсов, от числа которых зависит частота, с которой может вращаться ротор, а также другие параметры электродвигателя — КПД, мощность и другие параметры.

При включении асинхронного мотора в сеть с тремя фазами, по обмоткам в различные временные промежутки протекает ток.

Создается магнитное поле, взаимодействующее с роторной обмоткой и заставляющее его вращаться.

Другими словами, появляется усилие, прокручивающее ротор в различные временные промежутки.

Если подключить АД в сеть с одной фазой (без выполнения подготовительных работ), ток появится только в одной обмотке.

Создаваемого момента будет недостаточно, чтобы сместить ротор и поддерживать его вращение.

Вот почему в большинстве случаев требуется применение пусковых и рабочих конденсаторов, обеспечивающих работу трехфазного мотора. Но существуют и другие варианты.

Как подключить электродвигатель с 380 на 220В без конденсатора?

Как отмечалось выше, для пуска ЭД с короткозамкнутым ротором от сети с одной фазой чаще всего применяется конденсатор.

Именно он обеспечивает пуск устройства в первый момент времени после подачи однофазного тока. При этом емкость пускового устройства должна в три раза превышать этот же параметр для рабочей емкости.

Для АД, имеющих мощность до 3-х киловатт и применяемых в домашних условиях, цена на пусковые конденсаторы высока и порой соизмерима со стоимостью самого мотора.

Следовательно, многие все чаще избегают емкостей, применяемых только в момент пуска.

По-другому обстоит ситуация с рабочими конденсаторами, использование которых позволяет загрузить мотор на 80-85 процентов его мощности. В случае их отсутствия показатель мощности может упасть до 50 процентов.

Тем не менее, бесконденсаторный пуск 3-х фазного мотора от однофазной сети возможен, благодаря применению двунаправленных ключей, срабатывающих на короткие промежутки времени.

Требуемый момент вращения обеспечивается за счет смещения фазных токов в обмотках АД.

Сегодня популярны две схемы, подходящие для моторов с мощностью до 2,2 кВт.

Интересно, что время пуска АД от однофазной сети ненамного ниже, чем в привычном режиме.

Основные элементы схемы — симисторы и симметричный динистры. Первые управляются разнополярными импульсами, а второй — сигналами, поступающими от полупериода питающего напряжения.

Схема №1.

Подходит для электродвигателей на 380 Вольт, имеющих частоту вращения до 1 500 об/минуту с обмотками, подключенными по схеме треугольника.

В роли фазосдвигающего устройства выступает RC-цепь. Меняя сопротивление R2, удается добиться на емкости напряжения, смещенного на определенный угол (относительно напряжения бытовой сети).

Выполнение главной задачи берет на себя симметричный динистор VS2, который в определенный момент времени подключает заряженную емкость к симистору и активирует этот ключ.

Читайте также:

Схема №2.

Подойдет для электродвигателей, имеющих частоту вращения до 3000 об/минуту и для АД, отличающихся повышенным сопротивлением в момент пуска.

Для таких моторов требуется больший пусковой ток, поэтому более актуальной является схема разомкнутой звезды.

Особенность — применение двух электронных ключей, замещающих фазосдвигающие конденсаторы. В процессе наладки важно обеспечить требуемый угол сдвига в фазных обмотках.

Делается это следующим образом:

  • Напряжение на электродвигатель подается через ручной пускатель (его необходимо подключить заранее).
  • После нажатия на кнопку требуется подобрать момент пуска с помощью резистора R

При реализации рассмотренных схем стоит учесть ряд особенностей:

  • Для эксперимента применялись безрадиаторные симисторы (типы ТС-2-25 и ТС-2-10), которые отлично себя проявили. Если использовать симисторы на корпусе из пластмассы (импортного производства), без радиаторов не обойтись.
  • Симметричный динистор типа DB3 может быть заменен на KP Несмотря на тот факт, что KP1125 сделан в России, он надежен и имеет меньше переключающее напряжение. Главный недостаток — дефицитность этого динистора.

Как подключить через конденсаторы

Для начала определитесь, какая схема собрана на ЭД. Для этого откройте крышку-барно, куда выводятся клеммы АД, и посмотрите, сколько проводов выходит из устройства (чаще всего их шесть).

Обозначения имеют следующий вид: С1-С3 — начала обмотки, а С4-С6 — ее концы. Если между собой объединяются начала или концы обмоток, это «звезда».

Сложнее всего обстоят дела, если с корпуса просто выходит шесть проводов. В таком случае нужно искать на них соответствующие обозначения (С1-С6).

Чтобы реализовать схему подключения трехфазного ЭД к однофазной сети, требуются конденсаторы двух видов — пусковые и рабочие.

Первые применяются для пуска электродвигателя в первый момент. Как только ротор раскручивается до нужного числа оборотов, пусковая емкость исключатся из схемы.

Если этого не происходит, возможные серьезные последствия вплоть до повреждения мотора.

Главную функцию берут на себя рабочие конденсаторы. Здесь стоит учесть следующие моменты:

  • Рабочие конденсаторы подключаются параллельно;
  • Номинальное напряжение должно быть не меньше 300 Вольт;
  • Емкость рабочих емкостей подбирается с учетом 7 мкФ на 100 Вт;
  • Желательно, чтобы тип рабочего и пускового конденсатора был идентичным. Популярные варианты — МБГП, МПГО, КБП и прочие.

Читайте также:

Если учитывать эти правила, можно продлить работу конденсаторов и электродвигателя в целом.

Расчет емкости должен производиться с учетом номинальной мощности ЭД.  Если мотор будет недогружен, неизбежен перегрев, и тогда емкость рабочего конденсатора придется уменьшать.

Если выбрать конденсатор с емкостью меньше допустимой, то КПД электромотора будет низким.

Помните, что даже после отключения схемы на конденсаторах сохраняется напряжение, поэтому перед началом работы стоит производить разрядку устройства.

Также учтите, что подключение электродвигателя мощностью от 3 кВт и более к обычной проводке запрещено, ведь это может привести к отключению автоматов или перегоранию пробок. Кроме того, высок риск оплавления изоляции.

Чтобы подключить ЭД 380 на 220В с помощью конденсаторов, действуйте следующим образом:

  • Соедините емкости между собой (как упоминалось выше, соединение должно быть параллельным).
  • Подключите детали двумя проводами к ЭД и источнику переменного однофазного напряжения.
  • Включайте двигатель. Это делается для того, чтобы проверить направление вращения устройства. Если ротор движется в нужном направлении, каких-либо дополнительных манипуляций производить не нужно. В ином случае провода, подключенные к обмотке, стоит поменять местами.

С конденсатором дополнительная упрощенная — для схемы звезда.

С конденсатором дополнительная упрощенная — для схемы треугольник.

Как подключить с реверсом

В жизни бывают ситуации, когда требуется изменить направление вращения мотора. Это возможно и для трехфазных ЭД, применяемых в бытовой сети с одной фазой и нулем.

Для решения задачи требуется один вывод конденсатора подключать к отдельной обмотке без возможности разрыва, а второй — с возможностью переброса с «нулевой» на «фазную» обмотку.

Для реализации схемы можно использовать переключатель с двумя положениями.

К крайним выводам подпаиваются провода от «нуля» и «фазы», а к центральному — провод от конденсатора.

Как подключить по схеме «звезда-треугольник» (с тремя проводами)

В большей части в ЭД отечественного производства уже собрана схема звезды. Все, что требуется — пересобрать треугольник.

Главным достоинством соединения «звезда/треугольник» является тот факт, что двигатель выдает максимальную мощность.

Несмотря на это, в производстве такая схема применяется редко из-за сложности реализации.

Чтобы подключить мотор и сделать схему работоспособной, требуется три пускателя.

К первому (К1) подключается ток, а к другому — обмотка статора. Оставшиеся концы подключаются к пускателям К3 и К2.

Далее обмотка последнего пускателя (К2) объединяется с оставшимися фазам для создания схемы «треугольник».

Когда к фазе подключается пускатель К3, остальные концы укорачиваются, и схема преобразуется в «звезду».

Учтите, что одновременное включение К2 и К3 запрещено из-за риска короткого замыкания или выбиванию АВ, питающего ЭД.

Чтобы избежать проблем, предусмотрена специальная блокировка, подразумевающая отключение одного пускателя при включении другого.

Читайте также:

Принцип работы схемы прост:

  • При включении в сеть первого пускателя, запускается реле времени и подает напряжение на третий пускатель.
  • Двигатель начинает работу по схеме «звезда» и начинает работать с большей мощностью.
  • Через какое-то время реле размыкает контакты К3 и подключает К2. При этом электродвигатель работает по схеме «треугольник» со сниженной мощностью. Когда требуется отключить питание, включается К1.

Итоги

Как видно из статьи, подключить электродвигатель трехфазного тока в однофазную сеть без потери мощности реально. При этом для домашних условий наиболее простым и доступным является вариант с применением пускового конденсатора.

Запуск трехфазного двигателя от однофазной сети без конденсатора


Статья посвящена возможности запуска трехфазного асинхронного двигателя мощностью 250 Вт от сети 220 В не при помощи пускового конденсатора, а с использованием самодельного пускового электронного устройства. Схема его очень проста: на двух тиристорах, с тиристорными ключами и транзисторным управлением.

Схема устройства



Данное управление двигателем мало кому известно и практически не используется. Преимущество предлагаемого пускового устройства в том, что значительно уменьшается потеря мощности двигателя. При пуске трехфазного двигателя 220 В помощью конденсатора потеря мощности составляет минимум 30%, а может достигать 50%. Использование этого пускового устройства снижает потерю мощности до 3%, максимум составит 5%.


Однофазная сеть подключается:

Пусковое устройство подключается к двигателю вместо конденсатора.

Подключенный к устройству резистор позволяет регулировать обороты двигателя. Устройство также можно включить на реверс.

Для эксперимента взят старый двигатель еще советского производства.

С данным пусковым устройством двигатель запускается мгновенно и работает без каких-либо проблем. Такую схему можно использовать практически на любом двигателе мощностью до 3 кВт.

Примечание: в сети 220 В двигатели мощностью более 3 кВт включать просто не имеет смысла – бытовая электропроводка не выдержит нагрузки.
В схеме можно использовать любые тиристоры, ток которых не менее 10 А. Диоды 231, также 10-амперные.

Примечание: у автора в схеме установлены диоды 233, что не имеет значения (только они идут по напряжению 500 В) −поставить можно любые диоды, которые имеют ток 10 А и удерживают более 250 В.
Устройство компактно. Автор схемы собрал резисторы просто наборами, чтобы не тратить время на подборку резисторов по номиналу. Теплоотвод не требуется. Установлен конденсатор, стабилитрон, два диода 105. Схема получилась очень простая и эффективная в работе.

Рекомендуется для использования – сборка пускового устройства проблем не создаст. В итоге при подключении двигатель стартует на своей максимальной мощности и практически без ее потери в отличие от стандартной схемы с использованием конденсатора.

Смотрите видео о работе устройства


Включение трехфазного электродвигателя в однофазную сеть

Много уже писано-переписано в различных изданиях о включении трехфазного электродвигателя в однофазную сеть. И, тем не менее, иногда проблемы при решении такой задачи возникают у многих. Так как я за свою жизнь решил такую задачу не один десяток раз, думаю, что имею право поделится своим опытом и уверен, что многие найдут что-то новое и неожиданное в этом набившем оскомину вопросе.

Итак, в однофазную сеть напряжением 220 В электро двигатели 660/380 В я никогда не включал и вообще не знаю, возможно ли такое включение.

С решением такой же задачи для электродвигателя 380/220 В проблем не существует. Обычно, применяемые в промышленности и сельском хозяйстве электродвигатели соединены в «звезду». Необходимо открыть борно электродвигателя. Если есть в наличии все 6 проводов (выводов обмоток), надо рассоединить 3 провода, соединенны вместе, и принять их, например, за «начала» обмоток. Три других провода будут «концами».

Если в борне находятся отдельные 3 провода, а соединенных вместе 3-х проводов нет, значит — стопроцентная гарантия того, что электродвигатель подвергался перемотке. В этом случае необходимо вскрыть переднюю и заднюю крышки электродвигателя, снять ротор, найти соединение 3-х проводов на статоре, рассоединить их, припаять к ним удлиняющие провода, заизолировать места пайки и вывести эти провода в борно, приняв их, например, за «начала».

Далее необходимо вызвонить все 3 обмотки, не забывая, где «начало», а где «конец» обмотки (лучше их промаркировать). Потом надо соединить в борне обмотки в «треугольник» и вывести провода из борна электродвигателя. Вышеперечисленные операции изображены на рис.1.

Особенно важно не ошибаться с «началами» и «концами» обмоток (иначе электродвигатель работать не будет).

Рис 2:  Схема с пускателем ПНВС

На рис.2 изображена всем известная схема с пускателем ПНВС, применяемым в стиральных машинах. Остановимся лишь на «мелочах». При неимении ПНВС, можно легко обойтись и без него, применив автомат, рубильник… и обычную кнопку с нормально разомкнутыми контактами. При включении электродвигателя в работу сначала необходимо нажать кнопку и, не отпуская ее, включить автомат (рубильник). Когда вал электродвигателя наберет обороты, кнопку надо отпустить. Можно обойтись и без автомата (рубильника). В этом случае сначала нажать кнопку, а затем включить в сетевую розетку вилку со шнуром, идущим к электродвигателю.

А теперь о самом интересном — о пусковом и рабочем конденсаторах. Сразу отмечу, что всем известный расчет номиналов емкости пускового и рабочего конденсаторов, указанный и в [1], я давно воспринимаю, как очень и очень ориентировочный. Не согласен я и с тем. что конденсаторы, используемые в качестве фазосдвигающих элементов при включении 3-фазных электродвигателей в однофазную сеть, — слабое звено в пусковом устройстве. Я включил десятки 3-фазных электродвигателей в однофазную сеть, причем в качестве пусковых практически всегда использовал электролитические конденсаторы без каких-либо «прибамбасов» на рабочее напряжение 350…450 В. Работают они как миленькие, многие годы.

Электролитов у каждого валом со старых телевизоров, их габариты сравнительно небольшие.
Не согласен я и с «литературной фразой» [1] о том, что предельной мощностью конденсаторного электродвигателя общего назначения принимается номинальная мощность 1,5 кВт. Не так давно я включил в однофазную сеть 3-фазный электродвигатель мощностью более 4кВт/1500 об./мин. (шильдик на электродвигателе отсутствовал, но габариты электродвигателя 4 кВт/1500 об./ мин. я прекрасно себе представляю, ведь включал я такие электродвигатели в однофазную сеть не единожды и, кстати, без проблем). Данный электродвигатель установлен на пилораме. Так вот, без нагрузки данный электродвигатель легко запускался при применении пускового электролитического конденсатора (вернее, батареи конденсаторов) емкостью 600 мкФ. Но когда на шкив электродвигателя был надет ремень, электродвигатель разгоняться не захотел. Когда я добавил батарею конденсаторов емкостью еще 600 мкФ (общая емкость пускового конденсатора стала равняться 1200 мкФ), электродвигатель стал нормально включаться и набирать обороты при накинутом на шкив ремне.

Здесь следует немного остановиться. Очень часто бывает, что применение рабочего конденсатора совсем не обязательно, так как мощности на валу переделанного электродвигателя вполне хватает. Если это не так. без рабочего конденсатора не обойтись. Хорошо, если есть под рукой неполярные конденсаторы требуемой емкости и на нужное рабочее напряжение. Но очень часто их нет. Вот здесь и поможет схема включения двух электролитических конденсаторов, как одного неполярного, изображенная на рис. 1 в статье [1] или на рис.1 в моей статье [2] (в данной статье такое включение показано на рис.3). Не стоит сомневаться в работоспособности и надежности этой схемы. Проверено на практике неоднократно. Кстати, повышение мощности электродвигателя при применении рабочего конденсатора видно «на глаз» при работе на все той же пилораме.

Рис 3: Схема включения двух электролитических конденсаторов.

Дам еще один очень простой и эффективный совет, позволяющий максимально точно подобрать емкость рабочего конденсатора, о котором я нигде не читал в литературе. Вот здесь уже точно репутация всем известной формулы Ср=66хРном пострадает.

Итак, способ подбора емкости рабочего конденсатора следующий. При работе электродвигателя, который включен по схеме, изображенной на рис.1, необходимо измерить напряжение на обмотке, к которой подключен рабочий конденсатор, а затем на двух других обмотках. Если напряжение на рабочем конденсаторе будет больше, чем на обмотках, необходимо уменьшить емкость рабочего конденсатора, если будет меньше — увеличить.
Асинхронный электродвигатель 220/127 В в однофазную сеть 220 В можно включить на «звезду» (рис.3).

Если понадобится изменить направление вращения вала электродвигателя, необходимо поменять местами два любых провода, идущих к «треугольнику» (рис.2) или на «звезду» (рис.3).
Если необходим реверсивный электродвигатель, необходимо применить переключатель, как это, например, показано на рис.4.

Рис 4: Схема реверсивного подключение трехфазного двигателя к однофазной цепи.

Хочу отметить, что высокооборотистые 3-фазные электродвигатели включить в однофазной сети сложнее, чем низкооборотистые. Электродвигатель 2,2 кВт/3000 об./мин. я включал легко, а вот электродвигатель 3 кВт/3000 об./мин., фазосдвигающими конденсаторами мне включить не удалось Правда, это было давно. Сейчас, когда на голове довольно много седых волос, может быть и включил бы.

И, наконец, последнее. Когда я был совсем молодым и красивым, увидел старинную книгу «Справочник сельского электрика». В данном справочнике предлагалось вместо пускового конденсатора использовать активное сопротивление (отрезок высокоомно-го нихрома со спирали электрической печки). Предоставлялся даже расчет сопротивления данного резистора в зависимости от мощности электродвигателя. Я попробовал и «О, чудо!», включил в однофазную сеть напряжением 220 В 3-фазный электродвигатель 380/ 220 В мощностью 3 кВт на 3000 об./мин., который не мог включить фазосдвигающими конденсаторами. Буквально через 2 года после армии все мои попытки повторить это чудо закончились безрезультатно.

Литература
1 Коломойцев К.В. Еще раз о надежном запуске асинхронного электродвигателя. — Электрик, №9-10, 2006 г.
2. Маньковский А Н. О включении электродвигателей в однофазную сеть. — Электрик, №1, 2004 г.

 

Трехфазный двигатель в однофазную сеть: 7 доступных способов | Мое мнение: ремонт

Домашнему мастеру часто приходится возиться с самодельными станками и механизмами, значительно облегчающими работу. Для этих целей используют трехфазный двигатель, подключаемый в однофазную сеть своими руками.

Однако не всегда умельцы добиваются желаемого успеха, а в отдельных случаях они терпят разочарование. Чтобы избежать подобных ошибок рекомендую прочитать материал этой статьи.

Вы узнаете не только технологию работу, но и те трудности, которые сопровождают каждый их семи методов.

Как работает трехфазный двигатель

Изначально его создают для вращения от трех симметрично расположенных в пространстве магнитных потоков, создаваемых протекающими по обмоткам токами от фазных или линейных напряжений сети 380 вольт.

Их в энергетике принято представлять графически: векторными диаграммами.

Другие математические описания, включая методы комплексных чисел, применяются специалистами расчетчиками.

Обмотки трехфазного двигателя в заводском исполнении могут быть собраны по схемам:

· звезды;

· или треугольника.

Более подробно с этой информацией можно отдельно ознакомиться в статье об однофазном подключении трехфазного двигателя. Надеюсь, что вам будет понятно ее изложение.

При таком подключении двигатель работает с минимальными потерями энергии, имеет лучший КПД. Ведь на этот режим он спроектирован, рассчитан и создан.

Когда трехфазный электродвигатель включают в однофазную сеть, то потери его мощности неизбежны. Они могут превышать 50% или даже больше. Это надо всегда учитывать.

Самый простой способ запуска

Если обмотки собраны в треугольник и на два любых вывода подать напряжение 220 вольт, то можно раскрутить ротор простым шнуром. Обмотав его вокруг вала, а затем резко дернув за свободный конец.

Метод не очень эффективный, но иногда он может пригодиться. Потери мощности здесь большие. Им пользуются очень редко.

Способ №2: конденсаторный запуск схемы звезда

Обмотки собирают концами на одной клемме — нейтрали, а началами выводят на калымную колодку для подключения питающих кабелей.

Напряжение 220 подают через две группы конденсаторов:

1. рабочую, сдвигающую ток относительно вектора подводимого напряжения на 90 угловых градусов;

2. пусковую, кратковременно облегчающую раскрутку ротора при начале запуска.

Способ №3: конденсаторный запуск схемы треугольника

Технология сборки обмоток отличается от предыдущего метода: они чередуются соединением начала одной с концом последующей.

Для запуска двигателя также подбираются рабочие и пусковые конденсаторы. Они рассчитываются по эмпирическим формулам и должны выдерживать увеличенное линейное напряжение. Минимальная величина должна быть не менее 500 вольт. Иначе возможен их пробой.

Более подробно с конденсаторным запуском трехфазного двигателя по схеме звезды или треугольника можно ознакомиться в этой статье.

Эти две схемы конденсаторного запуска по системе звезды или треугольника являются самыми популярными и доступными.

Способ №4: без конденсаторный запуск трехфазного двигателя

По этой методике создается электронный ключ, который осуществляет сдвиг фазы тока в одной из подключений обмотке на угол φ.

За счет фазового сдвига происходит приложение вращающего момента к ротору, он начинает вращение.

Электронные ключи и способы подключения обмоток могут значительно отключаться. Варианты включения такой схемы показаны ниже.

Более подробно с описанием подобных устройств рекомендую ознакомиться в моей статье о работе трехфазного двигателя в однофазной сети без конденсаторного запуска.

Там рассмотрены три схемы запуска по разным технологиям. Основной недостаток их — потери энергии до 70% от начальной мощности.

Способ №5: индуктивно-емкостной преобразователь

Специальная схема подключения напряжения позволяет сдвигать токи в трех обмотках разными способами:

1. вперед на 90 градусов — за счет включения конденсаторов в одной;

2. назад на 90 градусов — индуктивным сопротивлением дросселя во второй;

3. оставить без изменения подключением активного резистора в третьей.

Схема отличается хорошим преобразованием приложенной мощности, относительно высоким КПД двигателя. Ее основной недостаток —сам преобразователь потребляет примерно столько же энергии, как и электродвигатель.

По этой причине она экономически не выгодна, да и монтаж индуктивно-емкостного преобразователя с резистором не так уж прост.

Я ее описал в статье по первой ссылке. Можете познакомиться более подробно.

Способ №6: самодельный генератор

Идея этой методики, что из какого-то мощного трехфазного двигателя собирают электрогенератор, подключив его по одной из простых схем.+

От этого генератора питают трехфазной системой другие электродвигатели.

Однако следует учесть, что самодельный генератор необходимо раскрутить и вывести на работу с номинальной мощностью другим однофазным двигателем, тратить на него энергию. Она будет расходоваться во всех последующих преобразованиях, снижать КПД.

Способ №7: частотный преобразователь

За счет проведения технологии специального частотного преобразования происходит формирование синусоиды тока внутри каждой обмотке.

Для работы схемы заложены процессы:

· выпрямления питающего напряжения;

· его стабилизации;

· инвертирования;

· управления.

Этот способ обладает повышенным КПД, хорошо подходит для включения трехфазного двигателя в однофазную сеть.

Но собрать такой преобразователь своими руками вряд ли получится: его монтируют в заводских условиях из сложных электронных компонентов.

О плюсах и минусах использования частотного преобразователя рассказывает владелец видеоролика Александр Шенрок.

Советую обязательно посмотреть, обратив внимание на комментарии. Жду вашей оценки моей статьи.

Как запустить трехфазный двигатель от однофазного источника питания

Как запустить трехфазный двигатель от однофазного источника питания:

В наше время количество электродвигателей увеличивается, как и все. Основная причина в том, что, кроме электроэнергии, вся энергия является гораздо более дорогостоящим примером: дизельное топливо. Для всей нашей сельскохозяйственной линейки мы используем трехфазное питание. В Индии для нужд сельского хозяйства правительство предлагает 12-часовую бесплатную подачу электроэнергии.

Оставшиеся 12 часов электрическая панель отключила подачу питания, а это значит, что они отключили одну фазу через GOS (групповые переключатели).В то же время, 12 часов недостаточно, чтобы залить водой наши сельскохозяйственные угодья.

Итак, нам нужно запустить один и тот же трехфазный двигатель на двух доступных фазах. В этой статье мы увидим, как запустить трехфазный двигатель на однофазном. Давай начнем.

Стартер погружного насоса для сельского хозяйства

Как правило, это действие может быть выполнено путем установки статических преобразователей фазы. Преобразователи статической фазы — это пусковое устройство для трехфазных двигателей от однофазного питания.Статический фазовый преобразователь фактически не вырабатывает трехфазную мощность непрерывно.

Вместо этого он генерирует фазовый сдвиг через конденсатор, который позволяет смещать напряжение во времени от его родительского напряжения. В результате получается напряжение, отличное от двух однофазных линий. Если конденсатор вырабатывает достаточный электрический ток, двигатель будет работать.

Выходное напряжение конденсатора

После запуска трехфазного двигателя схема статического фазового преобразователя отключается.Единственным фактом здесь является то, что двигатель непрерывно работает от одной фазы с двумя обмотками, получающими активную мощность, так что полезная мощность двигателя обычно снижается на 2/3 или его номинальной мощности.

Пример: если вы планируете использовать трехфазный двигатель мощностью 5 л.с. в однофазном режиме, то общая выходная мощность двигателя будет снижена до 3,3 л.с. Если вы приложите дополнительные нагрузки к тому же двигателю, обмотка двигателя потребует большого тока. Чтобы избежать этого, вы можете выбрать двигатель с диапазоном на одну ступень выше.

См. Также:

Конструкция конденсатора для трехфазного двигателя на однофазном источнике питания:

Как свойство асинхронного двигателя, который потребляет высокий пусковой ток (почему?) (В 4-6 раз превышающий его ток полной нагрузки), поэтому нам нужен конденсатор высокой мощности на несколько секунд для быстрого запуска двигателя. Статический преобразователь фазы состоит из двух конденсаторов. Один из них — пусковой конденсатор, а другой — рабочие конденсаторы.

Пусковой конденсатор требуется только для запуска двигателя, и рабочий конденсатор будет стоять в цепи.Более того, регулировка этих конденсаторов для выравнивания токов, измеренных в трех фазах, позволяет получить наиболее эффективную машину.

Пусковой конденсатор должен быть в 4–5 раз больше, чем рабочий конденсатор, чтобы соответствовать высокому пусковому току асинхронного двигателя.

Пусковой конденсатор = 50-100 мкФ / л.с. Рабочие конденсаторы = 12-16 мкФ / л.

Здесь Конденсатор подает синтетическую фазу примерно на полпути на 90 градусов между выводами однофазного источника питания на 180 градусов для запуска.Во время работы двигатель генерирует приблизительно стандартные 3-φ, как показано на рисунке ниже.

Примечание. Двигатель следует подключать по схеме треугольник, так как одна обмотка двигателя получает полное напряжение. Поэтому, если вы планируете использовать трехфазный двигатель на одной фазе, рекомендуется подключение по схеме треугольника.

Ограничение статических фазовых преобразователей:

  • Выходная мощность ограничена 2/3 ряд проектной мощности
  • Не подходит для двигателя, работающего постоянно, может использоваться временно
  • Сокращает срок службы двигателя из-за постоянной нагрузки двух обмоток на одну фазу.

Трехфазный двигатель работает от однофазного источника питания:

См. Также:

Трехфазный двигатель, работающий от однофазного источника питания

Трехфазный асинхронный двигатель переменного тока широко используется в промышленном и сельскохозяйственном производстве благодаря своей простой конструкции, низкой стоимости, простоте обслуживания и эксплуатации. Трехфазный двигатель переменного тока использует трехфазный источник питания (3 фазы 220 В, 380 В, 400 В, 415 В, 480 В и т. Д.), Но в некоторых реальных приложениях у нас есть только однофазные источники питания (1 фаза 110 В, 220 В, 230 В, 240 В и т. Д.) .), особенно в бытовой технике. В случае, если трехфазные машины работают от однофазных источников питания, есть 3 способа сделать это:

  1. Перемотка мотора
  2. Купить GoHz VFD
  3. Купить преобразователь частота / фаза

I: Перемотка двигателя
Необходимо выполнить некоторые работы по преобразованию работы трехфазного двигателя в однофазное питание. Здесь вы узнаете, как преобразовать трехфазный двигатель 380 В для работы от однофазного источника питания 220 В.

Принцип перемотки
Трехфазный асинхронный двигатель использует три взаимно разделенных угла 120 ° сбалансированного тока через обмотку статора для создания изменяющегося во времени вращающегося магнитного поля для привода двигателя. Прежде чем говорить об использовании трехфазного асинхронного двигателя, переводимого для работы от однофазного источника питания, мы должны пояснить вопрос создания вращающегося магнитного поля однофазного асинхронного двигателя, поскольку однофазный двигатель может быть запущен только после установления вращающегося магнитного поля. .Причина, по которой у него нет начального пускового момента, заключается в том, что однофазная обмотка в магнитном поле не вращается, а пульсирует. Другими словами, он фиксирован относительно статора. В этом случае пульсирующее магнитное поле статора взаимодействует с током в проводнике ротора и не может генерировать крутящий момент, потому что нет вращающегося магнитного поля, поэтому двигатель не может быть запущен. Однако положение двух обмоток внутри двигателя имеет разный угол наклона. Если он пытается произвести ток другой фазы, двухфазный ток имеет определенную разность фаз во времени, чтобы создать вращающееся магнитное поле.Таким образом, статор однофазного двигателя должен иметь не только рабочую обмотку, но и пусковую. В соответствии с этим принципом мы можем использовать трехфазную обмотку трехфазного асинхронного двигателя и сдвинуть одну из катушек обмотки с помощью конденсатора или индуктивности, чтобы две фазы могли проходить через разный ток, чтобы установить вращающееся магнитное поле, чтобы управлять двигателем. Когда трехфазный асинхронный двигатель использует однофазный источник питания, мощность составляет только 2/3 от исходной.

Метод перемотки
Чтобы использовать трехфазный двигатель на однофазном источнике питания, мы можем последовательно соединить любые двухфазные катушки обмотки, а затем подключить к другой фазе. В это время магнитный поток в двух обмотках имеет разность фаз, но рабочая обмотка и пусковая обмотки подключены к одному источнику питания, поэтому ток одинаковый. Поэтому последовательно подключите конденсатор, катушку индуктивности или резистор к пусковой обмотке, чтобы ток имел разность фаз.Для увеличения пускового момента соединения можно использовать автотрансформатор для увеличения напряжения однофазного источника питания с 220 В до 380 В, как показано на рисунке 1.

Малогабаритные двигатели общего назначения имеют Y-образное соединение. В трехфазном асинхронном двигателе Y-типа клемма обмотки конденсатора C подключается к клемме пуска автотрансформатора. Если вы хотите изменить направление вращения вала, подключите его, как показано на рисунке 2.

Если вы не хотите повышать напряжение, источник питания 220 В также может использовать это.Поскольку исходная трехфазная обмотка напряжения питания 380 В теперь используется для источника питания 220 В, напряжение слишком низкое, поэтому крутящий момент слишком низкий.

Рисунок 3 Слишком низкий крутящий момент проводки. Если вы хотите увеличить крутящий момент, вы можете подключить конденсатор фазовой синхронизации к двухфазной обмотке в катушке и использовать ее в качестве пусковой обмотки. Одна катушка, напрямую подключенная к источнику питания 220 В, см. Рисунок 4.

На рисунках 3 и 4, если вам нужно изменить направление вращения вала, вы можете просто изменить сквозное направление пусковой обмотки или рабочей обмотки. .

Магнитный момент после того, как две обмотки соединены последовательно (одна из которых является обратной струной), складывается из двух углов магнитного момента 60 ° (Рисунок 5). Магнитный момент намного выше, чем магнитный момент 120 ° (показан на Рисунке 6), поэтому пусковой момент проводки на Рисунке 5 больше, чем на Рисунке 6.

Значение резистора доступа R (рисунок 7) на обмотке пускателя должно быть замкнуто на сопротивление фазы обмотки статора и должно выдерживать пусковой ток, равный 0.1-0,12 пускового момента.

Выбор конденсатора фазового сдвига
Рабочий конденсатор c = 1950 × Ie / Ue × cosφ (микрозакон), Ie, ue, cosφ — это исходный номинальный ток двигателя, номинальное напряжение и значения мощности.
Общий рабочий конденсатор, используемый в однофазном источнике питания на трехфазном асинхронном двигателе (220 В): на каждые 100 Вт используются конденсаторы с 4-6 микроконденсаторами. Пусковой конденсатор может быть выбран в соответствии с пусковой нагрузкой, обычно в 1–4 раза превышающей рабочий конденсатор.Когда двигатель достигает 75% ~ 80% номинальной скорости, пусковой конденсатор должен быть отключен, иначе двигатель перегорит.

Емкость конденсатора должна быть правильно выбрана, чтобы токи 11, 12 двух фазных обмоток были равны и равны номинальному току Ie, то есть 11 = 12 = Ie. Если требуется высокий пусковой момент, можно добавить пусковой конденсатор и подключить его к рабочему конденсатору. При нормальном запуске отключите пусковой конденсатор.

Работа трехфазного двигателя от однофазного источника питания дает много преимуществ, перемотка выполняется легко.Однако общая мощность однофазного источника питания слишком мала, он должен выдерживать высокий пусковой ток, поэтому этот метод можно применить только к двигателю мощностью 1 кВт или менее.

II: Купите частотно-регулируемый привод GoHz.
VFD, сокращение от Variable Frequency Drive, это устройство для управления двигателем, работающим с регулируемой скоростью. Однофазный преобразователь частоты в трехфазный — лучший вариант для трехфазного двигателя, работающего от однофазного источника питания (1 фаза 220 В, 230 В, 240 В), он устраняет пусковой ток при запуске двигателя, заставляя двигатель работать с нулевой скорости до полной скорость плавная, плюс цена абсолютно доступная.Доступны частотно-регулируемые приводы GoHz мощностью от 1/2 до 7,5 л.с., более мощные частотно-регулируемые приводы могут быть настроены в соответствии с конкретными двигателями.

Видео с подключением однофазного частотно-регулируемого привода к трехфазному частотному диапазону ГГЦ

Преимущества использования частотно-регулируемого привода на частоте ГГц для трехфазного двигателя:

  1. Плавный пуск может быть достигнут путем настройки параметров частотно-регулируемого привода, время пуска может быть установлено в несколько секунд или даже десятки.
  2. Функция бесступенчатого регулирования скорости для обеспечения оптимальной работы двигателя.
  3. Переведите двигатель с индуктивной нагрузкой на емкостную нагрузку, которая может увеличить коэффициент мощности.
  4. ЧРП
  5. имеет функцию самодиагностики, а также функции защиты от перегрузки, перенапряжения, низкого давления, перегрева и более 10 функций защиты.
  6. Может быть легко запрограммирован с клавиатуры для автоматического управления.

III: Купите преобразователь частоты / фазы.
Преобразователь частоты GoHz или преобразователь фазы также можно использовать для таких ситуаций, он может преобразовывать однофазный (110 В, 120 В, 220 В, 230 В, 240 В) в трехфазный (0- 520 В) с чистым синусоидальным выходом, который лучше для характеристик двигателя, чем форма волны ШИМ VFD, они предназначены для лабораторных испытаний, самолетов, военных и других приложений, где требуются высококачественные источники питания, это очень дорого.

Статья по теме: Влияние двигателя 60 Гц (50 Гц) на источник питания 50 Гц (60 Гц)

Как использовать трехфазный двигатель в однофазном источнике питания

На этот раз я хотел бы поделиться некоторыми важными знаниями, которые я использовал при возникновении аварийной или критической ситуации. Что вы делаете, если у вас есть только трехфазный двигатель и однофазный источник питания?

Как использовать трехфазный двигатель в однофазном питании Фактически трехфазный двигатель может работать в однофазном питании с помощью постоянного КОНДЕНСАТОРА.Эта маленькая вещь (конденсатор) очень полезна для работы трехфазного двигателя от однофазного источника питания.

Согласно нашему последнему обсуждению трехфазного двигателя, обычно у него есть две (2) общие обмотки, соединение ЗВЕЗДА или ТРЕУГОЛЬНИК. В этом посте я объяснил, как подключить конденсатор в трехфазном двигателе, как изменить вращение двигателя, как оценить значение емкости и выбрать подходящий конденсатор.

Как установить и подключить конденсатор для трехфазного двигателя с однофазным питанием?

1) Подключение конденсатора для вращения ВПЕРЕД

-Для вращения ВПЕРЕД, мы должны установить конденсатор в соединение ТРЕУГОЛЬНИК, как показано на рисунке ниже.

* символ -> Изменение клеммы подключения * конденсатора позволяет инвертировать направление вращения двигателя.

2) Подключение конденсатора для ОБРАТНОГО вращения

— Для ОБРАТНОГО вращения необходимо установить конденсатор в любые две фазы обмотки в соединении ЗВЕЗДА (Y), как показано на рисунке ниже.

* символ -> Изменение клеммы подключения * конденсатора позволяет инвертировать направление вращения двигателя.

Мощность двигателя

Мы должны учитывать выходную мощность двигателя при переходе с трехфазного источника питания на однофазный, чтобы соответствовать и подходить для нашего приложения. Но мы не можем получить фактическое значение из-за множества аспектов, которые мы должны вычислить, и это так сложно. можно оценить приблизительное значение мощности двигателя в процентах (%) ниже: —

Как выбрать подходящий конденсатор?

Это очень важное решение, которое мы должны учитывать относительно размера конденсатора при планировании работы трехфазного двигателя от однофазного источника питания.При неправильном выборе это может повлиять на состояние двигателя, а его производительность также может повредить обмотку двигателя.

Ниже приводится приблизительное значение требуемого конденсатора. Мы должны учитывать рабочее напряжение VS напряжение сети, чтобы избежать повреждения обмотки трехфазного двигателя или самого конденсатора. См. Таблицу ниже: —

Control Engineering | Как правильно эксплуатировать трехфазный двигатель при однофазном питании

Итак, вы сказали соседу, что работаете с электрооборудованием, и теперь он думает, что вы можете решить его проблему, потому что он или она купил трехфазный двигатель, который не может работать от однофазной энергии.Когда вас просят переоборудовать этот двигатель, это уже кажется больше проблемой, чем того стоит. Но это не совсем так. Есть несколько способов облегчить этот процесс.

Метод фантомной ноги

Трехфазное питание состоит из трех симметричных синусоидальных волн, которые на 120 электрических градусов не совпадают по фазе друг с другом (см. Рисунок 1). Один из методов преобразования однофазной мощности, который хорошо зарекомендовал себя в течение десятилетий, заключался в подключении двух фаз к входящей однофазной мощности 220 В и создании «фантомного плеча» для третьей фазы с помощью конденсаторов для принудительного смещения между основной и вспомогательной обмотками. .В этом случае смещение составляет 90 электрических градусов.

Для этого метода конденсаторы должны иметь размер, соответствующий нагрузке. В противном случае ток будет несимметричным. Вместо сдвига фазы на 120 градусов, изображенного в нижней половине рисунка 1, неправильное соединение конденсатора и нагрузки может привести к большому отклонению. Чем больше расхождение, тем меньше крутящий момент.

Метод вращающегося фазового преобразователя

Другой жизнеспособный метод — вращающийся фазовый преобразователь (см. Рисунок 2).Например, деревообрабатывающий цех может использовать вращающийся фазовый преобразователь для работы нескольких трехфазных машин от однофазного источника питания. Одним из недостатков является то, что процесс может быть очень дорогостоящим в течение всего времени преобразования фазы вращения, независимо от того, используется ли какое-либо оборудование. Ток может быть сбалансирован, когда работает конкретное оборудование, но если работает несколько машин или все они сильно нагружены, трехфазная мощность — ток и напряжение — резко несбалансирована.

«NEMA Stds.MG 1: Motors and Generators »требует, чтобы двигатели работали от напряжения, сбалансированного в пределах 1%. Если применяется правило 10x (процентный дисбаланс тока может быть в 10 раз больше процентного дисбаланса напряжения) к двигателю, работающему с 1% дисбаланс напряжения, дисбаланс тока может составлять 10%. Это полезно, потому что большинство трехфазных двигателей, работающих в системе, описанной выше, работают с дисбалансом тока от 15% до 50%. Даже с графиком снижения номинальных характеристик NEMA MG 1 (см. рисунок 3), ни один двигатель не должен работать с таким большим дисбалансом тока.

Метод частотно-регулируемого привода

Преобразователь частоты (VFD) выпрямляет каждую пару фаз в постоянный ток и инвертирует постоянный ток в мощность для трехфазного выхода, что означает, что преобразователь частоты может использоваться с однофазным входом для управления трехфазным двигателем. Поддержка производителей варьируется, и осторожно рекомендуется снизить номинальные характеристики привода на 1, разделенную на квадратный корень из 3 (около 58%). Также обратите внимание, что номинальная мощность частотно-регулируемого привода в л.с. / кВт используется для удобства выбора приводов, поскольку они рассчитываются по току.Например, для двигателя мощностью 10 л.с. (7,5 кВт) будет использоваться частотно-регулируемый привод мощностью 15 л.с. (11 кВт). Пользователю настоятельно рекомендуется сотрудничать с производителем привода при выборе и настройке частотно-регулируемого привода для этого использования.

Компрессоры, механический цех, деревообрабатывающее оборудование и декоративные фонтаны — хорошие кандидаты для этого метода. Вместо того, чтобы покупать дорогой однофазный двигатель, менять элементы управления и решать проблемы управления скоростью и пусковым крутящим моментом, лучше использовать частотно-регулируемый привод для управления существующим двигателем от однофазного источника питания.Для многих приложений мощностью до 5 л.с. (4 кВт) подходящий частотно-регулируемый привод можно приобрести гораздо дешевле, чем перемотка трехфазного двигателя и обеспечение необходимых элементов управления для его работы.

Дополнительные преимущества заключаются в том, что трехфазный двигатель обычно дешевле купить, органы управления не требуют замены или модификации, а частотно-регулируемый привод имеет дополнительный бонус в виде регулирования скорости. Лучше всего то, что вам не нужно портить выходные, помогая тому, кто не до конца понимает, что вы делаете.

Чак Юнг (Chuck Yung) — старший специалист по технической поддержке в Ассоциации обслуживания электроаппаратуры (EASA). EASA является контент-партнером CFE Media. Отредактировал Крис Вавра, редактор-постановщик CFE Media, [email protected].

ОНЛАЙН экстра

См. Дополнительные статьи EASA по ссылкам ниже.

Трехфазная электрическая мощность | Передача электроэнергии

Трехфазная электроэнергия — распространенный метод передачи электроэнергии.Это тип многофазной системы, которая в основном используется для питания двигателей и многих других устройств. Трехфазная система использует меньше проводящего материала для передачи электроэнергии, чем эквивалентные однофазные, двухфазные системы или системы постоянного тока при том же напряжении.

В трехфазной системе три проводника цепи несут три переменных тока (одинаковой частоты), которые достигают своих мгновенных пиковых значений в разное время. Если взять за основу один проводник, то два других тока задерживаются во времени на одну треть и две трети одного цикла электрического тока.Эта задержка между «фазами» обеспечивает постоянную передачу мощности в течение каждого цикла тока, а также позволяет создавать вращающееся магнитное поле в электродвигателе.

Трехфазные системы могут иметь или не иметь нейтральный провод. Нейтральный провод позволяет трехфазной системе использовать более высокое напряжение, поддерживая при этом однофазные приборы с более низким напряжением. В ситуациях распределения высокого напряжения обычно не бывает нейтрального провода, поскольку нагрузки можно просто подключить между фазами (соединение фаза-фаза).

Трехфазный имеет свойства, которые делают его очень востребованным в электроэнергетических системах. Во-первых, фазные токи имеют тенденцию нейтрализовать друг друга, суммируясь до нуля в случае линейной сбалансированной нагрузки. Это позволяет исключить нейтральный провод на некоторых линиях; все фазные проводники проходят одинаковый ток и поэтому могут иметь одинаковый размер для сбалансированной нагрузки. Во-вторых, передача мощности на линейную сбалансированную нагрузку является постоянной, что помогает снизить вибрации генератора и двигателя.Наконец, трехфазные системы могут создавать магнитное поле, вращающееся в заданном направлении, что упрощает конструкцию электродвигателей. Три — это самый низкий фазовый порядок, демонстрирующий все эти свойства.

Большинство бытовых нагрузок однофазные. Обычно трехфазное питание либо вообще не поступает в жилые дома, либо там, где оно есть, оно распределяется на главном распределительном щите.

На электростанции электрический генератор преобразует механическую энергию в набор переменных электрических токов, по одному от каждой электромагнитной катушки или обмотки генератора.Токи являются синусоидальными функциями времени, все с одной и той же частотой, но смещены во времени, чтобы получить разные фазы. В трехфазной системе фазы расположены равномерно, что дает разделение фаз на одну треть цикла. Частота сети обычно составляет 50 Гц в Азии, Европе, Южной Америке и Австралии и 60 Гц в США и Канаде (но более подробную информацию см. В разделе «Системы электроснабжения»).

Генераторы выдают напряжение в диапазоне от сотен вольт до 30 000 вольт. На электростанции трансформаторы «повышают» это напряжение до другого, пригодного для передачи.

После многочисленных дополнительных преобразований в сети передачи и распределения мощность окончательно преобразуется в стандартное сетевое напряжение ( т. Е. «домашнее» напряжение). Электропитание может быть уже разделено на одну фазу на этом этапе или все еще может быть трехфазным. При трехфазном понижении выход этого трансформатора обычно соединяется звездой со стандартным напряжением сети (120 В в Северной Америке и 230 В в Европе и Австралии), являющимся фазным напряжением.Другая система, обычно встречающаяся в Северной Америке, — это соединение вторичной обмотки треугольником с центральным ответвлением на одной из обмоток, питающих землю и нейтраль. Это позволяет использовать трехфазное напряжение 240 В, а также три различных однофазных напряжения (120 В между двумя фазами и нейтралью, 208 В между третьей фазой (известной как верхняя ветвь) и нейтралью и 240 В между любыми двумя фазами). быть доступным из того же источника.

Большой кондиционер и т. Д.оборудование использует трехфазные двигатели из соображений эффективности, экономии и долговечности.

Нагревательные нагрузки сопротивления, такие как электрические котлы или отопление помещений, могут быть подключены к трехфазным системам. Аналогичным образом может быть подключено электрическое освещение. Эти типы нагрузок не требуют вращающегося магнитного поля, характерного для трехфазных двигателей, но используют более высокий уровень напряжения и мощности, обычно связанный с трехфазным распределением. Системы люминесцентного освещения также выигрывают от уменьшения мерцания, если соседние светильники получают питание от разных фаз.

Большие выпрямительные системы могут иметь трехфазные входы; Результирующий постоянный ток легче фильтровать (сглаживать), чем выходной сигнал однофазного выпрямителя. Такие выпрямители могут использоваться для зарядки аккумуляторов, процессов электролиза, таких как производство алюминия, или для работы двигателей постоянного тока.

Интересным примером трехфазной нагрузки является электродуговая печь, используемая в сталеплавильном производстве и при переработке руд.

В большинстве стран Европы печи рассчитаны на трехфазное питание.Обычно отдельные нагревательные элементы подключаются между фазой и нейтралью, чтобы обеспечить возможность подключения к однофазной сети. Во многих регионах Европы единственным доступным источником является однофазное питание.

Иногда преимущества трехфазных двигателей делают целесообразным преобразование однофазной мощности в трехфазную. Мелкие клиенты, такие как жилые или фермерские хозяйства, могут не иметь доступа к трехфазному питанию или могут не захотеть оплачивать дополнительную стоимость трехфазного обслуживания, но все же могут пожелать использовать трехфазное оборудование.Такие преобразователи также могут позволять изменять частоту, позволяя регулировать скорость. Некоторые локомотивы переходят на многофазные двигатели, приводимые в действие такими системами, даже несмотря на то, что поступающее питание на локомотив почти всегда либо постоянное, либо однофазное переменное.

Поскольку однофазная мощность падает до нуля в каждый момент, когда напряжение пересекает нулевое значение, но трехфазная подает мощность непрерывно, любой такой преобразователь должен иметь способ накапливать энергию в течение необходимой доли секунды.

Один из способов использования трехфазного оборудования в однофазной сети — это вращающийся фазовый преобразователь, по сути, трехфазный двигатель со специальными пусковыми устройствами и коррекцией коэффициента мощности, которые создают сбалансированные трехфазные напряжения.При правильной конструкции эти вращающиеся преобразователи могут обеспечить удовлетворительную работу трехфазного оборудования, такого как станки, от однофазного источника питания. В таком устройстве накопление энергии осуществляется за счет механической инерции (эффект маховика) вращающихся компонентов. Внешний маховик иногда находится на одном или обоих концах вала.

Вторым методом, который был популярен в 1940-х и 50-х годах, был метод, который назывался «методом трансформатора». В то время конденсаторы были дороже трансформаторов.Таким образом, автотрансформатор использовался для подачи большей мощности через меньшее количество конденсаторов. Этот метод работает хорошо и имеет сторонников даже сегодня. Использование метода преобразования имени отделяет его от другого распространенного метода, статического преобразователя, поскольку оба метода не имеют движущихся частей, что отделяет их от вращающихся преобразователей.

Другой часто применяемый метод — использование устройства, называемого статическим преобразователем фазы. Этот метод работы трехфазного оборудования обычно используется с нагрузками двигателя, хотя он обеспечивает только 2/3 мощности и может вызвать перегрев нагрузок двигателя, а в некоторых случаях — перегрев.Этот метод не будет работать, когда задействованы чувствительные схемы, такие как устройства ЧПУ, или в нагрузках индукционного или выпрямительного типа.

Производятся некоторые устройства, имитирующие трехфазное питание от однофазного трехпроводного источника питания. Это достигается за счет создания третьей «субфазы» между двумя токоведущими проводниками, в результате чего разделение фаз составляет 180 ° — 90 ° = 90 °. Многие трехфазные устройства будут работать в этой конфигурации, но с меньшей эффективностью.

Преобразователи частоты (также известные как твердотельные инверторы) используются для обеспечения точного управления скоростью и крутящим моментом трехфазных двигателей.Некоторые модели могут питаться от однофазной сети. Преобразователи частоты работают путем преобразования напряжения питания в постоянный ток, а затем преобразования постоянного тока в подходящий трехфазный источник для двигателя.

Цифровые фазовые преобразователи — это последняя разработка в технологии фазовых преобразователей, которая использует программное обеспечение в мощном микропроцессоре для управления твердотельными компонентами переключения питания. Этот микропроцессор, называемый процессором цифровых сигналов (DSP), контролирует процесс преобразования фазы, непрерывно регулируя модули ввода и вывода преобразователя для поддержания сбалансированной трехфазной мощности при любых условиях нагрузки.

  • Трехпроводное однофазное распределение полезно, когда трехфазное питание недоступно, и позволяет удвоить нормальное рабочее напряжение для мощных нагрузок.
  • Двухфазное питание, как и трехфазное, обеспечивает постоянную передачу мощности линейной нагрузке. Для нагрузок, которые соединяют каждую фазу с нейтралью, при условии, что нагрузка имеет одинаковую потребляемую мощность, двухпроводная система имеет ток нейтрали, который превышает ток нейтрали в трехфазной системе.Кроме того, двигатели не являются полностью линейными, что означает, что вопреки теории двигатели, работающие на трех фазах, имеют тенденцию работать более плавно, чем на двухфазных. Генераторы на Ниагарском водопаде, установленные в 1895 году, были крупнейшими генераторами в мире в то время и были двухфазными машинами. Истинное двухфазное распределение энергии по существу устарело. В системах специального назначения для управления может использоваться двухфазная система. Двухфазное питание может быть получено от трехфазной системы с использованием трансформаторов, называемых трансформатором Скотта-Т.
  • Моноциклическая мощность — это название асимметричной модифицированной двухфазной системы питания, используемой General Electric около 1897 года (отстаивали Чарльз Протеус Стейнмец и Элиху Томсон; это использование, как сообщается, было предпринято, чтобы избежать нарушения патентных прав). В этой системе генератор был намотан с однофазной обмоткой полного напряжения, предназначенной для освещения нагрузок, и с небольшой (обычно линейного напряжения) обмоткой, которая вырабатывала напряжение в квадратуре с основными обмотками. Намерение состояло в том, чтобы использовать эту дополнительную обмотку «силового провода» для обеспечения пускового момента для асинхронных двигателей, при этом основная обмотка обеспечивает питание осветительных нагрузок.После истечения срока действия патентов Westinghouse на симметричные двухфазные и трехфазные системы распределения электроэнергии моноциклическая система вышла из употребления; его было сложно анализировать, и его хватило не на то, чтобы разработать удовлетворительный учет энергии.
  • Системы высокого фазового порядка для передачи энергии были построены и испытаны. Такие линии передачи используют 6 или 12 фаз и конструктивные решения, характерные для линий передачи сверхвысокого напряжения. Линии передачи высокого порядка могут позволить передачу большей мощности через данную линию передачи на полосе отчуждения без затрат на преобразователь HVDC на каждом конце линии.

Многофазная система — это средство распределения электроэнергии переменного тока. Многофазные системы имеют три или более электрических проводника, находящихся под напряжением, по которым проходят переменные токи с определенным временным сдвигом между волнами напряжения в каждом проводнике. Полифазные системы особенно полезны для передачи энергии электродвигателям. Самый распространенный пример — трехфазная система питания, используемая в большинстве промышленных приложений.

Один цикл напряжения трехфазной системы

На заре коммерческой электроэнергетики на некоторых установках для двигателей использовались двухфазные четырехпроводные системы.Основным преимуществом этого было то, что конфигурация обмоток была такой же, как у однофазного двигателя с конденсаторным пуском, а при использовании четырехпроводной системы концептуально фазы были независимыми и легко анализировались с помощью математических инструментов, доступных в то время . Двухфазные системы заменены трехфазными. Двухфазное питание с углом между фазами 90 градусов может быть получено из трехфазной системы с использованием трансформатора, подключенного по Скотту.

Многофазная система должна обеспечивать определенное направление вращения фаз, поэтому напряжения зеркального отображения не учитываются при определении порядка фаз.Трехпроводная система с двумя фазными проводниками, разнесенными на 180 градусов, по-прежнему остается только однофазной. Такие системы иногда называют расщепленной фазой.

Полифазное питание особенно полезно в двигателях переменного тока, таких как асинхронный двигатель, где оно генерирует вращающееся магнитное поле. Когда трехфазный источник питания завершает один полный цикл, магнитное поле двухполюсного двигателя вращается на 360 ° в физическом пространстве; Двигатели с большим количеством пар полюсов требуют большего количества циклов питания, чтобы совершить один физический оборот магнитного поля, и поэтому эти двигатели работают медленнее.Никола Тесла и Михаил Доливо-Добровольский изобрели первые практические асинхронные двигатели, использующие вращающееся магнитное поле — ранее все коммерческие двигатели были постоянного тока, с дорогими коммутаторами, щетками, требующими большого технического обслуживания, и характеристиками, непригодными для работы в сети переменного тока. Многофазные двигатели просты в сборке, они самозапускаются и мало вибрируют.

Использованы более высокие номера фаз, чем три. Обычной практикой для выпрямительных установок и преобразователей HVDC является обеспечение шести фаз с шагом между фазами 60 градусов, чтобы уменьшить генерацию гармоник в системе питания переменного тока и обеспечить более плавный постоянный ток.Построены экспериментальные линии передачи высокого фазового порядка, содержащие до 12 фаз. Это позволяет применять правила проектирования сверхвысокого напряжения (СВН) при более низких напряжениях и позволит увеличить передачу мощности в коридоре той же ширины линии электропередачи.

Жилые дома и малые предприятия обычно снабжаются одной фазой, взятой из одной из трех фаз коммунального обслуживания. Индивидуальные клиенты распределяются по трем фазам, чтобы сбалансировать нагрузки. Однофазные нагрузки, такие как освещение, могут быть подключены от фазы под напряжением к нейтрали цепи, что позволяет сбалансировать нагрузку в большом здании по трем фазам питания.Сдвиг фаз линейных напряжений составляет 120 градусов; Напряжение между любыми двумя живыми проводами всегда в 3 раза больше между живым и нулевым проводом. См. Статью Системы электроснабжения для получения списка однофазных распределительных напряжений по всему миру; трехфазное линейное напряжение будет в 3 раза больше этих значений.

В Северной Америке в жилых многоквартирных домах может быть распределено напряжение 120 В (линия-нейтраль) и 208 В (линия-линия). Основные однофазные приборы, такие как духовки или плиты, предназначенные для системы с разделением фаз на 240 В, обычно используемой в односемейных домах, могут не работать должным образом при подключении к 208 Вольт; нагревательные приборы будут развивать только 3/4 своей номинальной мощности, а электродвигатели не будут правильно работать при подаче напряжения на 13% ниже.

Как преобразовать однофазное питание в трехфазное

Обновлено 15 декабря 2018 г.

Кевин Бек

В Соединенных Штатах большая часть энергии, поступающей в дома людей, является однофазной. Однако электроэнергия, вырабатываемая на электростанции, является трехфазной. Это идея тех больших линий передачи, которые вы видите прикрепленными к высоким башням — эти линии должны передавать столько напряжения, сколько возможно, на большие расстояния, прежде чем эта мощность будет «отведена» и доставлена ​​в районы при значительно пониженном напряжении.

Однофазного питания достаточно практически для всех бытовых приборов, в то время как промышленные установки с тяжелым оборудованием требуют трехфазного питания. Но что, если вам нужно трехфазное питание, а все, что у вас есть, — это однофазное питание, поступающее в ваш дом?

Трехфазное питание: визуальная аналогия

Представьте себя и двух своих (явно скучающих) друзей, идущих взад и вперед со скоростью 2 метра в секунду (около 4,5 миль в час) по дороге, идущей на север. юг и измеряет 60 метров от конца до конца.Каждый из вас начинает в середине этого пути, идет к северному концу, возвращается к началу, продолжает идти к противоположному концу и снова возвращается к середине, тем самым завершая один 120-метровый «круг» или цикл. Поскольку каждый из вас идёт со скоростью 2 метра в секунду, один путь туда и обратно занимает у каждого человека ровно 60 секунд.

Предположим далее, что в начальной точке «статус» каждого из вас равен нулю. Вы получаете одну единицу статуса за каждый метр, который вы идете на север, и теряете единицу статуса за каждый метр, который вы идете на юг.Таким образом, всякий раз, когда один из вас достигает северного конца пути, этот человек имеет статус 30, в то время как любой, кто делает поворот на южном конце, имеет статус -30. Вы понимаете, что трое из вас могут максимально отделить себя друг от друга, начав с интервалом в 20 секунд, потому что каждая схема занимает 60 секунд, и вас трое, и 60, разделенное на 3, равно 20. Если вы выполните алгебру, вы обнаружите, что когда один из вас максимизировал свой «статус» со значением 30, достигнув северного конца, двое других проходят друг друга на полпути вдоль южного участка, один направляется на север, а другой — на юг, где каждый ходок имеет статус -15.Если вы сложите свои значения статуса вместе в такой момент, они в сумме составят 30 + (-15) + (-15) = 0. Фактически, можно показать, что это сумма всех ваших значений статуса в любое время. равно 0 до тех пор, пока вы втроем точно расставлены, как описано.

Мощность и напряжение в цепях переменного тока

Это предлагает модель того, как выглядит трехфазная электрическая мощность, за исключением того, что «напряжение» заменяется на «состояние», и вместо одного цикла, происходящего каждые 60 секунд, происходит 60 циклов напряжения каждый второй.Кроме того, вместо того, чтобы каждый человек проходил начальную точку дважды в минуту, напряжение проходит через нулевую точку 120 раз в секунду.

Из-за того, что мощность, ток и напряжение связаны математически, трехфазная мощность остается на постоянном, ненулевом уровне, даже если три отдельных напряжения складываются в ноль в любой момент. Это соотношение:

Здесь P — мощность в ваттах, V — напряжение в вольтах, а R — электрическое сопротивление в единицах, называемых омами. Вы можете видеть, что отрицательные напряжения вносят вклад в мощность, потому что возведение отрицательного числа в квадрат дает положительное значение.Полная мощность в трехфазной системе — это просто сумма мощности трех отдельных значений мощности каждой фазы.

Кроме того, если вы когда-нибудь задавались вопросом, как переменный ток (AC) получил свое название, теперь у вас есть ответ. Напряжение никогда не бывает стабильным ни в однофазных, ни в трехфазных системах, и, как следствие, нет ни тока; они связаны законом Ома: V = IR, где I означает ток в амперах («амперах»).

Однофазное питание: расширение аналогии

Чтобы расширить аналогию «приятель-ходьба-вперед-вперед» на однофазное питание, просто представьте, что двух ваших друзей зовут домой к обеду, пока вы продолжаете идти, и вот оно. у тебя есть это.То есть трехфазное питание — это буквально три однофазных источника питания, взаимно смещенных на треть цикла (или, в тригонометрическом выражении, на 120 градусов). В однофазном источнике питания каждый раз, когда одно напряжение на короткое время становится равным нулю, уменьшается и выходная мощность. Возможно, теперь вы понимаете, почему небольшие приборы, на которые не сильно влияют очень короткие перебои в подаче электроэнергии, могут работать от однофазной энергии, в то время как большие машины, которые работают с высокими уровнями мощности (мощности), не могут; им требуется большой и стабильный источник питания.

Все вышесказанное легче понять, просмотрев график зависимости напряжения от времени для трехфазного источника питания (см. Ресурсы). На этом графике отдельные фазы изображены красными, пурпурными и синими линиями. Их сумма всегда равна нулю, но сумма их квадратов положительна и постоянна. Таким образом, при неизменном значении R мощность P в этих установках также постоянна благодаря соотношению P = V 2 / R.

Для однофазной сети нет напряжений для суммирования, а напряжение однофазной сети проходит через нулевую точку 120 раз в секунду.В эти моменты мощность падает до нуля, но восстанавливается достаточно быстро, так что небольшие светильники, приборы и т. Д. Не испытывают заметных перебоев.

Преобразование однофазного в трехфазное

Если у вас есть трехфазный двигатель в более крупном устройстве, таком как воздушный компрессор промышленного размера, и у вас нет быстрого доступа к трехфазному питанию из-за особенностей вашей локальной сети настроен, существуют обходные пути, которые вы можете использовать для правильного включения вашего оборудования. (Один из них — просто заменить трехфазный двигатель однофазным, но это далеко не так умно, как другие решения.)

Доступны многочисленные типы трехфазных преобразователей. Один из них, статический преобразователь , использует тот факт, что, хотя трехфазный двигатель не может запускаться от однофазной мощности, он может продолжать работать от однофазной мощности после запуска. Статический преобразователь делает это с помощью конденсаторов (устройств, которые могут накапливать заряд), что позволяет статическому преобразователю заменять одну из фаз, хотя и неэффективным способом, который гарантированно сокращает эффективный срок службы двигателя.Поворотный фазовый преобразователь , с другой стороны, действует как своего рода комбинация замещающего трехфазного двигателя и независимого генератора. Это устройство включает в себя холостой двигатель, который после того, как он приводится в движение, не вращает движущиеся части в родительских машинах, а вместо этого вырабатывает мощность, так что вся установка может достаточно хорошо имитировать трехфазную систему питания. Наконец, частотно-регулируемый привод (VFD) использует компоненты, называемые инверторами, которые могут использоваться для создания переменного тока практически любой желаемой частоты и воспроизводить большинство условий в стандартном трехфазном двигателе.

Ни один из этих преобразователей не идеален, точно так же, как хлебный нож можно использовать для легкой резки мяса. Но хлебный нож лучше, чем ваши голые руки, и поэтому эти преобразователи действительно хорошо иметь под рукой, если вы часто работаете с энергоемким оборудованием и инструментами.

ОДНОФАЗНЫЕ ИНДУКЦИОННЫЕ ДВИГАТЕЛИ (Электродвигатель)

1,2
Существует много типов однофазных электродвигателей. В этом разделе обсуждение будет ограничено типами, наиболее распространенными для двигателей с интегральной мощностью от 1 л.с. и выше.
В промышленных приложениях по возможности следует использовать трехфазные асинхронные двигатели. В целом трехфазные электродвигатели имеют более высокий КПД и коэффициент мощности и более надежны, поскольку не имеют пусковых переключателей или конденсаторов.
В тех случаях, когда трехфазные электродвигатели недоступны или не могут использоваться из-за источника питания, для промышленного и коммерческого применения рекомендуются следующие типы однофазных электродвигателей: (1) электродвигатель с конденсаторным пуском, (2) ) двигатель с двумя конденсаторами и (3) двигатель с постоянным разделением конденсаторов.
Краткое сравнение характеристик однофазных и трехфазных асинхронных двигателей поможет лучше понять, как работают однофазные двигатели:
1. Трехфазные двигатели имеют фиксированный крутящий момент, потому что в воздушном зазоре в состоянии покоя имеется вращающееся поле. . Однофазный двигатель не имеет вращающегося поля в состоянии покоя и, следовательно, не развивает крутящий момент заторможенного ротора. Дополнительная обмотка необходима для создания вращающегося поля, необходимого для запуска. В однофазном двигателе со встроенной мощностью это часть сети RLC.
2. В трехфазном двигателе ток ротора и потери ротора незначительны на холостом ходу. Однофазные двигатели имеют значительный ток ротора и потери в роторе без нагрузки.
3. Для заданного момента пробоя однофазный двигатель требует значительно большего магнитного потока и более активного материала, чем эквивалентный трехфазный двигатель.
4. Сравнение потерь между однофазными и трехфазными двигателями показано на рис. 1.11. Обратите внимание на значительно более высокие потери в однофазном двигателе.
Общие характеристики этих типов однофазных асинхронных двигателей следующие.
1.2.1


Двигатели с конденсаторным пуском

Двигатель с конденсаторным пуском — это однофазный асинхронный двигатель, основная обмотка которого предназначена для прямого подключения к источнику питания, а вспомогательная обмотка подключена последовательно с конденсатором и пусковым выключателем для отключения вспомогательной обмотки от источника питания после запуска. На рис. 1.12 представлена ​​принципиальная схема двигателя с конденсаторным пуском.Наиболее часто используемым типом пускового выключателя является выключатель с центробежным приводом, встроенный в двигатель. Рисунок

РИСУНОК 1.11 Сравнение потерь в процентах одно- и трехфазных двигателей.

РИСУНОК 1.12 Однофазный двигатель с конденсаторным пуском.
1.13 иллюстрирует каплезащищенный однофазный двигатель с конденсаторным пуском промышленного качества; обратите внимание на механизм переключения с центробежным приводом.
Однако другие типы устройств, такие как реле, чувствительные к току и напряжению, также используются в качестве пусковых переключателей.Совсем недавно были разработаны твердотельные переключатели, которые используются в однофазном двигателе с конденсаторным пуском.

РИСУНОК 1.13. (С любезного разрешения Magnetek, Сент-Луис, Миссури)
в ограниченной степени. Твердотельный коммутатор будет коммутатором будущего, поскольку он будет усовершенствован, а затраты уменьшены.
Все переключатели установлены так, чтобы оставаться замкнутыми и поддерживать цепь вспомогательной обмотки в работе до тех пор, пока двигатель не запустится и не разгонится примерно до 80% от скорости полной нагрузки. На этой скорости переключатель размыкается, отключая цепь вспомогательной обмотки от источника питания.
Двигатель тогда работает от основной обмотки как асинхронный двигатель. Типичные характеристики скорости-момента для двигателя с конденсаторным пуском показаны на рис. 1.14. Обратите внимание на изменение крутящего момента двигателя в точке перехода, в которой срабатывает пусковой выключатель.
Типичные рабочие характеристики асинхронных двигателей со встроенной мощностью 1800 об / мин с конденсаторным пуском и пуском от конденсатора показаны в таблице 1.6. Для этих однофазных двигателей будет значительно более широкий разброс значений крутящего момента заторможенного ротора, крутящего момента пробоя и тягового момента, чем для сопоставимых трехфазных двигателей, и такое же изменение также существует для КПД и коэффициента мощности. (ПФ).Обратите внимание, что в однофазных двигателях крутящий момент является фактором, обеспечивающим запуск с высокоинерционными или трудно запускаемыми нагрузками. Поэтому важно знать характеристики конкретного двигателя с конденсаторным пуском, чтобы убедиться, что он подходит для применения.
1.2.2

Двухзначные конденсаторные двигатели

Двухзначный конденсаторный двигатель — это конденсаторный двигатель с разными значениями емкости для запуска и работы. Очень часто двигатель этого типа называют двигателем с конденсаторным запуском.
Изменение значения емкости от условий запуска к условиям работы происходит автоматически с помощью пускового переключателя, который аналогичен переключателю, используемому для двигателей с конденсаторным запуском. Предусмотрены два конденсатора: емкость с высоким значением для пусковых условий и меньшее значение для рабочих условий. Пусковой конденсатор обычно электролитического типа, который обеспечивает высокую емкость на единицу объема. Рабочий конденсатор обычно представляет собой блок из металлизированного полипропилена, рассчитанный на непрерывную работу.На рисунке 1.15 показан один из способов установки обоих конденсаторов на двигатель.
Принципиальная схема двухзначного конденсаторного двигателя показана на рис. 1.16. Как показано, при пуске и запуске, и работе

РИСУНОК 1.14 Кривая скорость-крутящий момент для двигателя с конденсаторным пуском. Конденсаторы
включены последовательно со вспомогательной обмоткой. Когда пусковой переключатель размыкается, он отключает пусковой конденсатор от цепи вспомогательной обмотки, но оставляет рабочий конденсатор последовательно с вспомогательной обмоткой, подключенной к источнику питания.Таким образом, как основная, так и вспомогательная обмотки находятся под напряжением во время работы двигателя и вносят свой вклад в мощность двигателя. Типичный

ТАБЛИЦА 1.6 Типовые характеристики двигателей с конденсаторным пуском3
л.с. Производительность при полной нагрузке Крутящий момент, фунт-фут
об / мин A Эфф. PF Крутящий момент Заблокировано Разбивка Подтягивание
1 1725 7.5 71 70 3,0 9,9 7,5 7,6
2 1750 12,5 72 72 6,0 17,5 14,7 11,5
3 1750 17,0 74 79 9,0 23,0 21,0 18,5
5 1745 27,3 78 77 15.0 46,0 32,0 35,0

a Четырехполюсные однофазные двигатели 230 В. Источник: любезно предоставлено Magnetek, Сент-Луис, Миссури. Кривая скорость-момент
для двухклапанного конденсаторного двигателя показана на рис. 1.17.
Для данного двигателя с конденсаторным пуском эффект добавления рабочего конденсатора в цепь вспомогательной обмотки следующий:
Повышенный момент пробоя: 5-30% Повышенный крутящий момент заторможенного ротора: 5-10% Повышенная эффективность при полной нагрузке: 2-7 точек

РИСУНОК 1.15 Двухзначный конденсатор, однофазный двигатель. (С любезного разрешения Magnetek, Сент-Луис, Миссури)

РИСУНОК 1.16 Двухзначный конденсатор, однофазный двигатель.
Повышенный коэффициент мощности при полной нагрузке: 10-20 баллов Снижение рабочего тока при полной нагрузке Пониженный магнитный шум Работа охладителя
Добавление рабочего конденсатора к однофазному двигателю с правильно спроектированными обмотками позволяет достичь рабочих характеристик, приближающихся к характеристикам трехфазный мотор. Типичные характеристики двухзначных конденсаторных двигателей с интегральной мощностью показаны в таблице 1.7. Сравнение этих характеристик с характеристиками, показанными в таблице 1.6 для двигателей с конденсаторным пуском, показывает улучшение как КПД, так и коэффициента мощности.
Оптимальные характеристики, которые могут быть достигнуты в однофазном двигателе с конденсаторами с двумя номиналами, зависят от экономических факторов, а также от технических соображений при проектировании двигателя. Чтобы проиллюстрировать это, в таблице 1.8 показаны характеристики однофазного двигателя, конструкция которого оптимизирована для различных значений рабочей емкости./ кВтч. Обратите внимание, что основное улучшение характеристик двигателя происходит при первоначальном переходе от конденсаторного запуска к двухзначному конденсаторному двигателю с относительно низким значением рабочей емкости. Это первоначальное изменение конструкции также показывает самый короткий период окупаемости.
Определение оптимального двухзначного конденсаторного двигателя для конкретного применения требует сравнения стоимости двигателя и энергопотребления всех таких доступных двигателей. / кВтч, срок окупаемости для этих двигателей составил 8-20 месяцев.

ТАБЛИЦА 1.8 Сравнение характеристик конденсаторного пускового и двухзначного конденсаторных двигателей
Тип двигателя
Конденсатор пусковой Конденсатор двухзначный
Рабочий конденсатор, MFD 0 7,5 15 30 65
КПД при полной нагрузке 70 78 79 81 83
Полная нагрузка PF 79 9-1 97 99a 99: 1
Снижение потребляемой мощности,% 0 10.1 11,5 13,3 15
Стоимость,% 100 130 110 151 196
Ориентировочный срок окупаемости 1,3 1,0 1,8 2,9

a Опережающий коэффициент мощности.

ТАБЛИЦА 1.9 Сравнение эффективности: стандартные и энергоэффективные однофазные двигатели для бассейнов со скоростью 3600 об / мин
л.с. Стандартные эффективные двигатели Энергоэффективные двигатели
0.75 0,677 0,76
1,00 0,709 0,788
1,50 0,749 0,827
2,00 0,759 0,85
3,00 0,809 0,869


РИСУНОК 1.18 Сравнение эффективности энергоэффективных и стандартных однофазных двигателей бассейновых насосов. (Предоставлено Magnetek, Санкт-Петербург).Луис, Миссури)

РИСУНОК 1.19 Годовая экономия на энергоэффективном двигателе для бассейнов мощностью 1 л.с., работающем 365 дней в году. (С любезного разрешения Magnetek, Сент-Луис, Миссури)
1.2.3

Двигатели с постоянным разделенным конденсатором

Однофазные асинхронные двигатели с постоянными разделенными конденсаторами определяются как конденсаторные двигатели с одинаковым значением емкости, используемым как для запуска, так и для работы. Этот тип двигателя также называют однозначным конденсаторным двигателем.Применение однофазного двигателя этого типа обычно ограничивается прямым приводом таких нагрузок, как вентиляторы, нагнетатели или насосы, для которых не требуется нормальный или высокий пусковой крутящий момент. Следовательно, основным применением электродвигателя с постоянным разделенным конденсатором были вентиляторы и нагнетатели с прямым приводом. Эти двигатели не подходят для систем с ременным приводом и обычно ограничиваются более низкими значениями мощности в лошадиных силах.
Принципиальная схема двигателя с постоянным разделением конденсаторов показана на рис.1.20. Обратите внимание на отсутствие пускового переключателя. Этот тип двигателя по существу аналогичен двухзначному конденсаторному двигателю

РИСУНОК 1.20 Однофазный двигатель
с постоянным разделенным конденсатором, работающий на рабочем соединении, и будет иметь примерно такие же характеристики крутящего момента. Поскольку только рабочий конденсатор (который имеет относительно низкое значение) подключен последовательно со вспомогательной обмоткой при запуске, пусковой момент значительно снижается. Пусковой крутящий момент составляет всего 20-30% крутящего момента при полной нагрузке.Типичная кривая скорость-крутящий момент для двигателя с постоянным разделением конденсаторов показана на рис. 1.21. Рабочие характеристики этого типа двигателя с точки зрения КПД и коэффициента мощности такие же, как у двухзначного конденсаторного двигателя. Однако из-за низкого пускового момента его успешное применение требует тесной координации между производителем двигателя и производителем приводного оборудования.
Специальная версия конденсаторного двигателя используется для многоскоростных приводов вентиляторов. Этот тип конденсаторного двигателя обычно имеет главную обмотку с ответвлениями и ротор с высоким сопротивлением.Ротор с высоким сопротивлением используется для улучшения стабильной скорости и увеличения пускового момента. Существует ряд вариантов и способов намотки двигателей. Наиболее распространенная конструкция — двухскоростной двигатель, имеющий три обмотки: основную, промежуточную и вспомогательную. Для сети 230 В обычное соединение обмоток называется Т-образным соединением. Принципиальные схемы двухскоростных двигателей с Т-образным соединением показаны на рис. 1.22 и 1.23. Для

РИСУНОК 1.21 Кривая скорость-крутящий момент для двигателя с постоянным разделением конденсаторов.
высокоскоростной режим работы, промежуточная обмотка не включена в схему, как показано на рис. 1.23, и линейное напряжение подается последовательно на основную обмотку и вспомогательную обмотку и конденсатор. Для работы на малой скорости промежуточная обмотка включается последовательно с основной обмоткой и вспомогательной цепью, как показано на рис. 1.23. Это соединение снижает напряжение, приложенное как к основной обмотке, так и к вспомогательной цепи, тем самым уменьшая крутящий момент.

РИС. 1.22 Однофазный двигатель с постоянным разделенным конденсатором, Т-образное соединение и двухскоростной режим.
двигатель будет развиваться и, следовательно, скорость двигателя будет соответствовать требованиям нагрузки. Величина снижения скорости является функцией соотношения витков между основной и промежуточной обмотками и характеристиками крутящего момента ведомой нагрузки. Следует понимать, что с этим типом двигателя изменение скорости достигается за счет снижения скорости двигателя до необходимого минимума.

РИС. 1.23 Однофазный двигатель с постоянным разделенным конденсатором с Т-образным соединением и расположением обмоток.
скорость; это не многоскоростной двигатель с более чем одной синхронной скоростью.

Опубликовано в категории: Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *