В электротехнике запрещается соединять медные и алюминиевые провода почему: Почему нельзя соединять медь и алюминий в электропроводке?

Почему нельзя соединять медь и алюминий в электропроводке?

Практически все уже знают, что алюминиевая проводка это наследие прошлого века, и ее обязательно нужно менять при ремонте квартиры. Мало кто проводит капремонт и забывает об этом.

Однако случаются ситуации, когда ремонт проводится частично, и возникает крайняя необходимость соединить алюминиевый провод с медным или просто их нарастить, добавив несколько лишних сантиметров жилы.

При этом алюминий и медь не совместимы гальванически. Если вы их соедините напрямую, это будет что-то вроде мини батарейки.

При прохождении тока через такое соединение, даже при минимальной влажности, происходит электролизная химическая реакция. Проблемы обязательно рано или поздно себя проявят.

Окисление, ослабление контакта, его дальнейший нагрев с оплавлением изоляции. Переход в короткое замыкание, либо отгорание жилы.

К чему может в итоге привести такой контакт, смотрите на фото.

Как же сделать такое соединение грамотно и надежно, чтобы избежать проблем в будущем.

Вот несколько распространенных способов, которые применяют электрики. Правда не все они удобны для работы в монтажных коробках.

Рассмотрим подробнее каждый из них и выберем наиболее надежный, не требующий последующего обслуживания и ревизий.

Здесь для соединения используется стальная шайба и болт. Это один из наиболее проверенных и простых методов. Правда получается очень габаритная конструкция.

Для монтажа, закручиваете кончики проводов колечками. Далее подбираете шайбы.

Они должны быть такого диаметра, чтобы все ушко провода спряталось за ними и не могло контактировать с другим проводником.

Самое главное, как расположить колечко. Его нужно одевать так, чтобы во время закручивания гайки, ушко не разворачивалось, а наоборот стягивалось во внутрь.

Стальные шайбы между проводниками из разных материалов препятствуют процессам окисления. При этом не забывайте про установку гравера или пружинной шайбы.

Без нее контакт со временем ослабнет.

Дело в том, что безопасно соединять между собой можно металлы, у которых электрохимический потенциал соединения не превышает 0,6мВ.

Вот таблица таких потенциалов.

Как видите у меди и цинка здесь целых 0,85мВ! Такое подключение даже хуже чем прямой контакт алюминиевых и медных жил (0,65мВ). А значит, соединение будет не надежным.

Однако, несмотря на простоту резьбовой сборки, в итоге получается большая, неудобная конструкция, формой похожая на улей.

И запихнуть все это дело в не глубокий подрозетник, не всегда есть возможность. Более того, даже в такой простой конструкции многие умудряются напортачить.

Последствия себя не заставят ждать через очень короткое время.

Еще один способ — это применение соединительного сжима типа орех.

Он часто используется для ответвления от питающего кабеля гораздо большего сечения, чем отпайка.

Причем здесь даже не требуется разрезание магистрального провода. Достаточно снять с него верхний слой изоляции. Некоторые нашли ему применение для подключения вводного кабеля к СИПу.

Однако делать этого не стоит. Почему, читайте в статье ниже.

Но опять же, для распаечных коробок орехи не подходят. Более того, и такие зажимы бывает, выгорают. Вот реальный отзыв от пользователя на одном из форумов:

Есть серия специальных зажимов, которыми можно стыковать медь с алюминием.

Внутри таких клемм находится противоокислительная паста.

Однако споры о 100% надежности таких зажимов, тем более для розеточных, а не осветительных групп, не утихают до сих пор. При определенной укладке в ограниченном пространстве, контакт может ослабнуть, что неминуемо приведет к выгоранию.

Причем произойти это может даже при нагрузке ниже минимальной на которую рассчитаны Ваго. Почему и когда это происходит?

Дело в том, что когда сжимаются соединяемые проводники, между прижимной пластиной и местом контакта появляется небольшой зазор. Отсюда и все проблемы с нагревом.

Вот очень наглядное видео, без лишних слов объясняющее данную проблему.

Данный способ имеет один существенный минус. Большинство продаваемых колодок очень низкого качества.

Некоторые исхитряются и чтобы избежать прямого контакта меди и алюминия, медную жилку припаивают сбоку такого зажима, а не вставляют во внутрь.

Правда клемму для этого придется разобрать. Кроме того, надежный контакт алюминия под винтом без ревизии, не живет очень долго.

Винтики каждые полгода-год нужно будет подтягивать. Частота ревизионных работ будет напрямую зависеть от нагрузки и ее колебаний в периоды максимума и минимума.

Забудете подтянуть и ждите беды. А если все это соединение запрятано глубоко в подрозетнике, то лезть туда каждый раз, не совсем удобное занятие.

Поэтому остается самый надежный из доступных способов – опрессовка. Здесь не будем рассматривать применение специализированных медно-алюминиевых гильз ГАМ, так как они начинаются от сечений 16мм2.

Для домашней же проводки, как правило наращивать нужно провода 1,5-2,5мм2 не более.

Рассмотрим наиболее распространенный случай, который встречается в панельных домах. Допустим, вам нужно запитать одну или несколько дополнительных розеток от уже существующего алюминиевого вывода в сквозной нише.

Для наращивания берете ГИБКИЙ медный провод сечением 2,5мм2. Это уменьшит механическое воздействие на алюминиевою жилу, когда вы будете укладывать провода в подрозетник.

Зачищаете концы медного провода. Далее, для такого соединения их нужно обязательно пропаять. Это исключит непосредственный контакт в гильзе меди и алюминия. Для пайки удобно использовать самодельный тигель, представляющий из себя слегка доработанный паяльник в форме топорика.

  • При этом перед пайкой флюсом снимите с жилы оксидный слой.
  • Сам процесс лужения заключается в окунании провода в специальное отверстие в паяльнике, заполненное оловом.
  • После остывания жилы остатки флюса удаляются растворителем.

Далее переходите к алюминиевым проводам, торчащим из стены. Аккуратно зачищаете их концы и также удаляете слой окиси.

Для этого можно воспользоваться оксидной токопроводящей пастой. Такая же паста используется при монтаже модульных штыревых систем заземления.

Она рассчитана на работу в любых условиях и исключает дальнейшее появление окиси на поверхности провода. Имейте в виду, что оксидная пленка может в последствии иметь сопротивление в несколько раз большее, чем сам алюминий.

И не удалив ее, вся ваша дальнейшая работа пойдет насмарку. Более того, температура плавления такой пленки достигает 2000 градусов (против примерно 600С у Al). После всех подготовительных работ, вставляете в гильзу ГМЛ провода с двух сторон. Все что осталось, это опрессовать данное соединение.

У некоторых  возникнет логичный вопрос, а не продавится ли при опрессовке слой припоя на жиле? Тогда получается что все манипуляции по лужению будут напрасны.

Главное здесь правильно подобрать по сечению гильзу и матрицы инструмента для обжатия.

В этом случае мягкий припой как бы загерметизирует контактное пятно медноалюминиевого соединения. А без отсутствия доступа кислорода к этой точке, эрозии контакта наблюдаться не будет.

Будьте внимательны, при работе с алюминиевыми проводниками нужно действовать крайне осторожно, так как это очень ломкий материал. Одно неосторожное движение и облом жилы вам обеспечен.

После опрессовки необходимо заизолировать данное соединение клеевой термоусадкой.

Именно клеевой тип обеспечит 100% герметичность и предотвратит поступление кислорода к контактным местам. Чтобы не рисковать и не прожечь изоляцию, нагревать термоусадку лучше строительным феном, а не зажигалкой или портативной горелкой.

  1. Полученный пучок проводов укладывать в подрозетник нужно с большой осторожностью, так как алюминий не любит резких перегибов.
  2. Так как наращенные медные жили гибкие, то на концы этих проводников одеваете изолированные наконечники НШВИ.
  3. Только после этого их можно смело заводить в клеммные колодки розеток и затягивать винты.
  4. Безусловно, это не единственный способ наращивания алюминиевых проводов, но он является одним из самых простых (в отличии от сварки или пайки) и надежных (в отличии от скрутки). Подробнее
  5. Если же у вас есть малейшая возможность сменить целиком алюминиевую проводку, делайте это обязательно, не экономьте на своей безопасности.

Как соединить алюминиевый провод с медным — обзор способов

Любая кабельная продукция имеет токопроводящую жилу, выполненную из алюминия или меди. Так как эти материалы обладают хорошей токопроводимостью, теплоотдачей и стоят недорого, то при монтаже и подключении довольно часто возникает необходимость соединения этих двух разных по химическому составу элементов электрических цепей.

Согласно правилам устройства электроустановок (ПУЭ глава 2.1. п 2.1.21) простая скрутка между собой двух проводов разного материала запрещена, если нет последующей пайки или сварки. Однако, существуют и более действенные способы для выполнения данной процедуры как в домашних условиях, так и на производстве.

В этой статье мы расскажем, как правильно выполнить соединение медного и алюминиевого провода и каких ошибок не следует допускать.

Какие проблемы могут возникнуть при соединении алюминия и меди

Не так давно электропроводку в квартире или частном доме выполняли из алюминиевого провода, так как её было достаточно чтобы обеспечить питанием все существующие немногочисленные электроприборы. С развитием мира электроники и бытовой техники появилась тенденция роста нагрузки на электрические цепи. Соответственно возникла необходимость соединения старой и новой проводки.

При касании алюминия и меди возникает химическая реакция, которая впоследствии ухудшает электрический контакт, место подключения начинает греться и в итоге может стать причиной возгорания проводки и даже пожара.

При повышенной окружающей влажности этот процесс происходит достаточно быстро, так как между проводниками образуется тонкая плёнка, обладающая высоким сопротивлением, следствием чего является нагрев и обрыв цепи.

Но всё же каждый электрик знает как соединить алюминиевый провод с медным, чтобы в дальнейшем избежать неприятной ситуации.

На видео ниже наглядно показаны последствия небезопасного контакта между медью и алюминием:

В любом случае рекомендуется заменить старую проводку на медную, которая будет иметь нагрузочную способность, соответствующую текущему потреблению электроприборов. Если нет возможности полностью заменить проводку на новую, то выполняют частичную замену проводки. В таком случае и возникает необходимость соединения старой и новой электропроводки – медного и алюминиевого проводов. 

Способы соединения разных проводов

Существует несколько основных общепринятых распространённых приспособлений, которые дают возможность ликвидировать непосредственный контакт между двумя материалами, действующими друг на друга агрессивно. Рассмотрим каждый отдельно.

Клеммные колодки

Клеммные колодки могут быть оснащены болтовым или зажимным механизмом соединения. Данная конструкция даёт подключение к одному выводу алюминиевого, а к другому медного токопроводящего материала, которые контактируют между собой через стальную пластину.

Пластина изготовлена из нейтрального металла, который не вступает в реакцию с медью и алюминием – обычно это латунные пластины либо медные луженые пластины.

Например, широко применяемой клеммой Wago 2273, можно соединить одновременно от двух до восьми проводников разного сечения, выполнить крепёж на DIN-рейку с помощью специального монтажного адаптера.

Болтовой зажим в колодках более надёжен и применяется в силовых не высоковольтных цепях. Чаще всего он осуществляется с помощью «ореха».

Это небольшая разветвительная коробка, выполненная из диэлектрического материала, в форме напоминающего грецкий орех, внутри которого расположен блок металлических пластин, через которые и происходит контакт между алюминиевыми и медными проводами.

Все эти вышеописанные способы относятся к разъёмным соединениям, то есть для многоразового подключения и отключения, в случае необходимости.

  • На примере наглядно показывается выполненное скрепление меди и алюминия в распределительной коробке за счет использования латунных клеммников:
  • О том, как соединить провода клеммами WAGO, читайте в нашей отдельной публикации!

Метод опрессовки

Иногда, при прокладке и монтаже электропроводки, появляется необходимость в выполнении качественного неразъёмного соединения медных и алюминиевых проводов опрессовкой с помощью гильз. Чаще она встречается на вводе в электрический шкаф, распределительное устройство или при соединении кабеля с уже установленным агрегатом, где нельзя выполнить замену алюминия на медь, и наоборот.

Такой вид подсоединения проводников является более затратным, так как требует специального инструмента. Но в то же время, при проведении многочисленных монтажных работ такого плана, профессионалы часто выбирают именно его.

Опрессовка проводов гильзами обеспечивает более надёжный и долговечный контакт. Таким методом на производстве скрепляют медные и алюминиевые жилы даже к особо мощным и высоковольтным потребителям.

Для выполнения этих работ необходим специальный инструмент и особые медно-алюминиевые гильзы.

Их сжим может выполняться даже с помощью обычного молотка и металлических накладок, что не совсем правильно, или же существует профессиональный ручной гидравлический пресс.

Таким сжимом рекомендуется пользоваться не только при опрессовке гильз, но и наконечников. Кстати, они тоже могут быть выполнены наполовину из меди и алюминия, для подключения, например, алюминиевого кабеля к какому-либо аппарату с медными выводами или клеммами.

Обычно алюмомедные гильзы используют для соединения жил кабелей большого сечения. При небольших сечениях, например, в домашней электропроводке, выполняется опрессовка нескольких проводников одной гильзой.

При этом провода заводят с разных сторон, для соединения как бы в стык, как показано на фотографии выше.

Нельзя складывать алюминиевые и медные проводники параллельно друг другу (внахлест), как это было показано на иллюстрации с гидравлическим прессом, потому что в этом случае возникает прямой контакт алюминия и меди. Также нельзя использовать медные нелуженные гильзы с алюминиевым кабелем.

Болтовое соединение

Очень часто при работе с электропроводкой у простого человека, не занимающегося электромонтажными работами, в домашних условиях может появиться экстренная необходимость в создании хорошего и надёжного контакта между алюминиевым и медным проводом. Бежать в магазин для покупки специального инструмента и материалов не целесообразно при выполнении разовых работ, а их нужно сделать и при этом качественно.

Тогда имеет смысл воспользоваться обычным болтом с гайкой и несколькими шайбами. Главное, в этом методе — это разделить шайбами два металла, агрессивных друг к другу, так как показано на рисунке внизу.

Болтовое соединение алюминиевого и медного провода можно выполнить в распределительной коробке, которая является неотъемлемой частью любой проводки как в доме, так и в квартире. Таким образом, через болт с лёгкостью и достаточно качественно соединяются даже провода с разными жилами по сечению.

Колечки из провода должны быть завернуты в сторону затягивания гайки, при болтовом соединении. Это нужно чтобы при затягивании колечки не раскручивались и не увеличивались в диаметре, а наоборот плотнее оборачивались вокруг болта.

На видео наглядно показывается, как соединить жилы разного материала болтом:

Похожий способ — применение заклепочника. Ниже наглядно показывается, как соединить провода заклепкой:

Есть еще вариант применения алюмомедных наконечников и алюмомедных шайб. Можно опрессовать алюминиевый кабель наконечником и подсоединять к медной шине. Либо при использовании алюмомедной шайбы можно опрессовать алюминиевый кабель обычным алюминиевым кабельным наконечником и подключить на шину через данную шайбу.

Особенности соединения жил на улице

При монтаже кабельной линии по улице все элементы соединения подвержены воздействию внешних негативных факторов, таких как снег, обледенение, дождь и т. д.

Поэтому для выполнения таких работ необходима только герметично закрывающаяся конструкция, устойчивая к ультрафиолетовым лучам и низким температурам. Осуществляя подключения на столбе, крыше и в другом открытом месте чаще всего применяются прокалывающие зажимы.

Возможно вам будет интересно более подробно узнать, как соединить СИП с медным кабелем на улице, т.к. в этом случае как раз происходит соединение алюминия и меди на открытом воздухе.

В помещениях при прокладке кабеля в стене под штукатуркой кабель укладывается в штробе цельным, и любое соединение даже однородных металлов нежелательно. Всё подключения в розетке или распределительной коробке выполняются любым вышеописанным способом, подходящим для каждой индивидуальной ситуации.

Распространённые ошибки, полезные советы и правила

К вашему вниманию несколько полезных советов, позволяющих безопасно соединить алюминиевый провод с медным между собой:

  1. Перед тем как соединить жилы пайкой нужно знать, что медь залудить будет очень просто, а алюминий только с помощью специального припоя.
  2. Нельзя слишком сильно сжимать места соединения как многожильных, так и одножильных проводников. В противном случае возникнет деформация и повреждение жил.
  3. Всегда стоит соблюдать маркировку и правильно подбирать клеммники в зависимости от сечения жилы и типа установки (в помещении или же на улице).
  4. Ни в коем случае не используйте для соединения алюминиевой и медной проводки обычные скрутки. Это один из самых небезопасных способов коммутации жил, который чаще всего приводит к пожару.

Это и все, что мы хотели рассказать вам о том, как выполнить соединение медного и алюминиевого провода. Надеемся, предоставленные способы и правила помогли вам понять всю сущность работ!

Будет полезно прочитать:

Как правильно соединять алюминиевые провода с медными в электропроводке

В квартирах домов старой постройки зачастую электропроводка выполнена из алюминиевых проводов, соединенных между собой методом скрутки.

При подключении к алюминиевой электропроводке светильников, установке дополнительных розеток и другого электрооборудования необходимо учитывать, что при повышенной влажности сопротивление контакта между алюминиевыми и медными проводами со временем увеличивается. Это приводит к нагреву места соединения и разрушению контакта.

Для надежного соединения медных и алюминиевых проводов между собой необходимо соблюдать простые правила, о которых и пойдет речь.

Способы соединения алюминиевых проводов с медными

Подключать медные провода к уже существующей проводке из алюминиевых проводов, не так сложно, как кажется на первый взгляд. Главное соблюдать технологию.

Соединение скруткой

Скрутка, хотя правилами ПУЭ в настоящее время запрещена, является одним из самых распространенных способов соединения проводов в быту, благодаря простоте и не требующая дополнительных затрат. Но при соединении разнородных металлов, скрутка является и самым низко надежным способом соединения проводников.

При колебаниях температуры окружающей среды, из-за линейного расширения металлов, между проводами в скрутке образуется зазор, увеличивается сопротивление контакта, начинает выделяться тепло, провода окисляются, и контакт в конечном итоге между проводниками полностью нарушается. Конечно, это происходит спустя не один год, но, тем не менее, если планируется надежная долговременная работа электропроводки, то соединение проводов скруткой лучше заменить более надежным, например резьбовым или с помощью клеммных колодок.

Но если возникла необходимость скрутить провода, то скрутку нужно выполнять таким образом, чтобы проводники обвивали друг друга, а не один обвивал другой.

На фотографии слева показана скрутка, которую делать недопустимо, так как не будет, обеспечена достаточная механическая прочность соединения.

Скрутку медного проводника и алюминиевого без принятия мер по дополнительной герметизации ее недопустимо. Герметизировать скрутку можно любым водостойким защитным лаком.

Максимально надежное соединение медного и алюминиевого проводников получится, если медный провод предварительно залудить припоем. На правой фотографии скрутка медного и алюминиевого проводов выполнена правильно.

Соединять провода можно разного диаметра, многожильный провод с одножильным проводом. Только многожильный провод необходимо предварительно пролудить припоем, сделав, таким образом, его одножильным.

Витков в скрутке должно быть не менее трех для толстого провода и не менее пяти для тонкого, диаметром менее 1 мм.

Резьбовое соединение алюминиевых проводов с медными

Соединение проводов, при правильном выполнении, с помощью винтов и гаек является самым надежным и способно обеспечивать надлежащий контакт на протяжении всего срока службы электропроводки и подсоединенных электроприборов.

Легко разбирается и позволяет соединять любое количество проводников, ограниченное только длиной винта. С помощью резьбового соединения можно успешно соединять провода в любом сочетании, алюминиевые и медные, тонкие и толстые, многожильные и одножильные.

Главное, не допускать непосредственного контакта проводов из меди и алюминия, и устанавливать пружинные шайбы.

Для того, чтобы выполнить резьбовое соединение необходимо снять с проводников изоляцию на длину, равную четырем диаметрам винта, если жилы окисленные, то зачистить металл до блеска и сформировать колечки.

Далее на винт одевают пружинную шайбу, простую шайбу, колечко одного проводника, простую шайбу, колечко другого проводника, шайбу и в довершение гайку, завинчивая винт в которую весь пакет стягивают до выпрямления пружинной шайбы.

Для проводников с диаметром жил до 2 мм достаточно винта М4. Соединение готово. Если проводники из одного металла или при соединении алюминиевого провода с медным, конец которого залужен, то шайбу между колечками проводников прокладывать не нужно. Если медный провод многожильный, то его сначала нужно пролудить припоем.

В настоящее время широкое распространение получил способ соединения проводов с помощью клеммной колодки. Конечно, этот вид соединения проводов по надежности уступает соединению с помощью винта и гайки, но имеет ряд преимуществ.

Позволяет надежно и быстро соединять алюминиевые провода и медные между собой в любом сочетании, не требуется формировать на концах проводов колечки, не нужно соединение изолировать, так как конструкция клеммной колодки исключает случайное прикосновение оголенных участков проводов друг с другом.

Для подсоединения провода к клеммной колодке, достаточно зачистить его конец от изоляции на длину 5 мм, вставить в отверстие и зажать винтом. Затягивать винт нужно со значительным усилием, особенно это важно при соединении алюминиевых проводов.

Клеммная колодка незаменима при подключении люстры к коротким алюминиевым проводам, выходящим из потолка. От многократных скруток алюминиевые провода обламываются и становятся короткими.

Даже если выходит алюминиевый проводник длиной всего в один сантиметр, то с помощью клеммной колодки можно подключить люстру надежно.

Очень удобна клеммная колодка для соединения перебитых в стене алюминиевых и медных проводов, так как длина перебитых проводов для соединения другими способами недостаточна. Но прятать клеммную колодку под штукатурку без размещения в распределительной коробке, не допустимо.

Соединение алюминиевых проводов с медными с помощью клеммной колодки с плоско пружинным зажимом Wago

В настоящее время широкое распространение получили клеммные колодки с плоско пружинным зажимом Wago (Ваго) немецкого производителя. Клеммники Wago бывают двух конструктивных исполнений, одноразовые, когда провод вставляется без возможности изъятия, и многократного применения, с рычажком, позволяющим многократно как вставлять провода, так и вынимать.

На фото одноразовый клеммник Wago. Они рассчитаны для соединения любых видов одножильных проводов, в том числе и медных с алюминиевыми проводами сечением от 1,5 до 2,5 мм2. Колодка рассчитана на соединение электропроводки в соединительных и распределительных коробках с силой тока до 24 А, но я сомневаюсь в этом. Думаю, током силой более 5 А нагружать клеммы Wago не стоит.

Пружинные клеммники Wago очень удобные для подключения люстр, соединения проводов в соединительных и распределительных коробках. Достаточно просто с усилием вставить провод в отверстие колодки, и он надежно зафиксируется.

Для того, чтобы вынуть провод из колодки потребуется значительное усилие. После изъятия проводов может произойти деформации пружинящего контакта и надежное соединение проводов при повторном соединении этой клеммой не гарантируется.

Это является большим недостатком одноразового клеммника.

Более удобный клеммник Wago многоразовый, имеющий оранжевый рычажок. Такие клеммники позволяют соединять и в случае необходимости, разъединять между собой любые провода электропроводки, одножильные, многожильные, алюминиевые в любом сочетании сечением от 0,08 до 4,0 мм2. Рассчитаны на ток до 34 А.

Достаточно снять с провода изоляцию на 10 мм, поднять вверх оранжевый рычажок, вставить провод в клемму и вернуть рычажок в исходное положение. Провод надежно зафиксируется в клеммнике.

Клеммная колодка Wago является современным средством соединения проводов без инструмента быстро и надежно, но обходится дороже, чем традиционные способы соединения.

Неразъемное соединение алюминиевых проводов с медными

Неразъемное соединение проводов обладает всеми преимуществами резьбового, за исключением возможности разборки и повторной сборки соединения без разрушения заклепки и необходимость наличия специального инструмента для выполнения заклепки – заклепочника.

Сегодня заклепки широко используются для неразъемного соединения тонкостенных деталей конструкций при создании перегородок и интерьера в любых помещениях.

Скорость, прочность, низкая цена и простота выполнения операции по заклепке – вот главное достоинство данного вида неразъемного соединения.

Принцип работы заклепочника простой, втягивание и отрезание стального стержня, продетого через трубчатую алюминиевую заклепку со шляпкой. Стержень имеет утолщение и когда втягивается в трубку заклепки, расширяет ее. Заклепки бывают разных длин и диаметров, так что есть возможность подобрать любую.

Для того, чтобы соединить проводники заклепкой, нужно их подготовить так же, как и для резьбового соединения. Диаметры колечек должны быть чуть больше диаметра заклепки. Оптимальный диаметр заклепки это 4 мм.

На заклепку одевают сначала алюминиевый проводник, затем пружинную шайбу, далее медный и плоскую шайбу. Вставляют стальной стержень в заклепочник и сжимают его ручки до щелчка (это происходит обрезка излишков стального стержня).

Соединение готово.

Надежность резьбового и неразъемного соединения заклепкой достаточно высокая. Такой способ соединения можно успешно применять для сращивания, например, поврежденных при ремонтных работах в стене алюминиевых проводников дополнительной вставкой. Только нужно позаботиться о хорошей изоляции оголенных участков соединений.

С другими видами и способами соединения проводов вы можете ознакомиться на странице «Как правильно соединять электрические провода».

Существует мнение, что алюминиевые и медные провода соединять непосредственно вместе недопустимо и это действительно научно обоснованный факт. А можно ли соединять медный провод с оцинкованной клеммой? Конечно, Вы не можете сразу дать ответ, но через минуту будете ориентироваться в этом вопросе не хуже опытного химика.

Что же происходит при соприкосновении двух разных проводников тока? Если влаги нет, то соединение будет надежным всегда. Но в атмосферном воздухе всегда есть пары воды, которые и является виновником разрушения контактов. Каждый проводник тока обладает определенным электрохимическим потенциалом. Это свойство металлов широко используется в технике, например, изготавливают термопары.

Но если вода попадает между металлами, то образует короткозамкнутый гальванический элемент, начинает течь ток и как в гальванической ванне разрушается один из электродов, так и в соединении разрушается один из металлов. Электрохимический потенциал каждого токопроводящего материала известен, и зная величину можно точно определить, какие материалы допустимо соединять между собой.

Таблица электрохимических потенциалов (мВ) возникающих между соединенными проводниками

Согласно требованиям стандарта допускается механическое соединение между собой материалов, электрохимический потенциал (напряжение) между которыми не превышает 0,6 мВ. Как видно из таблицы, надежность контакта при соединении меди с нержавеющей сталью (потенциал 0,1 мВ) будет гораздо выше, чем с серебром (0,25 мВ) или золотом (0,4 мВ)!

А если медный провод покрыть оловянно-свинцовым припоем, то можно его смело соединять любым механическим способом с алюминиевым! Ведь тогда электрохимический потенциал, как видно из таблицы, составит всего 0,4 мВ.

Почему нельзя соединять напрямую медный провод с алюминиевым?

Чтобы повесить люстру или проложить новую линию провода в старой квартире, зачастую нужно соединять алюминиевые и медные провода. Однако электрики категорически запрещают делать такие скрутки. Разберемся, почему нельзя скручивать медь и алюминий и как выполнять соединение проводников из разного металла правильно.

Трудности с проводкой

Современные правила создания внутриквартирной проводки (ПУЭ) требуют, чтобы все проводники в квартире были медными. Однако в советское время в целях экономии в большинстве домов проводка делалась из алюминиевых проводов. Поэтому перед жильцами квартир старой постройки часто возникает проблема соединения медных и алюминиевых проводников. Причин может быть несколько, например:

  • необходимость нарастить обломившийся алюминиевый провод;
  • установка дополнительной розетки;
  • замена старой люстры современной.

Обычно провода соединяют наиболее простым способом – скруткой. Однако электрики категорически запрещают скручивать алюминий с медью. Такое соединение называют пожароопасным и недолговечным. Однако далеко не все способны объяснить причины запрета на создание такого соединения.

Что говорит физика?

Согласно законам природы, при соединении двух металлов возникает гальваническая пара.

Поскольку каждый металл имеет свое значение электрохимического потенциала, в месте контакта участники пары начнут транспортировку электронов. Такие процессы происходят, например, в батарейке.

Если в месте контакта присутствует электролит или металлы находятся под током, скорость перехода электронов из одного металла в другой существенно возрастет.

Поскольку электрохимический потенциал меди и алюминия отличается существенно, гальванические процессы в месте соединения идут быстро. Это приводит к нескольким неприятным последствиям:

  • Появлению на поверхности алюминиевого провода пленки окислов. Эти продукты разрушения металла плохо проводят электричество и существенно снижают качество контакта.
  • Постепенная коррозия разрушит проводники и создаст зазоры между ними. Это также приведет к ухудшению контакта.

Помимо способности образовывать гальваническую пару, алюминий с медью отличаются высокой разницей в способности расширяться при нагреве. Из-за перепадов температур проводники расширяются неравномерно, что также ведет к увеличению зазоров и падению качества контакта.

Некачественный контакт начинает греться при прохождении сквозь него тока. Поэтому место скрутки медного и электрического провода быстро превратится в источник нагрева. А там недалеко и до пожара. Поэтому электрики категорически запрещают выполнять соединение медного и алюминиевого провода путем скрутки.

Некоторые применяемые в электротехнике металлы и сплавы имеют небольшую разницу в электрохимическом потенциале и коэффициентах расширения. Такие материалы называют совместимыми. Для алюминия совместимыми являются цинк, дюраль, электротехническая сталь. Для меди – хром, никель, латуни и бронзы.

Как быть, если соединение необходимо?

Иногда все же приходится соединять несовместимые металлы между собой. В таких случаях применяют специальные технологические решения, которые способны повысить качество контакта. Разберем некоторые из них подробнее.

Соединения с помощью клеммных колодок

Клеммники, или клеммные колодки, – расходный материал для современного электрика. Это помещенная в пластиковый корпус контактная группа, выполненная из медного сплава и покрытая слоем никеля. Пользоваться ими довольно просто:

  1. Нужно зачистить соединяемые провода.
  2. Вставить концы в противоположные гнезда колодки.
  3. Надежно зафиксировать, затянув прижимные винты.

Если слишком сильно прижать алюминиевую жилу, она может обломиться. Поэтому не стоит чрезмерно затягивать винты!

Клеммники WAGO

Современный вариант клеммной колодки, оснащенный пружинными фиксаторами. Достаточно отжать прижимные лапки, вставить зачищенные провода на место и снова зажать. Однако накопленный опыт эксплуатации таких колодок выявил ряд недостатков:

  • Со временем пружина фиксатора может ослабеть, что приведет к нарушению контакта и перегреву.
  • WAGO стоят дороже обычных клеммников.

Соединение с помощью болта

Обыкновенный стальной болт, оснащенный тремя шайбами, также может помочь надежно соединить алюминиевый проводник с медным. На концах проводов делаются кольца, затем они надеваются на болт. Порядок таков: шайба – медь – шайба – алюминий – шайба. Затем контакт тщательно прижимается гайкой и изолируется.

Недостаток такого способа – крупные размеры соединения. Подходит оно только для проводников большого сечения.

Таким образом, хотя соединять медь с алюминием скруткой и нельзя из-за высокой пожарной опасности, существуют безопасные способы соединения для таких проводов. Если вы используете одно из них, можете не волноваться за стабильность контакта и защищенность вашего дома от пожара.

Ответы Mail.ru: ..почему нельзя напрямую соединять алюминиевые и медные провода? (+)

Friendly Fire Гений (55767) 12 лет назад

Практика — критерий истины. Ради эксперимента соединил обычной скруткой алюминиевый провод с медным. Постоянная нагрузка на шнурок где-то в среднем 400-500 ватт. Уже пятый год жду, когда сгорит — ХРЕНУШКИ! Греется, конечно, но не до такой степени, чтобы разрушить изоляцию.

Алексей ЛобановУченик (117) 10 месяцев назад

Ваш случай называется «систематическая ошибка выжившего». Проблема главным образом кроется не в постоянной нагрузке на соединение, а в пиковых типа короткого замыкания. Там, где нормальное соединение перенесли бы кз без потерь, Ваше с гораздо большей вероятностью может вспыхнуть. Алло, некачественная проводка — самая частая причина пожаров.

Танюшкин Гуру (3067) 12 лет назад

Алюминий будет коррозировать и ,в конце концов, разрушится. Может произойти короткое замыкание. Данный процесс будет ускоряться при повышенной влажности.

White Rabbit Искусственный Интеллект (312559) 12 лет назад

Разница электрохимических потенциалов альминия имеди слишком велика.В результате образуется гальваническая пара (типа батарейки) и начинает протекать электричесий ток, во ВЛАЖНОЙ АТМОСФЕРЕ вызывающий интенсивную коррозию алюминия.

Это приводит к возрастанию сопротивления контактаЮ он начинает греться и искрить, добавляется электроэррозионное разрушение.

В общем короткое замыкание в результата совсем необязательно, разве уж очень не повезёт, а вот качество соединения (сопротивление контакта) очень быстро ухудшится. ВО ВЛАЖНОЙ АТМОСФЕРЕ!

Черепахарь Оракул (56548) 12 лет назад

Да, значительная разница в электрохимическом потенциале меди и алюминия. Результат — возможно ослаблание контакта и искрение. Это плохо, скачки напряжения — могут перегореть лампы и приборы окруче.

А если это соединение недоступно, тог кирдык проводке. Впрочем, во многих случаях это соединение работает годами и ничего не делается.

ПРосто, когда работаешь с силовой проовдкой, такие рисковые вещи необходимо свести к минимуму. Ещё есть правила ПУЭ.

Сергей Семакин Просветленный (24330) 12 лет назад

При вводе в дом со столба это делать нельзя, т.к. в месте соединения алюминия и меди будет большое переходное сопротивление, следовательно их нагревание, электрохимическая коррозия. Что в дальнейшем приведет либо к короткому замыканию, либо провод алюминевый просто отгорит.

В крайнем случае соединения делаются через коммутирующие зажимы, в быту их называют «орехами». Вообще смотрите «Правила устройства электроустановок». Если сами никогда не занимались монтажем электропроводки в доме, лучше сделайте это с помощью специалистов и посмотрите сами как это все делается. Есть много тонкостей которые нужно знать.

Правильно выполненные работы, залог вашей безопасности и сохранности дома. Успеха!

Siatkoq Karomel Ученик (245) 4 года назад Из практики — электрики в доме заменили старую проводку (люмишку) на медную. В квартире оставалась старая (люмишка) — через 2 месяца после замены в счетчике на клеммах окислились контакты, перегрелась проводка и пошел специфический запах 🙂 Менял проводку. Алюминий – металл с высокой окисляемостью Это процесс образования на его поверхности окисной плёнки, имеющей очень высокое сопротивление, что естественно не может не сказываться на токопроводимости такого соединения. Медные провода менее подвержены окислению, вернее, окисная плёнка на них имеет гораздо меньшее сопротивление, чем окисная плёнка на алюминиевых проводах, поэтому на токопроводимости это сказывается очень незначительно. Поэтому при соединении медных и алюминиевых проводов электрический контакт фактически происходит через окисные плёнки меди и алюминия, имеющие разные электрохимические свойства, что существенно может затруднять токопроводимость в этом месте соединения. Что же делать когда соединять разнородные металлы действительно нужно? Остается только два пути: соединять через другой металл или устранять образование разрушающей оксидной пленки. В первом случае используются самые различные соединители: клеммные колодки без непосредственного соприкосновения разнородных проводников, защитный слой из третьего металла шайбы специальные наконечники. Для соединения меди и алюминия используются специальные пасты, которые и защищают контакт от окисления и попадания влаги, препятствуют последующему разрушению контакта.

Если для дружбы этих двух металлов нужен третий, то можно один из них залудить. Например луженый медный многожильный провод прекрасно выполнит поставленную задачу при соединении с одножильным алюминиевым.

Соединение медного и алюминиевого провода: правила и способы

Любая кабельная продукция имеет токопроводящую жилу, выполненную из алюминия или меди. Так как эти материалы обладают хорошей токопроводимостью, теплоотдачей и стоят недорого, то при монтаже и подключении довольно часто возникает необходимость соединения этих двух разных по химическому составу элементов электрических цепей. Согласно правилам устройства электроустановок (ПУЭ глава 2.1. п 2.1.21) простая скрутка между собой двух проводов разного материала запрещена, если нет последующей пайки или сварки. Однако, существуют и более действенные способы для выполнения данной процедуры как в домашних условиях, так и на производстве. В этой статье мы расскажем, как правильно выполнить соединение медного и алюминиевого провода и каких ошибок не следует допускать.

Какие проблемы могут возникнуть при соединении алюминия и меди

Не так давно электропроводку в квартире или частном доме выполняли из алюминиевого провода, так как её было достаточно чтобы обеспечить питанием все существующие немногочисленные электроприборы. С развитием мира электроники и бытовой техники появилась тенденция роста нагрузки на электрические цепи. Соответственно возникла необходимость соединения старой и новой проводки.

При касании алюминия и меди возникает химическая реакция, которая впоследствии ухудшает электрический контакт, место подключения начинает греться и в итоге может стать причиной возгорания проводки и даже пожара. При повышенной окружающей влажности этот процесс происходит достаточно быстро, так как между проводниками образуется тонкая плёнка, обладающая высоким сопротивлением, следствием чего является нагрев и обрыв цепи. Но всё же каждый электрик знает как соединить алюминиевый провод с медным, чтобы в дальнейшем избежать неприятной ситуации.

На видео ниже наглядно показаны последствия небезопасного контакта между медью и алюминием:

В любом случае рекомендуется заменить старую проводку на медную, которая будет иметь нагрузочную способность, соответствующую текущему потреблению электроприборов. Если нет возможности полностью заменить проводку на новую, то выполняют частичную замену проводки. В таком случае и возникает необходимость соединения старой и новой электропроводки – медного и алюминиевого проводов. 

Способы соединения разных проводов

Существует несколько основных общепринятых распространённых приспособлений, которые дают возможность ликвидировать непосредственный контакт между двумя материалами, действующими друг на друга агрессивно. Рассмотрим каждый отдельно.

Клеммные колодки

Клеммные колодки могут быть оснащены болтовым или зажимным механизмом соединения. Данная конструкция даёт подключение к одному выводу алюминиевого, а к другому медного токопроводящего материала, которые контактируют между собой через стальную пластину. Пластина изготовлена из нейтрального металла, который не вступает в реакцию с медью и алюминием – обычно это латунные пластины либо медные луженые пластины. Например, широко применяемой клеммой Wago 2273, можно соединить одновременно от двух до восьми проводников разного сечения, выполнить крепёж на DIN-рейку с помощью специального монтажного адаптера.

Болтовой зажим в колодках более надёжен и применяется в силовых не высоковольтных цепях. Чаще всего он осуществляется с помощью «ореха». Это небольшая разветвительная коробка, выполненная из диэлектрического материала, в форме напоминающего грецкий орех, внутри которого расположен блок металлических пластин, через которые и происходит контакт между алюминиевыми и медными проводами. Все эти вышеописанные способы относятся к разъёмным соединениям, то есть для многоразового подключения и отключения, в случае необходимости.

На примере наглядно показывается выполненное скрепление меди и алюминия в распределительной коробке за счет использования латунных клеммников:

О том, как соединить провода клеммами WAGO, читайте в нашей отдельной публикации!

Метод опрессовки

Иногда, при прокладке и монтаже электропроводки, появляется необходимость в выполнении качественного неразъёмного соединения медных и алюминиевых проводов опрессовкой с помощью гильз. Чаще она встречается на вводе в электрический шкаф, распределительное устройство или при соединении кабеля с уже установленным агрегатом, где нельзя выполнить замену алюминия на медь, и наоборот.

Такой вид подсоединения проводников является более затратным, так как требует специального инструмента. Но в то же время, при проведении многочисленных монтажных работ такого плана, профессионалы часто выбирают именно его.

Опрессовка проводов гильзами обеспечивает более надёжный и долговечный контакт. Таким методом на производстве скрепляют медные и алюминиевые жилы даже к особо мощным и высоковольтным потребителям. Для выполнения этих работ необходим специальный инструмент и особые медно-алюминиевые гильзы. Их сжим может выполняться даже с помощью обычного молотка и металлических накладок, что не совсем правильно, или же существует профессиональный ручной гидравлический пресс.

Таким сжимом рекомендуется пользоваться не только при опрессовке гильз, но и наконечников. Кстати, они тоже могут быть выполнены наполовину из меди и алюминия, для подключения, например, алюминиевого кабеля к какому-либо аппарату с медными выводами или клеммами.

Обычно алюмомедные гильзы используют для соединения жил кабелей большого сечения. При небольших сечениях, например, в домашней электропроводке, выполняется опрессовка нескольких проводников одной гильзой. При этом провода заводят с разных сторон, для соединения как бы в стык, как показано на фотографии выше. Нельзя складывать алюминиевые и медные проводники параллельно друг другу (внахлест), как это было показано на иллюстрации с гидравлическим прессом, потому что в этом случае возникает прямой контакт алюминия и меди. Также нельзя использовать медные нелуженные гильзы с алюминиевым кабелем.

Болтовое соединение

Очень часто при работе с электропроводкой у простого человека, не занимающегося электромонтажными работами, в домашних условиях может появиться экстренная необходимость в создании хорошего и надёжного контакта между алюминиевым и медным проводом. Бежать в магазин для покупки специального инструмента и материалов не целесообразно при выполнении разовых работ, а их нужно сделать и при этом качественно.

Тогда имеет смысл воспользоваться обычным болтом с гайкой и несколькими шайбами. Главное, в этом методе — это разделить шайбами два металла, агрессивных друг к другу, так как показано на рисунке внизу.

Болтовое соединение алюминиевого и медного провода можно выполнить в распределительной коробке, которая является неотъемлемой частью любой проводки как в доме, так и в квартире. Таким образом, через болт с лёгкостью и достаточно качественно соединяются даже провода с разными жилами по сечению.

Колечки из провода должны быть завернуты в сторону затягивания гайки, при болтовом соединении. Это нужно чтобы при затягивании колечки не раскручивались и не увеличивались в диаметре, а наоборот плотнее оборачивались вокруг болта.

На видео наглядно показывается, как соединить жилы разного материала болтом:

Похожий способ — применение заклепочника. Ниже наглядно показывается, как соединить провода заклепкой:

Есть еще вариант применения алюмомедных наконечников и алюмомедных шайб. Можно опрессовать алюминиевый кабель наконечником и подсоединять к медной шине. Либо при использовании алюмомедной шайбы можно опрессовать алюминиевый кабель обычным алюминиевым кабельным наконечником и подключить на шину через данную шайбу.

Особенности соединения жил на улице

При монтаже кабельной линии по улице все элементы соединения подвержены воздействию внешних негативных факторов, таких как снег, обледенение, дождь и т. д. Поэтому для выполнения таких работ необходима только герметично закрывающаяся конструкция, устойчивая к ультрафиолетовым лучам и низким температурам. Осуществляя подключения на столбе, крыше и в другом открытом месте чаще всего применяются прокалывающие зажимы. Возможно вам будет интересно более подробно узнать, как соединить СИП с медным кабелем на улице, т.к. в этом случае как раз происходит соединение алюминия и меди на открытом воздухе.

В помещениях при прокладке кабеля в стене под штукатуркой кабель укладывается в штробе цельным, и любое соединение даже однородных металлов нежелательно. Всё подключения в розетке или распределительной коробке выполняются любым вышеописанным способом, подходящим для каждой индивидуальной ситуации.

Распространённые ошибки, полезные советы и правила

К вашему вниманию несколько полезных советов, позволяющих безопасно соединить алюминиевый провод с медным между собой:

  1. Перед тем как соединить жилы пайкой нужно знать, что медь залудить будет очень просто, а алюминий только с помощью специального припоя.
  2. Нельзя слишком сильно сжимать места соединения как многожильных, так и одножильных проводников. В противном случае возникнет деформация и повреждение жил.
  3. Всегда стоит соблюдать маркировку и правильно подбирать клеммники в зависимости от сечения жилы и типа установки (в помещении или же на улице).
  4. Ни в коем случае не используйте для соединения алюминиевой и медной проводки обычные скрутки. Это один из самых небезопасных способов коммутации жил, который чаще всего приводит к пожару.

Это и все, что мы хотели рассказать вам о том, как выполнить соединение медного и алюминиевого провода. Надеемся, предоставленные способы и правила помогли вам понять всю сущность работ!

Будет полезно прочитать:

Допустимые и недопустимые контакты металлов. Популярные метрические и дюймовые резьбы

Электронику часто называют наукой о контактах. Многие знают, что нельзя скручивать между собой медный и алюминиевый провода. Медная шина заземления или латунная стойка для платы плохо сочетаются с оцинкованными винтиками, купленными в ближайшем строительном супермаркете. Почему? Коррозия может уничтожить электрический контакт, и прибор перестанет работать. Если это защитное заземление корпуса, то прибор продолжит работу, но будет небезопасен. Голая алюминиевая деталь вообще может постепенно превратиться в прах, если к ней приложить даже низковольтное напряжение.

Доступные нам металлы не ограничиваются только медью и алюминием, существуют различные стали, олово, цинк, никель, хром, а также их сплавы. И далеко не все они сочетаются между собой даже в комнатных условиях, не говоря уже о жёстких атмосферных или морской воде.

В советских ГОСТах было написано почти всё о допустимых контактах металлов, но если изучение чёрно-белых таблиц из 1000 ячеек мелким шрифтом утомляет, то правильный ответ на «медный» вопрос — нержавейка, либо никелированная сталь, из которой, кстати, и сделан почти весь «компьютерный» крепёж. В эпоху чёрно-белого телевидения были другие понятия об удобстве интерфейса, поэтому для уважаемых читателей (и для себя заодно) автор приготовил цветную шпаргалку.

И, раз уж зашла речь о металлообработке, заодно автор привёл таблицу с популярными в электронике резьбами и соответствующими свёрлами, отобрав из объёмных источников наиболее релевантное по тематике портала. Не все же здесь слесари и металлурги, экономьте своё время.

Преамбула

Да, в век 3D-печати популярность напильника с лобзиком несколько потускнела. Но

клетка Фарадея

для

РЭА

по-прежнему является преимуществом, не забываем и про защитное заземление. Да, для печати корпусов РЭА уже доступен

электропроводный (conductive) ABS-пластик

, но судя по

источнику

, его удельное сопротивление примерно в миллион раз больше меди. Дескать, пыль уже не липнет, но для заземления всё равно многовато. Напечатать же стальные детали корпуса ПК в домашних условиях пока никак невозможно, да мы и алюминий-то с оловом никак не освоим…

Что же делать? Нашему брату приходится действовать методом Микеланджело, используя для творчества вместо каменной глыбы купленные в DIY-магазине заготовки, либо вообще старые корпуса ПК. Работая как-то с корпусом от старого сервера IBM из шикарной миллиметровой стали, автор впал в ступор, потому что имеющаяся резьба была крупнее М3, но мельче #6-32 (позже выяснилось, что это М3,5). Зачем вообще понадобилось в 2003-м году использовать метизы М3,5, останется загадкой, но о существовании дробной метрической резьбы автор даже не подозревал.

UPD
Для моддеров, кстати, рынок предлагает новые, удобные инструменты арсенала домашней мастерской, и про один из них (осциллорез) я рассказываю в отдельной публикации. Арсенал принадлежностей прекрасно дополнит более привычные циркулярные мини-пилы (aka «дремели»), а отсутствие эффекта «запрессовки зубьев» упростит обработку вязких металлов типа меди и алюминия. Инструмент лёгкий, не такой неуклюжий и опасный, как «болгарка». Можно пилить металл практически на уровне носа и без риска получить рубящий удар от заклинившего или осколок от «взорвавшегося» диска. А так бывает в красочно описанных уважаемыми читателями случаях с УШМ: 300-граммовый блин «болгарки» делает 200 оборотов в секунду, потребляя до 2кВт электричества, и требует чуть ли не костюм сапёра. Работающий же осциллорез травматологи упирают себе пильной стороной прямо в ладонь, чтобы успокоить пришедшего на снятие гипсовой повязки пациента… Впрочем, вернёмся к нашим металлам.

Допустимые и недопустимые контакты металлов по ГОСТ 9.005-72

DISCLAIMER:

Предоставляется «как есть». Если уважаемый читатель занимается моделизмом, автомобилизмом или робототехникой, в ГОСТе также приведены: Таблица №2 для

жестких и очень жестких

атмосферных условий, Таблица №3 для контактов, находящихся

в морской воде

. Ниже я предлагаю выдержку из Таблицы №1 для

средних атмосферных

(т.е. комнатных) условий. Буква «А» означает «ограниченно допустимый в атмосферных условиях», подробности в самом ГОСТе.

Кликабельно (спасибо, НЛО):

UPD:
Ещё цветные шпаргалки (благодарю greatvovan):
для средних атмосферных условий
для жестких и очень жестких атмосферных условий

Пара слов о металлах

Металлурги, поправляйте, если что не так. Коррозия очень объёмная и сложная тема, и я не претендую на полноту её освещения. Я лишь даю выборочные зарисовки, чтобы сформировать у читателя нужные ассоциативные ряды.

Оцинковка

Оцинкованная сталь — основная рабочая лошадка народного хозяйства. В виде различных метизов «оцинковка» встречается в магазинах стройматериалов гораздо больше, чем, например, «премиумная» нержавейка. Фабричные корпуса ПК, технологические ящички и шкафчики для оборудования чаще всего выполнены из оцинкованной холоднокатанной стали толщиной порядка 1мм (чем дешевле корпус, тем тоньше лист). «Оцинковка» достаточно прочна и хорошо проводит ток, в промышленности требуется заземление. Если разрезать корпус, то под слоем краски какого-нибудь унылого RAL7035 будет тончайшее цинковое покрытие, а под ним, скорее всего, та самая углеродистая холоднокатанная сталь. Лично у меня нет причин не доверять ГОСТ 9.005-72, поэтому после колхозинга фабричных изделий вообще не рекомендую делать электрический контакт на месте среза стали, лучше постарайтесь сберечь цинковое покрытие. А порезы и шрамы можно закрасить из балончика того же унылого RAL7035 (только заплати €10 и попробуй его найти ещё). Я пользовался автомобильной эмалью нейтрального белого или чёрного цвета (флакончик с кисточной, €2 в любом автомагазине).


Алюминий

Алюминий и его сплавы бывают анодированные (с защитным слоем) и обычные (неанодированные). Алюминий легко обрабатывать в домашних условиях, но помните о коррозии. Не используйте голый алюминий в качестве проводника даже с низковольтным напряжением, иначе ток медленно обратит деталь в прах. Обработанным в мастерской алюминиевым и дюралюминиевым деталям показана полная

эквипотенциальность

(наведённые полями токи вроде бы по фиг, заземлять тоже можно). Алюминий совместим с цинковым покрытием, но для контакта с медью, «голой» или никелированной сталью требуется оловянная «прокладка». Ограниченно допустим контакт алюминия с нержавейкой в атмосферных условиях. Для простоты можно принять, что при контакте с другими металлами и покрытиями алюминий будет корродировать сам по себе, без помощи внешнего электричества.

Витая пара из омедненного алюминия (Copper Clad/Coated Aluminium, CCA) — это отдельная история, в домашних условиях кабель всё равно не производится.


Медь

Медь мягкая и довольно неаппетитно окисляется на воздухе, поэтому изделия из меди заключают в герметичную оболочку или лакируют. Латунные бляхи солдатских ремней и стойки для электронных печатных плат лучше сопротивляются окислению и выглядят аппетитнее позеленевшей меди, особенно если их периодически полировать (я про бляхи, конечно). При этом ни медь, ни её сплав с цинком (латунь) «не дружат» с чистым цинком и его покрытиями. Зато медь совмещается с хромом, никелем и нержавейкой. А если вы держите в руках какую-нибудь клемму, то она наверняка из лужёной (покрытой оловом) меди.


Олово

Олово мягкое, но зато стойкое к коррозии (в комнатных условиях) и электрически совместимое почти со всеми, кроме чугуна, низколегированных и углеродистых сталей, магния. Не стоит паять оловом и бериллий, будьте внимательны при сборке домашнего ядерного реактора. Олово используют, чтобы из недопустимого электрического контакта получить допустимый, т.е. в качестве «прокладки». Клеммы из лужёной меди — отличный пример.
UPD:
На холод изделие выносить нельзя, а при минусовых температурах лучше не эксплуатировать вообще.


Никель

Никелем покрыты блестящие «компьютерные» винтики. Такое покрытие совместимо с медью и бронзой, латунью, оловом, хромом и нержавеющей сталью. Никель несовместим с цинком и алюминием (для алюминия лучше контакт с нержавеющей сталью, см. ниже).


Нержавейка

Нержавеющая сталь — королева металлов сталей: прочная, пластичная, стойкая к коррозии, электропроводная, круто выглядит. Слишком тугая, чтобы резать и гнуть её дома в промышленных масштабах. Хромистые и хромисто-никелевые нержавейки электрически плохо совместимы с цинком и «голой» сталью, зато дают надёжный контакт с медью без помощи олова. Алюминий, а также азотированная, оксидированная и фосфатированная низколегированная сталь ограниченно совместимы при стандартных атмосферных условиях. Нержавейка марки А2 не «магнитится», но существуют и нержавеющие стали с магнитными свойствами. Магнитные свойства не влияют на коррозионную стойкость нержавеющей стали.

Пара слов про case modding

Если вы занимались сборкой ПК, то наверняка знаете, что болтики для монтажа приводов CD/DVD, «ноутбучных» дисков 2.5″ и флоппи-дисководов (ха-ха) используют метрическую резьбу M3. В корпусах ПК и жёстких дисках 3.5″ используется более грубая дюймовая резьба #6-32 UNC. Почему? Мягкий металл любит более грубую резьбу, к тому же адепты дюймовой системы пока лидируют на рынке технологий. Стойка 19″ использует (вы не поверите) дюймы в качестве основной меры, однако для монтажа оборудования я встречал только оцинкованные клетевые шайбы и винты с метрической резьбой М6. Дюймово-метрический дуализм в технологиях…

Обустройство своей инженерной кухни я начал с того, что купил защитные очки, набор качественных свёрл по металлу, небольшой вороток и метчики на резьбы M3 и #6-32 UNC, а заодно M4 и M6. Плашки не понадобились.

Популярые виды резьбы, используемой в компьютерной технике
ГОСТ 19257-73 рекомендует использовать следующие диаметры свёрл для металлов. Наверное, стоит учитывать и количество метчиков в наборе: чем твёрже материал, тем больше необходимость в «предварительных» метчиках. У меня их по три штуки, два «грубых» и один «финишный». А как правильно, кстати?

UPD
А как правильно — читайте комментарии, на публикацию-таки зашли мастера слесарного дела, только я не успел отсортировать всю информацию. Пользователь golf2109 любезно принёс сюда прямо из мастерской два правых столбца таблицы для обозначения того, как мягкость (вязкость) металла влияет на диаметр отверстия под резьбу, благодарю за поддержку.

Диаметр резьбы Стандартный шаг, мм Диаметр сверла, мм
ГОСТ Fe Al
M2 0.4 1,6 1.5* (-0.1)
M2,5 0.45 2.0 1.8* (-0.2)
M3 0.5 2.5 2.3 (-0.2)
M3.5 0.6 2.9 2.7* (-0.2)
M4 0.7 3.3 3.2 3.0 (-0.3)
M5 0.8 4.2 3.9 (-0.3)
M6 1.0 5.0 4.9 4.6 (-0.4)
M8 1.25 6.8 6.7 6.3 (-0.5)
M10 1.5 8.5 8.0 (-0.5)
#6-32 UNC 0.794 2.85 2.7* 2.5* (-0.35)

* Я рискнул прикинуть калибры двух дополнительных свёрл для стали и алюминия там, где по ним у меня нет данных в источниках. Обратите внимание, резьба #6-32 UNC по наружному диаметру находится между M3 и M4, а по шагу резьбы вообще ближе к M5.

UPD
Если сверлите что-то толще миллиметрового листа, читайте спойлер про СОЖ.

про СОЖ

Довольно большое значение и при сверлении, и при нарезании резьб имеет смазка и охлаждение обрабатываемых деталей и инструмента. Настоятельно рекомендую при подаче сверла не спешить и пользоваться техническими жидкостями. Режущая кромка сверла легко перегревается от сухой детали, и получается металлический отпуск. Поверьте, такой отпуск не нужен: он вызывает необратимые изменения в структуре металла и деградацию его прочностных свойств (сверло тупится гораздо быстрее, чем должно). Что делать? Вот несколько советов, которые автор встречал в разных местах.
Не сверлите большим сверлом сразу, разбейте операции примерно по 3мм: т.е. отверстие 10мм сперва проходим 3мм, потом 6мм.
Хорошенько отметьте отверстие керном. Одолжите у ребёнка пластилин, сделайте бортик вокруг планируемого отверстия так, чтобы получился мини-бассейн размером с монету. Если под рукой нет *вообще ничего*, хорошенько смешайте ложку подсолнечного масла с ложкой жидкого мыла и налейте в этот мини-бассейн, хуже не будет. Но если нужно просверлить насквозь, скажем, гирю 16кг, погуглите книгу народных рецептов «сож своими руками». Желаю всем начинающим удачной пенетрации: как говорится, берегите ваши свёрла-метчики смолоду, ведь их ждут новые идеи и интересные изобретения!

На известной китайской площадке можно приобрести «пальцевые» винтики (thumb screw), причём и на #6-32, и на M3. Материал и цвет разный.

Источники

» ГОСТ 9.005-72. Единая система защиты от коррозии и старения. Машины, приборы и другие технические изделия. Допустимые и недопустимые контакты металлов. Общие требования.
» ГОСТ 19257-73. Отверстия под нарезание метрической резьбы. Диаметры.
» Unified Coarse Thread ANSI B1.1 (резьбы UNC ANSI B1.1).

Соединение проводов — обзор способов с картинками

Соединение проводов — скорее всего самая распространенная задача в электротехнике. Поскольку по тем или иным причинам возникает нехватка длины проводников в электрических цепях, приходится соединять между собой их части. Очевидно, что при этом появляется контакт, который лежит в основе многих электротехнических проблем. И не электрические соединения в конкретном месте проводников подразумеваются в данном случае.

Если контакт выполнен правильно, электрическая цепь будет исправно функционировать. Но, тем не менее, фраза «электротехника — это наука о контактах» давно уже звучит как притча во языцех. Далее в статье речь пойдет о том, как правильно соединять провода для того, чтобы это соединение как можно дольше не создавало проблем. А также ряд иных вопросов, имеющих существенное значение для скрутки проводов и охватывающих другие виды их соединения.

Скрутка, о которой умалчивает ПУЭ

Помимо часто упоминаемых слов о контактах, в среде работников электротехники существует еще одна распространенная фраза о том, что работы, выполняемые электриками и минерами, часто весьма схожи своими летальными последствиями. В частности, по этой причине и существует ПУЭ — по сути, свод законов для всего того, что имеет отношение к электрическим сетям. Поинтересуемся в Правилах устройства электроустановок о том, каким образом должно осуществляться соединение проводов.

Что говорится в ПУЭ о соединении проводников

Что говорится в ПУЭ о соединении проводников

С одной стороны, все четко указано:

  • опрессовка;
  • сварка;
  • пайка;
  • сжимы —

и это четыре официально допустимых способа соединения концов проводников. Но все они требуют что-либо дополнительное из инструментария или оборудования, и в некоторых случаях довольно-таки сложное, поскольку:

  • для опрессовки потребуется специальный инструмент, который соответствует соединяемым проводникам;
  • сварка невозможна без сварочного аппарата;
  • для пайки необходимо наличие паяльника, так же как и пригодности для пайки материала соединяемых жил;
  • сжимы предполагают использовать специальный соединитель электрических проводов, предназначенный для этого.

Однако чтобы обеспечить соединение электрических проводов, можно просто скрутить их жилы между собой, получив, таким образом, электрический контакт. И, несмотря на то, что в ПУЭ не указана скрутка, само сжимающееся надежное соединение проводов, тем более утвержденное в установленном порядке, вполне соответствует букве электротехнического закона ПУЭ.

Чтобы скрутка проводов получилась надежной, необходимо выполнить такие условия:

  • длина скрученных жил проводников от края изоляции и до концов составляет 40–50 мм;
  • электрические провода, а точнее их контактирующие жилы, с целью удаления пленок окислов или остатков изоляции зачищают мелкозернистым наждаком или напильником. Можно воспользоваться также и ножом. При этом движения надо делать вдоль жилы. После зачистки рекомендуется с помощью лупы оценить качество удаления пленки. Это позволит создать наилучшее электрическое соединение;
  • чтобы правильно сделать соединение проводов без пайки, свитые концы жил необходимо сформировать одним из общепринятых способов. Они максимально плотно должны прижиматься друг к другу в любом месте скрутки.
  • Применяемые виды скруток показаны далее. Эти изображения помогут нашим читателям понять, как правильно сделать скрутку.
Общепринятые способы скрутки концов проводников

Общепринятые способы скрутки концов проводников

Что же имеет плохого соединение проводов скруткой и почему о ней явно не упоминается в ПУЭ? Ведь остальные методы соединения проводов заметно уступают ей в простоте монтажа и минимальной себестоимости, по которым такое соединение двух проводов с одной жилой, так же как и скрутка многожильных проводов, стоит впереди всех. Остальные способы соединения электрических проводов остаются далеко позади нее.

  • Главный недостаток скрутки заключен в ее ослаблении со временем в результате повторяющихся температурных расширений проводников.

Постепенно из-за температурных деформаций жил усилие, прижимающее их друг к другу, ослабевает, и сопротивление контакта возрастает. Для проводов электрических цепей, в которых присутствуют маломощные потребители типа энергосберегающих и светодиодных ламп, ослабление контактного усилия не будет опасным. Но для скрутки проводов в цепи с электрическими нагревательными приборами мощностью в несколько киловатт с определенного момента может начаться лавинообразный процесс ухудшения контакта между скрученными жилами. Причем, если своевременно не заметить такое соединение электропроводки, в лучшем случае либо медные провода, либо алюминиевые, жилы которых скручены, вблизи него пострадают от порчи изоляции высокой температурой.

  • По этой причине запрещается применение скрутки в помещениях с повышенной пожарной опасностью. В этих помещениях надо применять более надежное соединение проводов.
  • Не разрешается скрутка медных проводов с алюминиевыми проводниками. Так же, как и в любом ином соединении, в скрутке не допускается непосредственный контакт медной и алюминиевой жилы из-за появления электрохимических процессов, приводящих к быстрой порче соединения и усиления пожарной опасности.
  • Повторно соединять два провода, бывших в скрутке, не рекомендуется. Скручиваются только ровные жилы после снятия изоляции, а выпрямление обычно ломает даже жилки многожильного проводника.
  • Правильная скрутка может получиться лишь для относительно тонких проводников. Скручивать толстые одножильные провода не рекомендуется. Чтобы соединить провода между собой при значительной толщине жил, лучше использовать опрессовку их гильзой.
Варианты соединения Соединение проводов с жилами большого диаметра опрессовкой с использованием гильзы

Начиная с некоторого значения диаметра жил сделать скрутку проводов вообще не представляется возможным. Примером может быть силовой кабель. Поэтому скрутка кабеля, содержащего 2, 3 или большее число жил, делается тонкой медной проволокой как подготовка для соединения «начисто». Затем каждая пара зафиксированных жил паяется.

Скрутка с использованием тонкой проволоки Скрутка одножильного и многожильного проводов

Скрутка как полдела

Однако эксперимент, который проводился со скрученными многожильными проводниками, показал высокое качество контакта всех соединений проводов сразу после завершения монтажа. Сделанная сотня скруток отрезков многожильного медного провода с сечением, характерным для обычной квартирной электропроводки, показала весьма малое контактное сопротивление, что подтверждают изображения далее.

Проверка тестером Оценка сопротивления скрутки многожильных медных проводов

Следовательно, выполнив скрутку, делаешь примерно половину монтажных работ по соединению двух проводников. Еще остается доработать полученное соединение так, чтобы со временем оно не ухудшилось. А для этого надо либо создать усилие, которое снаружи обжимает скрученные жилы, либо применить один из способов слияния жил. Слияние жил, безусловно, лучше всего обеспечивает минимальное сопротивление в месте соединения двух, трех или нескольких проводников.

Соединение проводов слиянием жил делается либо их расплавлением, либо припоем. В любом из этих вариантов достигается самое малое значение контактного сопротивления. Но есть и существенные недостатки у этих способов. И при сварке, и при пайке делается нагревание жил до температуры, опасной для изоляции.

  • Чтобы не испортить ее, лучше держать скрутку щипцами сразу за краем изоляции для отвода тепла в ходе сварки или пайки и еще какое-то время после их завершения.
  • Хотя и существует технология сварки и пайки алюминиевых жил, все же лучше иметь дело с медью. Но и медная жила перед пайкой или сваркой очищается от посторонних наслоений и обезжиривается.

Сварка и пайка устраняет само понятие контакта на конце скрутки, делая в этом месте либо тело в виде капли (при сварке), либо заполняя все щели припоем. При соединении проводов, предназначенных для мощных электроприборов, сварка и пайка — самый правильный способ соединения проводников. Однако эксперимент, который проводился на сотне уже показанных скруток, не продемонстрировал существенного уменьшения контактного сопротивления. Об этом свидетельствуют изображения, показанные далее.

Проверка Виды скрутки Иллюстрации измерения контактного сопротивления соединения сваркой

На изображениях представлено очевидное доказательство одинаковых свойств соединения обычной и сваренной скрутки многожильных проводов. Но при увеличении толщины жил, а также для толстых одножильных проводов пайка и сварка будут иметь преимущество перед скруткой. Если соединение проводов можно сделать скруткой, и к ним не подключено мощное электрооборудование, не имеет смысла их паять и тем более сваривать.

Разъемные соединения

Рассмотренные выше опыты свидетельствуют в пользу механической фиксации скруток. Для этой цели наряду с гильзами существуют специальные колпачки СИЗ. Они дают возможность сделать как бы сращивание проводов, обжимая скрутку и сохраняя усилие сжатия. Это две разновидности сжимов, о которых упомянуто в ПУЭ. Первый — это гильза, а второй — колпачок. Его навинчивают до упора на зачищенные жилы. Устройство, а также возможные разновидности колпачков СИЗ, показаны далее на изображениях.

Показатели сопротивления Устройство колпачка СИЗ и разновидности этих колпачков

Аббревиатура СИЗ читается как:

С – соединительный;

И – изолирующий;

З – зажим.

Цифра 1 (СИЗ-1) указывает на колпачок с канавками, а 2 (СИЗ-2) — на такую же деталь с выступами. Числа через дефис указывают на диапазон сечений проводов, подключаемых СИЗ. Колпачок весьма удобен тем, что с его применением достигается не только хорошая проводимость соединения, но и возможность его разнять. Если необходимо выбрать, чем соединить проводники между собой, для домашних и офисных электросетей СИЗ — это оптимальный вариант.

Быстрым и удобным приспособлением, дополняющим разнимаемые виды соединений проводников, является клеммник. Однако удобство его ограничивается нагрузочными токовыми характеристиками. В сравнении с колпачком СИЗ, который улучшает контактное сопротивление, клеммник его ухудшает. Причем очень заметно. Для получения соответствующих данных был сделан третий опыт, информация о котором показана далее. Сваренные скрутки были отрезаны. Концы проводов вставлены в клеммники.

Таблица Колпачок Еще один вид колпачка Определение контактного сопротивления клеммника
  • Контактное сопротивление клеммника на порядок больше, чем у скрутки.

Но зато он не только является самым приемлемым решением для соединения проводов слаботочной электропроводки в квартире и офисе.

  • Клеммник — это связующий элемент между проводами с медными и алюминиевыми жилами.
  • Его удобно использовать для соединения проводов с разным сечением жил.
  • Для медных жил перед вставкой их в клеммник рекомендуется нанесение контактной пасты.
  • Алюминиевые жилы перед вставкой в клеммник надо зачистить от пленки окиси.

Применяются три разновидности этих соединителей:

  1. Клеммники WAGO:
Клеммники WAGO

Серия 221

Серия 221

Серия 222

Серия 222

Для DIN-рейки

  1. Клеммники ТМ 3М, DКС, ІЕK и прочих производителей, в том числе и неразборные самозажимные:
Клеммники Еще модели клеммников Другие разновидности клеммников

Самозажимные клеммы используют усилие при вставке жилы. При этом происходит упругая деформация клеммы, которая в месте контакта с жилой снабжена острыми краями. Они врезаются в жилу и фиксируют ее. Это условно неразборное соединение можно разъединить, сняв крышку с клеммника и поддев, например, тонкой отверткой, край клеммы, извлекая затем провод.

Для того чтобы провод без усилия вставлялся в клеммник и при необходимости так же легко извлекался из него, применяется конструкция с рычагом, который создает усилие в соединении для фиксации жилы. На этом принципе сделаны клеммники WAGO и их аналоги.

Весьма распространенной разновидностью сжима является винтовое соединение. На таком соединении основаны конструкции многих клеммников, соединительных колодок и гильз. Винтовое соединение позволяет получить наибольшее усилие, сжимающее соединяемые жилы. Но для того чтобы со временем от вибраций и температурных деформаций такое соединение не ослабевало, к нему с помощью пружины прикладывается усилие, которое создает удерживающее напряжение.

Различные соединители с винтовыми зажимами Гильзы с винтовыми зажимами
  • Винтовые зажимы — это наиболее эффективное соединение одножильного провода с многожильным, жил разного диаметра, в том числе из алюминия и меди.
  • Поскольку винты, гайки и шайбы всегда есть в наличии у всех, кто связал свою профессию или увлечение с техникой и работает своими руками, при необходимости соединить два провода с их помощью не составит особого труда. Однако это делается по правилам, которые иллюстрирует изображение далее.
Правильно выполненное винтовое соединение
  • Используя винтовые зажимы, необходимо помнить о том, что качество контакта в первую очередь определяется площадью контактирующих поверхностей. А она уменьшается по мере увеличения диаметра жилы. При этом не помогут никакие усилия винтовых зажимов. При больших диаметрах жил обязательно применяются контактные пасты и гели. Но в таком случае пайка и сварка все-таки обеспечат более надежный контакт, нежели винтовое соединение.

Правильное соединение проводов — залог безопасной работы электросети. Надо не забывать, как правильно делать скрутку, оптимально выбирать вид соединения, а также грамотно его исполнять.

Похожие статьи:

«спецкабель эксперт» расширяет ассортимент новыми узлами крепления кабеля

Подготовка многожильного проводника

При зачистке конца медного многожильного проводника выясняется, что тросик из тонких проволок начинает менять форму. До этого повив удерживался слоем изоляции, теперь сдерживание пропало, остаточная упругость заставляет проволочки распрямляться, стержень распушивается на отдельные элементы. Каждая не соединившаяся проволочка:

  • Снижает общее номинальное сечение стыка, допустимая плотность тока через контакт падает, температура повышается;
  • Оказавшись вне изоляции, может привести к электрической травме, вызвать короткое замыкание цепи.

Требуется предварительная обработка зачищенных концов многожильного провода для предупреждения растрепывания, получения однородного, монолитного участка.

Облуживание

Одним из более доступных, популярных способов подготовки до недавнего времени было лужение. Для этого:

  • Зачищается изоляция на нужной длине, проволочки тщательно, туго скручиваются между собой;
  • Разогретым паяльником на поверхность жилы переносится расплавленная канифоль. Металл прогревается, канифоль пропитывает тросик проволок;
  • Кончиком жала паяльника набирается припой, переносится на место лужения. Припой растекается по поверхности горячих проволок, заполняя все зазоры, образуя молекулярную связь с металлом;
  • После остывания бензином или спиртом удаляются остатки канифоли, наждачной бумагой обрабатывается поверхность для удаления возможных «тянучек» припоя в виде тонких длинных игл.

Имеет значение:

  1. Канифоль, это флюс, который применяется при пайке для удаления окислов поверхности металла, улучшает теплообмен, распределение тепла на месте пайки. Для лужения жил запрещается применять флюсы, содержащие кислоту, другие активные компоненты удаления окиси, которые приведут к разрушению жилы;
  2. Применяется свинцово-оловянный припой. Торговая сеть предлагает огромное количество паяльных паст, состоящих из смеси припоя с флюсом. Они очень удобны. Разрешается применять только те, на торговой этикетке которых есть отметка о не активном флюсе.

Но, если уж все равно разогрелся паяльник, проще всего залудить так же жесткий проводник и соединить их пайкой. Получится прочный, надежный стык при минимальном переходном сопротивлении контакта.

Метод требует наличия паяльника, расходных материалов, присутствия электроэнергии на месте монтажа, навыков работы, тщательного аккуратного исполнения, занимает много времени.

Опрессовывание

Этот способ подготовки зачищенного конца гибкой жилы требует наличия пресс-клещей, расходного материала — гильз, внутренний диаметр которых соответствует диаметру жилы. Процесс занимает несравненно меньше времени, трудозатрат, чем лужение:

  • Зачищенный конец многожилки туго скручивается, помещается в гильзу;
  • Пресс-клещи обжимают наружную поверхность гильзы, туго зажимая корпусом провод. Получившиеся вмятины более надежно удерживают жилы.

Готовый отпрессованный конец участвует в любом виде стыка. Если нужно соединить его с одножильным, имеет смысл сразу взять гильзу, диаметр которой позволит разместить внутри нее два проводника. Одновременное обжатие даст хороший стык. В этом случае предварительное лужение многожильного не потребуется.

Необходимость выполнения правильного контакта

Электротехника оперирует понятием переходного сопротивления электрическому току, возникающего по границе неоднородности двух сред. Поверхность металла под воздействием кислорода воздуха покрывается окисной пленкой, увеличивающей величину сопротивления контакта. Большое значение имеет площадь соприкосновения жил проводников, она должна быть больше площади номинального сечения жилы.

При соединении проводов справедливы такие требования:

  1. Тщательная очистка соединяемых жил от окисла;
  2. Получение нормальной площади касания поверхностей проводов:
  3. Гарантия сохранения плотности контакта все время эксплуатации электрической сети.

Для иллюстрации возьмем работу, не разрешенной ПУЭ, простой скрутки проводов. Предварительно очищенные от окисла, скрученные 8-10 раз концы жил выполняют первые два пункта требования. Но, любой металл, даже относительно пластичная медь, имеет остаточную упругость, со временем ослабляющая витки скрутки. Между ними образуется микроскопический зазор, который заполняется воздухом, вызывающим образование окисла. Увеличившееся переходное сопротивление начинает греться при прохождении тока, нагрузка ведь не изменилась. Линейное температурное расширение металла приводит к увеличению зазора, уменьшению площади контакта. Это увеличивает плотность тока, нагрев металла усиливается. Лавинообразно ухудшается контакт, повышается температура стыка.

Сильный разогрев стыка разрушит его, но чаще высокая температура стыка поджигает находящиеся рядом легко воспламеняющиеся материалы до того, как ток прервется. Возникает пожар, тяжесть последствий не возьмется предсказать никто. По сравнению с этим, срабатывание защитной автоматики и отключение участка цепи, замкнувшегося от расплавившейся изоляции, покажется благом, требующим всего-то ремонта проводки.

Классы гибкости жил кабеля и провода

К числу нормативных документов о классах гибкости провода принадлежит ГОСТ 22483-2012. В нём подробно отражены конструкционные особенности провода, приводятся требования к техническим характеристикам и определяются параметры, согласно которым провод принадлежит к конкретным видам и подразрядам.

В составе гибких проводов присутствуют многочисленные медные проволочки, которые вместе составляют сечение токопроводящей жилы. Чем больше будет этих проволочек в жиле и чем тоньше они будут, тем более гибким будет провод. Справедливо и обратное утверждение.

На основании гибкости, зависящей от того, сколько проволок в жиле, имеет место разделение проводов на 6 классов гибкости. По мере увеличения класса жилы, гибкость кабельного изделия на её основе повышается. Чем выше класс гибкости, тем соответственно более гибкая кабельная продукция.

Первый класс гибкости включает в себя все одножильные (монолитные) провода. Помимо этого, к ним принадлежат провода на основе нескольких жил, сечение которых составляет 185 мм2 и выше. Поскольку подобные сечения применяются исключительно в промышленности, они не подлежат рассмотрению в рамках данного материала.

Второй класс отличается большей гибкостью по сравнению с первым. Для достижения этого в составе каждой жилы должно присутствовать определенное количество проволок, которые скручены между собой. В ГОСТ 22483-2012 (Таблица 4) представлено минимальное количество проволок для проводов различного сечения.

Для третьего класса жил и выше минимальное число проволок должно быть больше чем для 2-го класса. Основополагающий фактор в инструкции связан с сечениями проволок по отдельности. Согласно ГОСТ 22483-2012 в таблицах 5, 6, 7, 8 представлено максимальное сечение проволок для проводов разного сечения.

Жилы первого и второго класса применяются в составе кабельных изделий прокладок стационарного типа. Жилы 3-6 класса используются в гибких кабельных изделиях и иногда в системах стационарной прокладки.

Для лучшего восприятия вышеизложенной информации в частности различия гибкости многожильного и одножильного проводов, а также чем отличаются разные классы гибкости между собой, приведу небольшой пример. Допустим, имеем два провода с разным классом токопроводящей жилы — первого и третьего. Оба провода одинакового сечения — 2.5 мм2. Для изготовления провода третьего класса применяются проволоки диаметром 0.69 мм. Для изготовления провода пятого класса применяются проволоки диаметром 0.26 мм. Соответственно провод пятого класса будет состоять из большего количества жил, чем провод третьего класса. Следовательно, чем выше класс — тем мягче жила.

Хочу отметить, что это правило относится не только к медным проводам. Гибкие и многожильные провода также могут быть и алюминиевыми. Но нужно знать, что алюминиевых жил свыше третьего класса не бывает.

Класс жилы кабеля влияет на диаметр провода?

В завершение следует рассмотреть важнейшую особенность, которая связана с различными классами гибкости проводов. Почему чем выше класс жилы кабеля, тем больше диаметр провода? При равном сечении проводов, составляющем например 4 мм2 и различном классе жил (например, 3 и 5) провод 3-го класса гибкости будет визуально казаться тоньше.

Здесь нет ничего страшного, так как все объясняется физической структурой. Жилы имеют круглую форму и прилегая друг к другу между ними образуются пустоты. Соответственно если набрать провод сечением 4 мм2 из жил диаметром 0.87 мм (для 3-го класса) и 0.31 мм (для 5-го класса), то в последнем количество проволок будет больше, а следовательно и пустот между ними тоже больше.

Ни в коем случае не используйте сравнение проводов на глаз. Взять к примеру провода марки КГ и ПВ-3. При одинаковом и качественном сечении ПВ-3 будет казаться значительно тоньше. При равных сечениях жил провода одинаково пропускают ток, различаясь исключительно по степени гибкости.

Похожие материалы на сайте:

Расчет сечения

Сечение медного провода — это та площадь, которую имеет жила в поперечном разрезе. На величину оказывают влияние длительно допустимая нагрузка, сила тока.

Самый простой способ рассчитать сечение — воспользоваться данными таблиц, учитывающих условия эксплуатации и максимальный ток. Для этого потребуется еще два показателя — суммарная мощность электропотребителей (кВт или Вт) и напряжение (В). Первый указывают в технических паспортах или на корпусах приборов, а второй для городских квартир составляет 220 В.

Далее в специальных таблицах находят полученные значения мощности и сопоставляют с диаметром проводника. Помните, что в расчетах необходимо оставлять небольшой запас по диаметру. Ведь при подключении новой техники нагрузка возрастет.

Пайка

Пайка – это когда электрические провода соединяются при помощи расплавленного припоя. Такой вид соединения наибольшим образом подходит для медных проводов. Хотя сейчас есть различные флюсы и для алюминия, опытные электрики предпочитают от такой пайки воздерживаться. Но при необходимости можно использовать специальные флюсы и паять даже медь с алюминием.

Положительные стороны

Такой тип соединения со скруткой уже не сравнить, пайка гораздо надёжнее (по надёжности она уступает лишь сварке).

С помощью пайки можно выполнять соединение многожильных и одножильных проводов, а также жил различного сечения.

Такой вид соединения не требует никакого обслуживания весь период эксплуатации.

Пайка считается низкой по себестоимости, из приспособлений понадобится лишь паяльник, а флюс с припоем стоят совсем недорого, да и расход их совсем мизерный.

Отрицательные стороны

К недостаткам такого метода стоит отнести высокую трудоёмкость. Пайка требует определённых подготовительных работ, жилы проводов перед тем как скручивать, надо предварительно залудить. Спаиваемые поверхности должны быть перед началом работы свободными от окислов и абсолютно чистыми.

Ну и конечно, нужен опыт владения паяльником, то есть у того, кто будет соединять провода методом пайки должна быть определённая квалификация

Ведь в процессе пайки очень важно выдерживать необходимый температурный режим. Недогретый паяльник не прогреет хорошо соединение; перегрев также недопустим, потому что будет очень быстро выгорать флюс, не успевая сделать своё дело

Пайка – процесс небыстрый, но этот минус компенсируется надёжностью, которая получается у контактного соединения.

Монтаж

Пошаговый процесс выполнения пайки выглядит следующим образом:

  1. Снимите изоляцию с жил на 40-50 мм.
  2. До блеска зачистите оголённые участки жил при помощи наждачной бумаги.
  3. Окуните в канифоль разогретый паяльник и поводите им по зачищенным поверхностям несколько раз.
  4. Выполните скрутку.
  5. Жало паяльника поднесите к припою.
  6. Теперь сразу же набранным припоем прогрейте скрутку, олово должно расплавиться и заполнить промежутки между витками.
  7. Таким образом, вся скрутка обволакивается оловом, после чего ей дают остыть.
  8. Затвердевшую пайку протрите спиртом и заизолируйте.

Пайка проводов паяльником показана в этом видео:

Пайка проводов с помощью газового паяльника:

Пайка скруток методом погружения в расплавленный припой:

Болтовое соединение

Болты для соединения проводов раньше применялись часто, сейчас этот метод больше присущ цепям с повышенным напряжением. Контакт получается надёжным, но подсоединённый таким способом электрический узел выходит уж слишком громоздким. До недавних пор в квартирах устанавливались большие распределительные коробки, в них хоть как-то, но можно было расположить такое соединение. Современные коробки миниатюрнее и не рассчитаны под коммутацию проводов подобным методом.

Но знать о нём непременно нужно, потому что это – один из способов решить вечную проблему соединения проводников, выполненных из различных металлов. Болтовой контакт идеально подходит для коммутации абсолютно несовместимых жил – тонких и толстых, алюминиевых и медных, одножильных и многожильных.

Жилы проводов необходимо зачистить и кончики скрутить в виде колечек. На болт надевается стальная шайба, далее накидываются колечки соединяемых проводов (это в том случае, когда они из однородного металла), потом следует ещё одна стальная шайба и всё закручивается гайкой. В случае если выполняется подключение алюминиевого и медного проводов, между ними необходимо расположить ещё одну дополнительную шайбу.

Плюсы такого соединения заключаются в его простоте. При необходимости болтовую конструкцию всегда можно раскрутить. Если надо, то можно добавить ещё жилы проводов (насколько позволит длина болта).

Самое главное в таком виде соединения – не допустить прямого контакта меди и алюминия, не забывать прокладывать между ними дополнительную шайбу. И тогда такой коммутационный узел прослужит долго и надёжно.

Снятие изоляционного слоя с проводов

Сразу хотелось бы остановиться на вопросе, который будет общим для любого способа. Перед тем, как соединять провода в общий электрический узел, их необходимо зачистить от верхнего изоляционного слоя.

Это можно сделать при помощи монтёрского ножа. Метод этот несложный, но велика вероятность повреждения токопроводящей жилы. Чтобы сделать всё правильно, надо чётко следовать пошаговой инструкции:

  1. Расположите провод на какой-то ровной поверхности (типа стола).
  2. Прижмите его указательным пальцем левой руки.
  3. Правой рукой возьмите нож и слегка вдавите его в изоляционную оболочку провода. Чтобы не зацепить металлическую жилу, расположите его по направлению к срезу под углом. Если угол будет прямым, есть вероятность кругового надреза жилы, в результате чего она впоследствии может ломаться.
  4. Держа нож в таком положении. Указательным пальцем левой руки медленно прокрутите проводник на один полный оборот, таким образом, надрезав изоляцию по всему кругу.
  5. Остаётся только стянуть срезанный кусок изоляции.

Профессиональные электрики сейчас уже обязательно имеют в своём арсенале такое приспособление, как стриппер. Это многофункциональный инструмент, с его помощью можно снять изоляцию с провода или разделывать кабель. Он может быть простым, полуавтоматическим и автоматическим. Самое главное, что при снятии изоляции стриппером не повреждается токопроводящая жила. Под каждый стандартный диаметр жилы у подобного инструмента имеется калиброванное отверстие с режущей кромкой.

Длина, на которую необходимо зачищать жилы проводов, для каждого способа соединения разная.

SiFF Одножильный провод

Термоустойчивые провода HELUKABEL

Технические характеристики

– специальный одножильный провод повышенной термоустойчивости с силиконовой изоляцией

– Пределы допустимой рабочей температуры от –60°C до + 180°C (кратковременно выдержимая температура +220°C)

– Номинальное напряжение 380 В

– Испытательное напряжение, переменный ток, 50 Гц 2000 В

– Минимальный радиус изгиба провода 15 x диаметр кабеля

— Устойчивость к воздействию ионизирующего излучения до 20 x 106 сДж/кг (до 20 Мрад)

– Коррозионная способность газообразных продуктов сгорания (свободных от галогенов) соответствует испытательной методике стандартов DIN VDE 0472 раздел 813 и IEC 60754-2 нераспространение пламени соответствует методу В стандартов DIN VDE 0472 раздел 804 и IEC 60332-1

Структура кабеля

 Луженые медные тонкие проводники, свитые в жилы в соответствии со стандартом DIN VDE 0295 кл. 5, BS 6360 кл. 5, также IEC 60228 кл. 5, с повышенной степенью гибкости проводников жилы.

Применение

 Одножильные провода с силиконовой изоляцией представляют собой специальные провода для использования в условиях, как высоких, так и относительно низких температур окружающей среды. Они применяются, главным образом, в сталелитейном производстве, авиационной промышленности, а также в кораблестроении, на предприятиях по производству керамики, на стекольных и цементных заводах. Поскольку в состав изоляции данных проводов не входят галогеносодержащие вещества, эти провода являются наиболее подходящими для использования на электростанциях и в электросиловых установках. Специальные особенности

– хорошая устойчивость по отношению к высокомолекулярным маслам, растительным жирам, а также к спиртам, пластификаторам и клофинам

– высокая температура воспламенения или вспышки

Œ= кабельная продукция произведенная в соответствии с общеевропейскими требованиями по электротехнике 73/234/EWG, а также 93G/68/EWG.

Арт №Число жил хсечение мм2Внешний øприблизит.Вес медикг/кмВес кабеляприбл. кг/км
451000.251,92,46
451010.251,92,46
451020.251,92,46
451030.251,92,46
451040.251,92,46
451050.251,92,46
451060.251,92,46
451070.251,92,46
451080.251,92,46
451090.251,92,46
451100.251,92,46
451110.251,92,46
451120.251,92,46
451130.251,92,46
452000.52,14,810
452010.52,14,810
452020.52,14,810
452030.52,14,810
452040.52,14,810
452050.52,14,810
452060.52,14,810
452070.52,14,810
452080.52,14,810
452090.52,14,810
452100.52,14,810
452110.52,14,810
452120.52,14,810
452130.52,14,810
453000.752,57,213
453010.752,57,213
453020.752,57,213
453030.752,57,213
453040.752,57,213
453050.752,57,213
453060.752,57,213
453070.752,57,213
453080.752,57,213
453090.752,57,213
453100.752,57,213
453110.752,57,213
453120.752,57,213
453130.752,57,213
4540012,79,615
4540112,79,615
4540212,79,615
4540312,79,615
4540412,79,615
4540512,79,615
4540612,79,615
4540712,79,615
4540812,79,615
4540912,79,615
4541012,79,615
4541112,79,615
4541212,79,615
4541312,79,615
455001.5314,419
455011.5314,419
455021.5314,419
455031.5314,419
455041.5314,419
455051.5314,419
455061.5314,419
455071.5314,419
455081.5314,419
455091.5314,419
455101.5314,419
455111.5314,419
455121.5314,419
455131.5314,419
456002.53,82432
456012.53,82432
456022.53,82432
456032.53,82432
456042.53,82432
456052.53,82432
456062.53,82432
456072.53,82432
456082.53,82432
456092.53,82432
456102.53,82432
456112.53,82432
456122.53,82432
456132.53,82432
4570044,63850
4570144,63850
4570244,63850
4570344,63850
4570444,63850
4570544,63850
4570644,63850
4570744,63850
4570844,63850
4570944,63850
4571044,63850
4571144,63850
4571244,63850
4571344,63850
4580065,75873
4580165,75873
4580265,75873
4580365,75873
4580465,75873
4580565,75873
4580665,75873
4580765,75873
4580865,75873
4580965,75873
4581065,75873
4581165,75873
4581265,75873
4581365,75873
45900107,696125
45901107,696125
45902107,696125
45903107,696125
45904107,696125
45905107,696125
45906107,696125
45907107,696125
45908107,696125
45909107,696125
45910107,696125
45911107,696125
45912107,696125
45913107,696125

*Последние две цифры в артикуле товара обозначают цвет изоляции:

_00 зеленый              _07 фиолетовый

_01 черный                _08 желтый_02 красный              _09 оранжевый_03 голубой               _10 прозрачный_04 коричневый      _11 розовый_05 белый                 _12 бежевый_06 серый                 _13 двухцветный

Другие конструкции и сечения поставляются по желанию заказчика

Виды проводов

Все провода можно разделить на два вида:

  • Одножильные, содержат в своем основании одну толстую проволоку. При их соединении между собой не возникает трудностей.
  • Многожильные, содержат в своем основании множество тоненьких проволок.

Гибкие многожильные провода имеют большое преимущество. Их можно скручивать несколько раз и это не повлияет на их функциональность. Еще одним плюсом является большая пластичность по сравнению с одножильными.

Из-за этого качества такие провода чаще используют:

  • в удлиненных тройниках и мобильных осветительных приборах;
  • при подсоединении осветительных приборов к электросети;
  • при подсоединении выключателей и других рычагов воздействия на электросеть.

Электрическая проводка в жилых помещениях чаще всего состоит из одножильного провода. Поэтому, если к ней присоединяют оборудование с многожильным проводом, стоит качественно сделать этот процесс. При неправильном присоединении электрическая проводка может нагреваться и возникнет короткое замыкание.

Из чего состоит провод или кабель

Как известно, провод и кабель – разные продукты, но в рамках статьи обращать внимание на это не будем. Любой проводник состоит из токоведущей жилы, которая может быть оголена или покрыта одно-, двухслойной изоляцией

Последняя производится из диэлектриков, к которым относят поливинилхлорид, каучук, фторопласт и полиэтилен. Есть более специфические изоляционные материалы, добавляющие проводу различные свойства (например, позволяющие погружать изделие в воду на определенную глубину). Жилы изготавливаются из алюминия или меди. Последний металл считается более современным и надежным.

Жилы могут отличаться по структуре:

  1. Однопроволочные являются более жесткими. В их состав входит один цилиндрический/секторный прут. Нередко однопроволочные именуются монолитными.
  2. Многопроволочные жилы характеризуются повышенной гибкостью (мягкостью). Их конструкция подразумевает использование семи и более тонких проволочек. Точное число проволок зависит от конкретной модели кабельной продукции и прописывается в ТУ или ГОСТ. В основном количество проволок подбирается в зависимости от требуемого поперечного сечения или класса гибкости.

Важно. Понятия однопроволочная и многопроволочная относятся к жилам

При этом возникает путаница с названиями одножильные и многожильные, когда становится непонятно, о чем идет речь: о числе токоведущих жил в кабеле или количестве проволок в одном проводнике. Важно прояснять данный момент.

Одножильные проводники

AWGДиаметр, ммСечение, кв. мм
000000 (6/0)14.733170.480
00000 (5/0)13.120135.197
0000 (4/0)11.684107.216
000 (3/0)10.40585.026
00 (2/0)9.26667.429
0 (1/0)8.25153.474
17.34842.406
26.54433.630
35.82726.670
45.18921.150
54.62116.773
64.11513.301
73.66510.548
83.2648.365
92.9066.634
102.5885.261
112.3054.172
122.0533.309
131.8282.624
141.6282.081
151.4501.650
161.2911.309
171.1501.038
181.0240.823
190.9120.653
200.8120.518
210.7230.410
220.6440.326
230.5730.258
240.5110.205
250.4550.162
260.4050.129
270.3610.102
280.3210.081
290.2860.064
300.2550.051
310.2270.040
320.2020.032
330.1800.025
340.1600.020
350.1430.016
360.1270.013
370.1130.010
380.1010.008
390.0900.006
400.0800.005

Формула пересчета AWG в миллиметры для одножильных кабелей выглядит следующим образом:

Множитель 0.127 – это ровно 0.005 дюйма. При разработке калибров AWG диаметр 0.005 дюйма, в то время самая тонкая проволока, был принят за AWG 36, а диаметр 0.46 дюйма, в то время самый популярный толстый размер, за AWG 0000. Когда в обозначении калибра несколько нулей, это означает, что проволока толще проволоки AWG 0. Для удобства обозначения вместо 0000 часто пишут 4/0, вместо 000 – 3/0 и т.д.

Отношение между толщинами, выбранными в качестве границ – 92 раза, и в этом диапазоне уместилось еще 38 калибров, причем они создавались таким образом, чтобы отношение между соседними калибрами было постоянной величиной (корень 39 степени из 92 составляет примерно 1.1229322, это и есть отношение между соседними калибрами). Теперь понятно, откуда взялись в показателе степени значения 36 и 39.

Для толстых калибров, обозначаемых m/0, в качестве значения AWG берется отрицательная величина -(m-1). Для кабеля 4/0 это будет -3, для кабеля 3/0 – величина -2, и т.д.

Увеличение толщины проводника на 6 калибров практически соответствует увеличению толщины вдвое (шестая степень числа 1.1229322 равна 2.005…). Понятно также, что уменьшение толщины на три калибра уменьшает вдвое площадь поперечного сечения.

Советы и правила безопасности

К сварке допускаются только мастера, имеющие квалификационную группу. К пайке также допускаются лица, имеющие навыки работы с паяльником.

Соединять кабели можно только разрешенными для них способами. Нельзя работать с поврежденными проводками. Все оголенные части требуется заизолировать.

Соединить кабели можно разными способами. Выбор метода подсоединения определяется материалом, диаметром сечения и другими параметрами. Для корректной работы электрооборудования нужно, чтобы проводники надежно соединялись. При ненадежном контакте возможен риск возникновения пожара.

Как соединять провода опрессовкой

Ещё один способ соединения проводов — это опрессование. Это способ, при котором на соединяемые провода или кабели одевается медная или алюминиевая гильза, после чего опрессовывается специальным опрессователем. Для тонких гильз используют ручной опрессователь, а для толстых гидравлический. Этим способом можно даже соединять медные и алюминиевые провода, что недопустимо при болтовом соединении.

Для соединения этим способом кабель зачищают на длину больше, чем длина гильзы, чтобы после одевания гильзы проволока выглядывала на 10–15 мм. Если опрессовыванием соединяются тонкие проводники, то предварительно можно сделать скрутку. Если кабеля большого сечения, то, наоборот, на зачищенных участках необходимо проволоку выровнять, сложить все кабеля вместе и придать им круглую форму. В зависимости от местных условий кабеля можно сложить концами в одну сторону или встречно. На надежность соединения это не влияет.

На подготовленные кабеля плотно одевается гильза или, при встречной укладке, провода вставляются в гильзу с двух сторон. Если в гильзе остаётся свободное место, то его заполняют кусочками медной или алюминиевой проволоки. А если кабеля не помещаются в гильзе, то несколько проволочек (5–7 %) можно откусить бокорезами. При отсутствии гильзы нужного размера можно взять наконечник для кабеля, отпилив от него плоскую часть.

Гильза опрессовывается 2–3 раза по длине. Места опрессовки не должны находится на краях гильзы. От них необходимо отступить 7–10 мм, чтобы при опрессовке не раздавить проволоку.

Достоинством этого способа является то, что он позволяет соединять провода разного сечения и из разных материалов, что затруднительно при других способах соединения.

Соединение клеммником

Развитием болтового соединения является клеммное. Клеммники бывают двух видов — с прижимной прямоугольной шайбой и с круглой. При использовании клемника с прижимной шайбой изоляция снимается на длину, равную половине ширины клеммника. Болт отпускается, провод подсовывается под шайбу и болт опять зажимается. С одной стороны можно подключать только два провода, желательно одинакового сечения и только гибкие или только одножильные.

Подключение к клеммнику с круглой шайбой не отличается от использования болтового соединения.

Соединение проводов получается надёжное, но громоздкое. При содинении проводов сечением больше 16 мм² соединение ненадёжное или же необходимо использование наконечников.

Способы соединения

Различные виды соединения проводов

Из разрешенных методов ПУЭ разрешает создавать контакт следующими способами:

  • зажимы;
  • клеммы;
  • опрессовка;
  • пайка, сварка.

Соединение скруткой запрещено. Это связано с тем, что контакт будет подвергаться температурному воздействию. При росте температуры материал расширяется, при охлаждении наоборот сужается. Так как контакт ничем не закреплен, он быстро выйдет из строя и разрушится. Скручивание может использоваться только вместе с другим способом соединения – например, сваркой или пайкой.

Метод сжимов

Соединительные клеммы WAGO

Этот способ включает в себя винтовые и болтовые соединения, а также контакт с помощью зажимов Wago. Такие механизмы позволяют соединить одножильный и многожильный медный провод. На данный момент такой способ является самым распространенным и удобным. К преимуществам можно отнести невысокую стоимость, надежность, простоту процесса и отсутствие необходимости покупки дополнительного оборудования.

Лучше соединять таким способом провода с сечением до 25 кв.мм. Проводники с большим сечением требуют другого соединения или нужно будет учитывать нюансы при контакте методом сжимов.

Винтовое соединение используется для кабелей небольшого сечения. Его суть заключается в установке двух проводников в латунную трубку и зажимании каждого отрезка своим винтом. При соединении одножильного и многожильного кабелей есть риск повреждения тонкой проволоки. По этой причине рекомендуется защищать их с помощью специального наконечника. Существуют специальные клеммы с зажимной площадкой, для которых применение наконечников не требуется. Они обеспечивают качественный зажим без повреждения проволоки по всему сечению трубки из латуни.

Метод прессовки

Варианты опрессовки проводов

Опрессовка проводов осуществляется с использованием специального инструмента – клещей. Он бывает ручной и гидравлический. Для проводников с небольшим сечением подходят ручные клещи.

Также потребуются специальные гильзы из меди, алюминия или латуни. Подбираются под соответствующий материал жил кабеля. Если нужно соединить несколько многожильных проводов перед клеммником, применяются наконечники.

Прессовка применяется для любых видов кабелей – многожильных, одножильных, их комбинации

Важно лишь правильно подобрать тип гильзы и нажимное усилие

Метод сварки

При сварке проводов используется оловянный припой

Сварка проводов – самый надежный и долговечный способ соединения. Его недостаток заключается лишь в сложности реализации своими руками, так как для работы потребуется профессиональный сварочный аппарат. Также предъявляются требования к опыту мастера – в случае отсутствия необходимых навыков следует выбрать другой способ соединения или доверить работу профессионалу.

С помощью сварочного аппарата расплавляются концы жил. Когда они застывают, образуется единое целое между двумя отрезками и обеспечивается качественный контакт. С помощью такого метода можно соединять неограниченное число проводников в одной точке. Но нужно понимать, что при контакте одножильного и многожильного кабеля будут возникать сложности. Мастер должен будет выполнить несколько дополнительных шагов перед сваркой. Подключение четырехжильного провода к одножильному:

  • Расплавление оконцевания многожильного провода.
  • Соединение расплавленного проводника с одножильным отрезком.

Пайка

Пайка проводов

Для пайки двух отрезков кабеля также потребуются дополнительные инструменты – паяльник, канифоль, припой, паяный жир. Мастер должен уметь паять, иначе надежный контакт обеспечить не получится.

Как скрутить многожильный провод вместе с одножильным:

  1. Зачистка от изоляции.
  2. Обработка поверхности обоих проводников канифолью.
  3. Наматывание многожильного кабеля на одножильный.
  4. Сгибание одножильного кабеля, обжимание пассатижами.
  5. Обработка места паяльным жиром и припоем.

Также существует вариант соединения, когда обработка жиром и канифолью производится отдельно для каждой части провода. Затем проводники соединяются параллельно и место контакта обрабатывается припоем.

Одножильные проводники соединить проще. Для этого их достаточно зачистить от изоляции и обработать канифолью. Затем кабели нужно спаять. Если для соединения берется луженый одножильный проводник, обработка канифолью не требуется.

Список источников

  • elektrika.expert
  • YaElectrik.ru
  • ProFazu.ru
  • electrikexpert.ru
  • www.icsgroup.ru
  • electricvdome.ru
  • 220.guru
  • helukabeli.su
  • electrikmaster.ru
  • VseOToke.ru
  • StrojDvor.ru

Электротехнические шины

В данной статье будут рассмотрены основные виды и типы электротехнических шин и регламентирующих их производство документов.

Электротехническая шина – это проводник с низким сопротивлением (активным и реактивным), к которому могут подсоединяться отдельные электрические цепи (в низковольтных установках и сетях) или высоковольтные устройства (электрические подстанции, высоковольтные РУ и т.д.). Использование шин обеспечивает экономию площади установки, материало- и трудозатрат.

В качестве основного материала для изготовления электротехнических шин как правило используют алюминий и медь.

Производство шин регламентируется рядом ГОСТов и технических условий:

ГОСТ 15176-89 Шины прессованные электротехнического назначения из алюминия и алюминиевых сплавов. Технические условия. В ГОСТе регламентируются параметры, в соответствии с которыми должны изготовляться алюминиевые шины – толщина, ширина, длина, площадь поперечного сечения, диаметр окружности и соответствующая им масса на 1 метр для готовых шин. Указываются допустимые предельные отклонения от указанных величин, марки алюминия, требования к качеству, внешнему виду, механическим и электрическим параметрам. Приводятся правила маркировки, упаковки и приема шин данного типа.

ГОСТ 434-78 Проволока прямоугольного сечения и шины медные для электрических целей. Технические условия. В стандарте указаны номинальные размеры и расчетные сечения медных шин, марки меди, удельное электрическое сопротивление и предельные отклонения размеров. Приводятся допустимые длины шин и массы бухт, а также возможные отклонения от данных величин. Предъявляются требования к материалу изготовления шин, внешнему виду готовых изделий (допустимые дефекты, цвета). Изложены правила упаковки, транспортировки и хранения, приемки и испытаний.

ГОСТ 10434-82 Соединения контактные электрические. Классификация. Общие технические требования. Приведена классификация контактных соединений по таким параметрам как: область применения, климатическое исполнение и категории размещения электротехнических устройств, конструктивное исполнение. Указаны требования к конструкции, электрическим и механическим параметрам, надежности и безопасности в зависимости от классификации. Даны ссылки на ряд сопутствующих ГОСТов.

ГОСТ 8617-81 Профили прессованные из алюминия и алюминиевых сплавов. Технические условия. Приведена классификация профилей данного типа (по типу, по состоянию материала и типу прочности). Даны ссылки на ГОСТы с номинальными размерами, указаны величины предельных отклонений. Описаны технические требования к маркам алюминиевых сплавов для изготовления профилей, к механическим свойствам, допустимым дефектам, качеству поверхности и внешнему виду готовых изделий. Описаны условия транспортировки и хранения, правила приемки, методы испытаний.

ТУ 1-5-009-80 Шины электротехнические из алюминиевых сплавов.

ТУ 16.705.002-77. Шины алюминиевые прямоугольные. Описаны технические условия для изготовления алюминиевых шин прямоугольным сечением. Указаны номинальные и допустимые размеры, марки сплавов, электрические характеристики.

Согласно классификации, существует несколько типов шин.

Сборная шина – это шина, к которой могут подключаться распределительные шины и блоки ввода/вывода.

Силовая шина (шина электропитания) – шина, которая служит для передачи энергии внутри силовых блоков и между элементами мощных преобразовательных устройств и характеризуется высокими значениями токов и напряжений. Силовая шина может являть собой твердую неизолированную шину, твердую шину в изоляции или конструкцию из набора чередующихся проводящих и изолирующих слоёв. Твердая неизолированная медная шина поставляется производителями с изолирующими шинодержателями различных типов и изолирующими экранами, исключающими непосредственный доступ к клеммам силовых шин. Данные шины характеризуют большая допустимая плотность тока и высокое напряжение изоляции. В качестве материала шин зачастую используется медь и медные сплавы, а также алюминий. По способу крепления силовые шины могут быть вертикальные, горизонтальные, изолированные, задние/ступенчатые и универсальные (мультистандартные).

Шина заземления – главная деталь заземляющей системы электроустановок и электросетей. Её также называют главная заземляющая шина ГЗШ. С шиной заземления соединяется рабочий ноль, защитные нулевые проводники и провода внешних заземлений. Обычно ГЗШ являет собой медную пластину с перфорированными отверстиями. Хотя иногда встречаются и стальные ГЗШ.

Перфорированная медная шина заземления

Перед подключением к ГЗШ, провода заземления должны быть опрессованы наконечником для кабелей или соединительной гильзой, а затем уже подключены на болт с гайкой (например М5). Шина также комплектуется опорными изоляторами с крепежом.

Шина заземления на опорных изоляторах с проводами заземления

Шины для крепления на DIN-рейке – шины, применяемые для крепления на монтажных рейках в электрических щитах или шкафах управления. Данный тип шин зачастую производят из латуни или луженой меди, а диэлектрическое основание, которым осуществляется крепление к монтажным рейкам, из полиамида. Шинами на din-рейку являются нулевые шины, коммутирующие в щитах нулевые провода и провода заземления, или же распределительные шины. Встречаются также шины на din-рейку в корпусе. Такие шины называются распределительными шинами в блоке или распределительными блоками.

Шина нулевая в изоляторе на DIN-рейку

Распределительная шина в блоке

Распределительная шина – это шина, подключенная к сборной шине и питающая устройство вывода. Данная шина входит в состав одной секции НКУ (низковольтного устройства распределения и управления). Одним из видов распределительных шин являются соединительные или гребенчатые шины. Они предназначены для параллельного включения модульных автоматов, УЗО, дифференциальных автоматов, контакторов и т.д. Гребенчатые шины исполняются из медной пластины прямоугольного сечения и помещаются в пластиковый корпус.

Гребенчатая шина

Частным случаем распределительных шин являются ступенчатые распределительные блоки. Блоки состоят из ступенчатых изоляционных опор, с помощью которых осуществляется крепление, и как правило 4-х медных шин. На шинках находятся отверстия: резьбовые (М6) для отходящих цепей и без резьбы для питания распределительного блока. Блок может устанавливаться как горизонтально (в зоне коммутационного оборудования), так и вертикально (в кабельном канале шкафа). К лицевой части блока крепится изолирующий экран.

Ступенчатый распределительный блок

Схема горизонтальной и вертикальной установки распределительного блока

Номинальные значения параметров шин указаны в приведенных в начале статьи ГОСТах. Поэтому далее в статье будут приведены лишь ключевые характеристики различных типов шин.

Выпуск алюминиевых шин марки ШАТ регламентирует ТУ 16-705 002-77. Данные шины изготавливают прямоугольным сечением. Диапазон изменения ширина шины ШАТ – от 10 до 120 мм, толщины – от 3 до 12 мм, поперечного сечения – от 30 до 1440 мм2. Величина удельного сопротивления не больше 0,0282 мкОм*м. Шины марок АД0 и АД31 (ГОСТ 11069-79 и ГОСТ 15176-89) изготавливаются прямоугольным сечением площадью от 30 до 25800 мм2. Диапазон изменения толщины данных шин – от 3 мм до 110 мм, ширины – от 6 мм до 500 мм. Значение удельного сопротивления постоянному току: шины АД0 – до 0.029 мкОм*м; шины АД31 – от 0,0325 до 0,0350 мкОм*м (зависит от типа). Диапазон длительно допустимых токов (определяется сечением шины) – от 165 А до 2300 А. Для производства шин используется алюминий А5, А5Е, А6, А7, АД00, АД0 и алюминиевые сплавы АД31 и АД31Е. Для изменения свойств материала используются следующие технологии: закаливание и естественное состаривание, закаливание и искусственное состаривание, не полное закаливание и искусственное состаривание, а также горячее прессование (без термической обработки). Длина алюминиевых шин зависит от площади поперечного сечения и должна быть равной или кратной: от 3 до 6 м для шин сечением до 0.8 см2; от 3 до 8 м – для шин сечением от 0.8 до 1.5 см2; от 3 до 10 м – для шин сечением более 1.5 см2. Колебания в длине – не более 20мм. Алюминиевые шины отличаются малым весом и невысокой стоимостью.

Медные шины согласно ГОСТ 434-78 выпускаются таких марок: ШММ – шина медная мягкая, ШМТ – шина медная твердая, ШМТВ – шина медная твердая из бескислородной меди. Минимальная и максимальная ширина медных шин – 16 мм и 120 мм, толщина – 4 мм и 30 мм, поперечное сечение – 159 мм2 и 1498 мм2. Значение удельного электрического сопротивления – не больше 0,01724 мкОм*м. Диапазон длительно допустимых токов – от 210 до 2950 А (шина 120х10) и выше при большей толщине, для гибкой медной шины – от 280 до 2330 А. Масса шин в бухте должна быть в пределах от 35 кг до 150 кг. Длина шин согласно ГОСТ – от 2 до 6 м. Твердые медные шины в сравнении с мягкими обладают меньшей проводимостью и применяются там, где требуется прочный и неподвижный шинопровод. Для изготовления мягких шин используется медь марок М1, М1М, М2. Гибкие шины более распространены, они обладают большей прочностью, долговечностью и лучшими характеристиками. Для изготовления шин из бескислородной меди используют особые медные сплавы, не имеющие в своем составе оксидов. Медные шины отличают такие преимущества в сравнении с алюминиевыми: высокая удельная проводимость (в 1,6 выше чем у алюминиевых шин), механическая прочность, теплопроводность и гибкость, коррозийная стойкость, стыковые контакты с другими шинами не окисляются. По причине высокой окисляемости на открытом воздухе и хрупкости, применение алюминиевых шин имеет ряд ограничений. Они не используются в машинах и механизмах с подвижными частями или вибрирующим корпусом. Поэтому в случаях, когда к токоведущим частям предъявляются повышенные требования, применяются медные шины.

Шины являют собой токоведущие части электрических установок, соединяя между собой оборудование различного типа: генераторы, трансформаторы, синхронные компенсаторы, выключатели, разъединители, контакторы и т.д. Током нагрузки определяется сечение шин, также учитывается устойчивость к току к.з.

Шинный мост из жестких неизолированных шин применяется: на выводах генераторов, на входах главных распределительных устройств, в соединениях трансформатора с РУ и КРУ на 6 – 10 кВ, ГРУ и трансформатора связи.

Шинный мост от силового трансформатора

Соединения из жестких неизолированных шин прямоугольным или коробчатым сечением выполняются в закрытых РУ 6 – 10 кВ (в том числе сборные шины), в качестве соединений между ГРУ и трансформатором собственных нужд, между шкафами распределительных щитов. Шины коробчатого сечения рекомендуют использовать при больших токах, они обеспечивают меньшие потери и лучшее охлаждение. Крепление жестких шин осуществляется с помощью опорных изоляторов. Гибкие шины применяются в РУ на 35 кВ и выше, в соединениях блочных трансформаторов с ОРУ.

ГРЩ с медной ошиновкой

Во всех типах соединений в низковольтных установках и сетях промышленного назначения для передачи, распределения электроэнергии и подключения управляющих устройств используются медные изолированные шины (как жесткие, так и гибкие). Конструктивно данные шины являют собой одну или несколько медных тонких пластин иногда луженых с концов, покрытых изолирующей оболочкой как правило из ПВХ или другого диэлектрика с высоким сопротивлением. Данные шины являются альтернативой как кабелям, так и жесткой ошиновке и могут служить соединением между: главной силовой машиной и распределительным оборудованием (контакторами, прерывателями цепи, переключателями и т.д.), выводом трансформатора и шинопроводом, шинопроводом и электрическим шкафом.

Коммутация гибкой изолированной шиной отходящих автоматов

Применение изолированных шин позволяет экономить место, так как шины можно располагать гораздо ближе друг к другу, чем в случае неизолированной ошиновки. Преимущества изолированных шин – устойчивость к коррозии и простота монтажа. Крепежные отверстия контактных площадок делаются пробивкой непосредственно в материале контакта, что лишает потребности в кабельных наконечниках и устраняет проблемы плохого присоединения контактов. Большим спросом пользуются именно гибкие изолированные медные шины. Их главное преимущество в сравнении с жесткими – более легкий монтаж, так как нет необходимости в специнструментах и резке шины, если нужен поворот в плоскости. Гибкая шина легко меняет форму в зависимости от потребностей монтажа. Однако ряд производителей выпускают твердые изолированные шины, в том числе и по запросу. Крепление изолированных шин осуществляется с использованием болта и контактных шайб. Затягивать необходимо ключом, имеющим ограничения по моменту затяжки. Крепеж не должен быть в смазке.

Крепление медной изолированной шины

Еще одной разновидностью гибких шин являются медные плетённые шины. Такая шина сплетена из медных полос и является очень гибкой. Она используется в местах, подверженных сверхсильной вибрации, таких например, как трансформаторные шинные мосты. Данные шины также применяются для подключения различного оборудования к шинопроводам и линиям шин. Контактные площадки плетённых шин бывают как со сверлением, так и без. Выпускаются также плетённые шины, изготовленные особым методом – диффузионной сварки под давлением. Тонкослойные материалы свариваются путем пропускания через них постоянного тока под давлением. Такие шины также называют пластинчатые шинные компенсаторы или гибкие пластинчатые шины. Они имеют большую токопроводимость и меньшее тепловыделение.

Шинные компенсаторы

Их применяют там, где необходимы компенсация теплового расширения, вибро- или сейсмоустойчивость, а также где происходит регулярный изгиб в одной оси. Например это могут быть: гибкие токопроводы для сварочных аппаратов, автоматических выключателей, шины питания для индукционных печей и печей сопротивления и т.д.

Жесткая медная шина более всего подходит для замены кабеля, используется в распределительных устройствах, а также для изготовления шинных сборок и шинопроводов. Производителями выпускаются как перфорированные так и гладкие шины различных размеров, в соответствии с ГОСТ. Производителями шин в настоящее время выпускается множество зажимов, соединителей и шинодержателей, облегчающих монтаж и обеспечивающих надёжный контакт. Зажимы предназначены для соединения жестких и гибких шин различного типа, биметаллические пластины – для алюминиевых и медных шин.

Шинодержатели выпускаются плоские, регулируемые плоские, компактные и усиленные, ступенчатые, а также универсальные.

Универсальный шинодержатель

Производителями предлагается широкий выбор изоляторов: опорные, проходные, изоляторы типа «лесенка». Все они используются для фиксации шин внутри шкафов и корпусов. Изоляторы одной стороной крепятся с помощью болтов к монтажному корпусу, с другой к ним крепится шина.

Шинный изолятор типа «лесенка»

Производителей меди и алюминия на рынке РФ можно пересчитать «по пальцам», точнее объединяющих их холдинги. Брендов электротехнических шин огромное количество, одних только марок мы насчитали более сотни (по всем типам шин) в виду этого нами принято решение развить эту тему и создать отдельный сайт полностью посвященный электротехническим шинам.

В этой связи приглашаем всех участников рынка электротехнических шин разместить информацию о своих продуктах на новом сайте.

Шинопровод.РУ

30.11.2016

Материал для учащихся 9 классов

1.Напишите уравнения электролитической диссоциации для следующих веществ:

   h4PO4 , Cu(NO3 )2 , Ba(OH)2

2.Осуществите следующее превращение: Сu —— CuO ——  Cu(NO3 )2  ——Cu(OH)2 

   Запищите уравнения в молекулярном, полном и сокращенном ионном виде.

3.Подберите такие вещества взаимодействие между которыми выражалось сокращенным ионным уравнением типа: а/ Mg2+  +  SiO3 2-   =  MgSiO3

б/ 2H +  + CO3 2- = H 2O  + CO2

4.Сколько граммов соли образуется при взаимодействии 80г 20% раствора соляной кислоты с гидроксидом магния?

1.Напишите уравнения электролитической диссоциации для следующих веществ:

   H 2S , NaOH .K2SO4

2.Осуществите следующее превращение: P  ——   P 2O5  ——  H 3PO4   ——

K 3PO4

   Уравнения запишите в молекулярном, полном и сокращенном ионном виде.

3.Подберите такие вещества взаимодействие между которыми выражалось сокращенным ионным уравнением типа: 3Ba2+   +   2PO4  3-   ——  Ba 3(PO 4)2

б/ Zn 2+ +   CO3 2-  =   ZnCO3

4.Какой объем водорода выделится при взаимодействии 40г цинка, содержащего 5% примесей с серной кислотой?

1.Напищите уравнения электролитической диссоциации для следующих веществ:

  BaCI 2 , K 2CO3  , Ba(OH)2

2.Осуществить следующее превращение: СO2  —— h3CO3   —— BaCO3

   Уравнения запишите в молекулярном, полном и сокращенном ионном виде.

3.Подберите такие вещества взаимодействие между которыми выражалось сокращенным ионным уравнением типа: 2H+  + S2- = h3S

4.Cколько граммов водорода выделится при взаимодействии магния с 98г 20% раствора серной кислоты?

1.Запишите уравнения электролитической диссоциации для следующих веществ:

   AICI3 , KOH , h3SO4

2.Осуществить следующее превращение: K2O —- KOH  —— K3PO4 —- Ba3(PO4)2

   Уравнения запишите в молекулярном  полном и сокращенном ионном виде.

3.Подберите такие вещества взаимодействие между которыми выражалось сокращенным ионным уравнением типа: а/ Ba2+   + SO4 2-  =  BaSO4

б/ AI3+   + 3OH-  =   AI(OH)3

4.Сколько граммов гидроксида меди выпадет в осадок при взаимодействии сульфата меди массой 80г, содержащего 10% примесей с гидроксидом натрия?

1.Запищите уравнения электролитической диссоциации для следующих веществ:

   ZnSO4, h3SO4, KOH

2.Осуществить следующее превращение: CuCI2  —— Cu — CuO — CuSO4

   Уравнения запишите в молекулярном, полном и сокращенном ионном виде.

3.Подберите такие вещества взаимодействие между которыми выражалось сокращенным ионным уравнением типа: а/ Ba2+  + SiO3 2-  = BaSiO3

б/ Zn2+   +  2OH- = Zn(OH)2

4.Какой объем углекислого газа выделится при взаимодействии мрамора массой 200г, содержащего 80% карбоната кальция с соляной кислотой?

1.Запишите уравнения электролитической диссоциации для следующих веществ:

   Na2SO4, HNO3 , Ba(OH)2

2.Осуществить следующее превращение: ZnCI2  ——  Zn(OH)2  —- ZnSO4   — Zn

   Уравнения запишите в молекулярном, полном и сокращенном ионном виде.

3.Подберите такие вещества взаимодействие между которыми выражалось сокращенным ионным уравнением типа: а/ Mn2+   + CO3 2-  =  MnCO3

б/ Pb2+   + SO4  2- =   PbSO4

4.Какую массу серной кислоты необходимо взять для нейтрализации 56г 20% раствора гидроксида калия?

1.Запишите уравнения электролитической диссоциации для следующих веществ:

   Ba(NO3)2 , Ca(OH)2 , h4PO4 

2.Осуществить следующее превращение: Сa  —- CaO —  CaCI2   — Ca(OH)2

   Уравнения запишите в молекулярном, полном и сокращенном ионном виде.

3.Подберите такие вещества взаимодейстаие между которыми выражалось сокращенным уравнением типа: а/ Ag+   +  I-  =  AgI

б/ Fe3+  +  PO4 3- =   FePO4

4.Сколько граммов соли образуется при взаимодействии 40г 10% раствора гидроксида кальция с азотной кислотой?

1.Запишите уравнения электрролитической диссоциации для следующих веществ:

   AI2 (SO4)3 , Ca(OH)2 , K2SO3

2.Осуществить следующее превращение: Zn ——   ZnO —- ZnCI2 —-  ZnCO3

   Уравнения запишите в молекулярном, полном и сокращенном ионном виде.

3.Подберите такие вещества взаимодействие между которыми выражалось сокращенным уравнением типа: а/ 3 Hg2+  +  2PO4 3- = Hg3(PO4)2

б/ 2Ag+  +  CO3 2-  =   Ag2CO3

4.Какой объем кислорода выделится при разложении перманганата калия массой 316г, содержащего 10% примесей?

1.Запишите уравнения эдектролитической диссоциации для следующих веществ:

   Fe2(SO4)3,NaOH, h4PO4

2.Осуществить следующее превращение: Fe ——   Fe2O3  ——   FeCI3   ——  Fe(OH)3

   Уравнения запишите в молекулярном, полном и сокращенном ионном виде.

3.Подберите такие вещества, взаимодействие между которыми выражалось следующим сокращенным уравнением: а/ Fe3+   + 3OH-  =  Fe(OH)3

б/ Ba2+   +  CO3 2- = BaCO3

4.Сколько граммов осадка образуется при взаимодействии хлорида алюминия с 40г 20% раствора гидроксида натрия ?

 

 

Алюминиевая проводка

: почему это вызывает беспокойство?

Алюминиевая проводка — неоднозначная тема в мире недвижимости. У меня часто клиенты задают вопросы вроде: «Безопасна ли алюминиевая проводка?» или «Нужно ли его заменить?». Мой короткий ответ: да, это безопасно, и нет необходимости в замене. Однако мне нужно уточнить эти ответы, поскольку алюминиевая проводка требует особого внимания.

Фото: Дэниел Смит

Миф

Я часто слышу, как люди говорят, что использование алюминиевой проводки в жилищном строительстве запрещено или запрещено законом.Это неправда. Это все еще очень разрешено при правильной установке.

Традиционно медь была (и остается) предпочтительным проводником с момента появления электричества в конце 1800-х годов. Лишь в 1960-х годах, в разгар эпохи войны во Вьетнаме, в американских домах начали использовать алюминиевую проводку. Цены на медь были заоблачными, поскольку она использовалась для производства боеприпасов и другой продукции военного назначения. Строителям пришлось искать доступную альтернативу. Этой альтернативой был алюминий.

Медь лучше

Хорошо известно, что медь является лучшим проводником электричества, чем алюминий. Производители и рейтинговые агентства знали об этом и требовали, чтобы алюминиевый провод был на один калибр больше, чем медный провод, чтобы пропускать такой же ток. В тех случаях, когда ответвление к осветительной арматуре традиционно проходит из меди 14-го калибра, оно должно быть выполнено из алюминия 12-го калибра. Чем меньше калибр, тем крупнее провод.

Проблемы

Проблемы начали возникать вскоре после того, как алюминиевая проволока получила широкое распространение.Проблемы включали мерцание света, заглушки на переключателях и розетках, которые были бы теплыми на ощупь, и сгоревшую изоляцию проводов. Все это было вызвано перегревом алюминиевой проволоки по нескольким причинам, которые мы рассмотрим ниже.

Мягкость

Алюминиевый провод мягче, чем медный, что делает его гораздо более восприимчивым к порезам и царапинам при снятии изоляции для выполнения соединений. Когда участок провода поврежден, это место становится горячей точкой, которая может перегреться.

Ползучесть проволоки

Когда электричество проходит через провод, он нагревается. Когда металл нагревается, он расширяется, а следовательно. он сжимается, когда остывает. Алюминий имеет более высокую скорость расширения, чем медь. Цикл расширения и сжатия из-за нагрева и охлаждения может вызвать то, что называется «ползучестью». При подключении к розеткам, не одобренным для использования с алюминиевым проводом, провод буквально выползает из-под зажимного винта, удерживающего провод.Это создавало слабое соединение, которое могло перегреться.

Окисление

Как и любой металл, алюминий окисляется, что более широко известно как ржавчина. Разница между медью и алюминием заключается в том, что ржавчина, образующаяся на меди, по-прежнему является хорошим проводником электричества. Ржавчина, которая образуется на алюминии, вообще плохо проводит электричество. Это создает сопротивление, которое вызовет перегрев.

Розетки повреждены незакрепленной алюминиевой проводкой

Решение

Вышеупомянутые проблемы возникли в точках подключения, таких как розетки, выключатели, осветительные приборы и на главной панели.Способом предотвращения этих проблем было и остается использование специальных разъемов, одобренных для использования как с медью, так и с алюминием. Для этого были предназначены розетки, переключатели, гайки для проводов, прерыватели и другие электрические устройства. Они должны иметь одну из трех маркировок: CO / ALR, AL-CU или CU-AL.

Строительные инспекторы не были обычным явлением в то время, когда устанавливалась алюминиевая проводка. В результате во многих домах была установлена ​​алюминиевая проводка без разъемов, разрешенных для использования с алюминием.Именно здесь возникли проблемы, которые возникают до сих пор.

Ожидайте моего следующего поста, в котором я расскажу о других вопросах, связанных с алюминиевой проводкой, страховыми компаниями и о том, что делать, если в вашем доме алюминиевая проводка.

Алюминиевая проводка Fiasco | Hackaday

Перед тем, кто решит построить дом, стоит непростая задача. Достаточно сложно выступать в роли генерального подрядчика для кого-то другого, но когда вы решаете построить собственный дом, как это сделали мои родители в начале 1970-х годов, это еще сложнее.Есть миллион решений, которые нужно принять в бедной информацией и быстро меняющейся среде, и один неверный шаг может буквально бросить камень в камень то, с чем вам придется жить вечно. Добавьте к этому скудный бюджет, с которым приходилось работать моим людям, и удивительно, что они смогли преуспеть так же хорошо, как и они.

Тем не менее, в некоторых случаях это был вызов. Я помню, как мой отец мучился с проводкой в ​​доме. Было бы намного дешевле использовать алюминиевую проводку, поскольку цена на медную проволоку в последнее время резко выросла.Он укусил пулю и попросил электрика установить медь вместо нее, что в конечном итоге оказалось мудрым выбором, поскольку вскоре после этого дома, поддавшиеся зову сирены о более дешевой проводке, начнут гореть по всем Соединенным Штатам.

То, что произошло в конце 60-х — начале 70-х годов в сфере бытового и коммерческого электрооборудования, было дорогим и в некоторых случаях трагическим уроком в области проектирования отказов. Давайте посмотрим, как все это произошло.

Дешево или хорошо — выберите один

Цены на медь резко выросли в конце 60-х и снова в начале 70-х годов.Источник: Цены на медь — 45-летний исторический график

Чтобы понять фиаско с алюминиевой электропроводкой, стоит иметь в виду не только вопросы материаловедения и электротехники, но и рыночные силы, которые сделали алюминиевую электропроводку в жилищном строительстве столь привлекательной. время. В начале 60-х годов мировое производство меди было высоким, но добровольные ограничения производства, направленные на сокращение перенасыщения, немного подняли цены. Примерно в то же время эскалация войны во Вьетнаме и бум жилищного строительства увеличили спрос на медь, в то время как национализация медной промышленности зарубежными производителями и забастовки горняков ограничили предложение.Сжатая на обоих концах уравнения спроса и предложения, цена на медь с 1962 по 1964 год почти утроилась.

Медный провод долгое время был стандартом для разводки жилой и коммерческой ответвленных цепей, проложенных от центра нагрузки к источникам света и розеткам вокруг конструкции. Электрики хорошо знали медь, электрические коды были написаны вокруг ее эксплуатационных характеристик, а производители оборудования разработали переключатели, розетки и соединители специально для медных проводов.Но несмотря на то, что медь укоренилась, рост цен начал превращать медную проволоку в анобтаний, и электрические подрядчики начали ощущать давление на чистую прибыль. Что-то нужно было отдать.

Алюминиевый провод должен быть большего размера, чтобы пропускать тот же ток, что и медный. Источник: Inspectapedia

Введите алюминий. Алюминий является отличным проводником электричества — без учета драгоценных металлов он занимает место сразу после меди на диаграмме проводимости. Алюминий уже давно используется для электропроводки, но в основном коммунальными предприятиями для воздушной проводки в распределительной системе, где его легкий вес и низкая стоимость являются огромными преимуществами.Алюминий также использовался в жилищном строительстве, в основном, в линиях электропередач от опоры электросети до метра и далее в центр нагрузки. Но в то время как алюминий был обычным явлением в разветвленной проводке электрических сушилок и плит с более высокой силой тока, он не использовался для более легких ответвленных цепей, составляющих основную часть проводки дома. Все это должно было измениться.

Производители проводов начали производить алюминиевый провод для цепей 15 А и 20 А в ответ на медный кризис.В таких цепях обычно используется медный провод 14 AWG и 12 AWG соответственно. Но такой же хороший проводник, как и алюминий, по-прежнему составляет всего около 60% от проводимости меди, поэтому алюминиевый провод для ответвленных цепей необходимо увеличить до следующего размера AWG — 12 AWG для цепей на 15 ампер, 10 AWG для 20 ампер. Производителям приходилось использовать больше металла, но алюминий был настолько дешевле, что это имело экономический смысл. Таким образом, с 1965 по 1972 год алюминиевый провод начал проникать в жилые электрические цепи, а их количество прошло в двух миллионах домов.

Ползучий

Это решение может иметь неприятные последствия по нескольким причинам. Прежде всего, производители выбрали для проволоки алюминиевый сплав. В электрических проводах используется сплав под названием AA-1350. Хотя AA-1350 идеально подходит для использования в надземных и подземных распределительных сетях, он представляет собой чистый алюминий с добавлением небольшого количества металлов, и его физические свойства заметно отличаются от меди. Из-за более высокого коэффициента теплового расширения алюминий AA-1350 демонстрирует значительную ползучесть, при которой проволока деформируется при расширении и сжатии из-за нагрева.

Розетка, которая перегрелась и сгорела из-за сползания алюминиевой проводки. Источник: Electrical Forensics

Ползучесть может быть очень плохой в электрическом соединении. Любой проводник нагревается по мере прохождения через него большего количества тока, но алюминий расширяется больше, чем медь, из-за более высокого коэффициента расширения. Расширяющийся и сжимающийся провод может фактически откручивать клеммы, ослабляя провод и вызывая дуги, которые вызывают больший нагрев и больше ползучести, пока, наконец, не создадут источник воспламенения внутри стен дома.

Расплавленный провод в панели выключателя. Источник: Structure Tech

Creep усугубляется неправильной установкой, которая, как правило, происходила во многих случаях, когда электрики переходили с меди на алюминий. Алюминий намного мягче меди, поэтому добиться правильного момента затяжки резьбовых соединений было труднее. Алюминий также быстро окисляется при контакте с воздухом, образуя тонкий изолирующий барьер, который может увеличить сопротивление соединения. Алюминиевые провода должны были быть обработаны антикоррозийными составами перед заделкой, но это было редко.А производители розеток и выключателей не торопились приспосабливать свои продукты к потребностям алюминия, что приводило к изворотливым соединениям, которые были еще более подвержены ползучести.

Наконец, похоже, что основную химию проигнорировали. Напомним, что гальванические эффекты возникают всякий раз, когда разнородные металлы соприкасаются друг с другом. Все, что нужно для того, чтобы вызвать коррозию, — это немного электролита, вроде конденсата водяного пара из теплого нагретого воздуха, проникающего в холодную внешнюю стену и проводку. Корродированные соединения — это соединения с высоким сопротивлением, дающие предсказуемые результаты.

Конец строки

Когда начали гореть дома с алюминиевой проводкой, пожарные и страховые инспекторы не могли не заметить проблему, и времена электромонтажа с AA-1350 подошли к концу. К 1972 году электротехническая промышленность модернизировала алюминиевую проводку, прямо от пересмотренных электротехнических кодексов, определяющих новые формулы для выбора размеров алюминиевой проводки, до производителей устройств, которые изменили свои продукты, чтобы они были совместимы с алюминиевым проводом. Производители проволоки также изменили свою продукцию, разработав новые сплавы серии AA-8000, в состав которых входит железо, чтобы уменьшить склонность к ползучести.

Однако все это не спасло алюминий в ответвленных цепях. К середине 70-х годов алюминий исчез из большинства ответвлений в новом строительстве, но не раньше, чем был нанесен ущерб. Была установлена ​​огромная база из алюминиевой проводки, и дома той эпохи подвергаются тщательной проверке со стороны домашних инспекторов, когда они переходят из рук в руки. Фиаско с алюминиевой проводкой привело к появлению ряда продуктов, снижающих риск, от фантастически дорогих разъемов до специальных обжимов, с помощью которых производится холодная сварка алюминиевой проволоки и медных пигтейлов.Полное удаление алюминиевой разветвленной проводки и замена ее медью также является вариантом, хотя и дорогостоящим и опасным.

Набег отрасли на алюминий оказался дорогостоящим уроком о том, что может случиться, когда рыночные силы вступают в противоречие с передовой инженерной практикой.

Алюминиевая проводка Пожарная опасность | Домашний осмотр

При использовании алюминия вместо медной проводки может возникнуть опасность возгорания алюминиевой проводки. Если вы имеете дело с домом, построенным, пристроенным или отремонтированным в период с 1965 по 1972 год, алюминиевая проводка может стать для вас проблемой.Исследование, проведенное Комиссией по безопасности потребителей США, показало, что в домах с алюминиевым проводом, произведенным до 1972 года, вероятность возникновения пожара в одном или нескольких соединениях в 55 раз выше, чем в домах с медным проводом.

Алюминиевый провод, произведенный после 1972 года, был несколько усовершенствован, хотя внедрение алюминиевых сплавов не решило большинство проблем, связанных с ошибками соединения, и использование алюминия для ответвленной проводки, то есть проводки к розеткам и переключателям, прекратилось к середине семидесятых.

Теперь, запрещенная строительными нормами для внутренней разветвленной проводки, алюминиевая проводка по-прежнему используется для таких приложений, как входная проводка жилых помещений или одноцелевые цепи с более высоким током, включая 240-вольтовые цепи кондиционирования воздуха и электрические цепи. Для этих применений можно использовать алюминиевый провод большого сечения, что устраняет опасность, создаваемую ответвлением проводки меньшего сечения.

Использование алюминиевой проводки началось в 1965 году как дешевая альтернатива медной проводке. Его дешевизна, как заметил один из строителей, подтверждается тем фактом, что никто не приходил на строительную площадку дома, чтобы забрать обрезки алюминиевой проволоки, как это всегда было с медной проволокой.Однако через несколько лет менее дорогой провод оказался слабой заменой меди.

Одна из распространенных проблем с алюминиевым проводом заключается в том, что он легче разъедает соединения, чем медный. Такая коррозия увеличивает сопротивление, и это повышенное сопротивление вызывает перегрев провода в местах соединений с переключателями или розетками, или в местах сращивания.

Другая проблема возникает из-за того, что алюминиевая проводка расширяется больше, чем медь во время расширения и сжатия, которые переносят электричество, заставляя провод проходить.Постоянное расширение и сжатие может в конечном итоге ослабить винты, крепящие провод к выключателю или розетке света, или ослабить их, вызывая электрическую дугу в стене при ослабленном соединении. Такая дуга похожа на столкновение с кремневым камнем, которое создает искру внутри стены, в конечном итоге находя окружающий строительный материал, который будет служить трутом.

Если вы не уверены, есть ли в доме алюминиевая разветвленная разводка, вы можете определить это по маркировке на поверхности кабелей, оставленных незащищенными в недостроенных подвалах, подпольях, гаражах или чердаках.Алюминиевый провод будет иметь маркировку «Al» или «Aluminium» через каждые несколько футов по длине кабеля. Алюминиевая проволока с медным покрытием не представляет пожарной опасности простой алюминиевой проволоки. Маркируется CU-clad или Copper-clad.

Хотя не все неисправные соединения алюминиевых проводов сигнализируют об их явной гибели, иногда есть предупреждающие знаки. К ним относятся теплые на ощупь лицевые панели на розетках или выключателях, мерцающие огни, нефункционирующие цепи и запах горящего пластика на розетках или выключателях.

Совет «пощупать лица», хотя и дается часто, неэффективен и потенциально опасно вводит в заблуждение, поскольку человек, который производит ощущение, часто не имеет представления о том, какой ток, если таковой имеется, несут соединения емкости и как долго до этого «испытываются» таким образом.

Более эффективный способ — отключить питание розетки с помощью главного выключателя питания, снять крышку, а затем, используя яркий фонарик, осмотреть область каждой клеммы провода. Обратите внимание на обугливание или изменение цвета корпуса пластмассового электромонтажного устройства вокруг винтовых клемм, аномальное потускнение или коррозию провода и винтовой клеммы, плавление, образование пузырей или изменение цвета изоляции проводов.

Также имейте в виду, что такая проверка может выявить только то, что произошло, а не то, что могло бы произойти. Соединение с алюминиевым проводом могло не перегреваться в прошлом, потому что в его части цепи никогда не протекал значительный ток. Он может выглядеть «как новый», но перегреваться до опасного уровня при подключении нового груза, такого как телевизор, переносной обогреватель или кухонный прибор.

Если вы определили, что отводная проводка в доме сделана из алюминия, ее, вероятно, следует заменить медной проводкой по всему дому, а отсоединенный алюминиевый провод оставить в стенах.Если это нереально с финансовой точки зрения, на розетках, переключателях и стыках можно выполнить некоторую замену. Однако это сложная работа, и ее должен выполнять только сертифицированный электрик. Всегда существует риск материального ущерба, травм и смерти, связанных с работой с электрической системой дома. Это не работа для тех, кто занимается своими руками. Нарушение таких связей без полного осознания того, что вы делаете, часто может сделать их более опасными.

Практическое приближение к изменению проводки может быть достигнуто с помощью метода, известного как «пигтейл».«Это влечет за собой использование специально подобранного разъема и метода установки для сращивания короткого отрезка сплошного медного провода с каждым концом алюминиевого провода. Затем «косичку» из медного провода подключают к выключателю, розетке, автоматическому выключателю, осветительной арматуре и т. Д.

В то же время опасность возгорания можно уменьшить, удалив вокруг розеток с алюминиевой проводкой и распределительных коробок все, что может воспламениться, например, кусочки обоев, древесную пыль / опилки, изоляцию. Также держите стопки ящиков для хранения или мебель подальше от таких емкостей.

И ASHI (Американское общество домашних инспекторов), и UL (Underwriters Laboratories) имеют обширную информацию об алюминиевой проводке на своих веб-сайтах.

Медная или алюминиевая проводка: что лучше?

Медь и алюминий — два наиболее распространенных материала, используемых при строительстве электропроводки. Оба металла являются проводящими, поэтому электричество практически не встречает сопротивления при прохождении через них. Однако, помимо проводимости, медь и алюминий не обладают многими другими характеристиками.В результате у каждого типа электропроводки есть свои сильные и слабые стороны.

Медная проводка

Вот уже более полувека медная проводка используется в жилых и коммерческих электрических системах. Фактически, ее часто предпочитают алюминиевой проводке из-за ее высокой прочности на разрыв. Предел прочности на разрыв у меди примерно на 40% выше, чем у алюминия. Обладая более высокой прочностью на разрыв, медная проводка с меньшей вероятностью сломается, чем алюминиевая. Это важно, учитывая, что электрическую проводку часто проводят, протягивая ее через порты и фидеры.Если проводка слабая или хрупкая, она может сломаться при установке. Медная проводка обладает высокой прочностью на разрыв, что позволяет защитить ее от поломки, а также от других форм физического повреждения.

Медная проводка также имеет более низкий коэффициент теплового расширения, чем ее алюминиевый аналог. Другими словами, при нагревании он не расширяется так сильно, как алюминиевая проводка. Температура электропроводки увеличивается по мере прохождения через нее электричества. Алюминиевая проводка имеет более высокое тепловое расширение, чем медная, что приводит к большему расширению.Если проводка растягивается слишком сильно, это может привести к разрыву участков, в которых проводка соединена или соединена.

Алюминиевая проводка

Как и медь, алюминий является проводящим, поэтому он стал обычным материалом, используемым при строительстве электропроводки. К сожалению, алюминиевая проводка не такая прочная, как медная, а также имеет более высокий коэффициент теплового расширения. Тем не менее, использование алюминиевой проводки по-прежнему имеет свои преимущества.

Алюминиевая проводка почти всегда стоит меньше медной.Нередко алюминиевая проводка стоит вдвое дешевле медной. В жилом доме использование алюминиевой проводки вместо медной может сэкономить строителям несколько сотен долларов. Для коммерческого здания выгода от алюминиевой проводки может составлять тысячи долларов.
Заключение

Помимо более низкого ценника, с алюминиевой проводкой несколько проще работать с медной проводкой. Медная проводка прочнее, поэтому вероятность ее поломки меньше. Алюминиевая проводка более гибкая, что позволяет легко работать в небольших помещениях.Надеюсь, это поможет вам лучше понять, чем медная и алюминиевая проводка отличаются друг от друга.

Нет тегов для этого сообщения.

Опасна ли алюминиевая проводка? — Блог мастера

Если ваш дом был построен в 1965-1973 годах, вы можете быть одним из тех, кому повезло с ранней алюминиевой проводкой. Из-за резкого скачка цен на медь в 1960-х строители начали искать менее дорогие материалы для электромонтажа домов, и алюминий, казалось, отвечал всем требованиям.

Всего через несколько лет начали проявляться проблемы с использованием этого металла в качестве основного материала проводки в жилищном строительстве, и вскоре промышленность поняла, что необходимо внести серьезные изменения в способ использования алюминиевой проводки. .

В начале 1970-х производители перешли на сплав высшего качества для алюминиевой проводки, более подходящий для использования в электромонтажных работах, но к тому времени он получил такую ​​плохую репутацию, как опасный, что население не хотело использовать алюминиевую проводку. Это все еще разрешено в большинстве местных строительных норм, но используется редко.

Проблемы с алюминиевой проводкой

Согласно данным Комиссии по безопасности потребительских товаров (CPSC), «в домах с алюминиевой проводкой, изготовленной до 1972 года [до применения модернизированного сплава], вероятность того, что одно или несколько соединений достигнет« условий пожарной опасности », в 55 раз выше. «Чем дом, обшитый медью.» Это безумие!

Алюминий не так хорошо проводит электричество, как медь, поэтому потребовались провода большего диаметра, которые выделяли больше тепла, чем медь. Избыточное тепло вызывало пожары в домах, поэтому люди так боялись алюминиевой проводки.

Ниже я перечислил некоторые проблемы с алюминием для использования в электрических устройствах:

  • Более высокое электрическое сопротивление: По сравнению с медью, алюминий имеет более высокое электрическое сопротивление, что означает, что такой же ток течет через провода, вам нужны провода большего размера, и эти провода будут выделять больше тепла из-за сопротивления.
  • Меньшая пластичность: Еще раз, по сравнению с медью, алюминий является более хрупким металлом, который не выдерживает постоянных изгибов и растяжений, характерных для электромонтажных работ. По мере того, как его обрабатывают все больше и больше, он повреждает металл, вызывая еще большее электрическое сопротивление.
  • Гальваническая коррозия: Большинство металлов страдают от какой-либо гальванической коррозии, когда они соединяются с разнородными металлами. Поскольку большинство розеток и переключателей предназначены для размещения медной проводки, одна из самых больших опасностей с алюминиевой проводкой — это когда вы (или бывшие жители) модернизировали старые розетки на новые, несовместимые с алюминиевой проводкой.Это одна из основных причин пожаров, поэтому, если вы подозреваете, что у вас алюминиевая проводка, убедитесь, что ваши новые розетки или переключатели предназначены специально для алюминиевой проводки.
  • Окисление: Ржавеет любой металл, даже алюминий. Медь ржавеет и становится зеленой, но это нормально, потому что оксид меди (ржавчина) имеет низкое электрическое сопротивление. Оксид алюминия имеет очень высокое электрическое сопротивление, поэтому он создает еще больше тепла и потенциальных проблем с подключением.
  • Расширение и сжатие: Когда электрический ток проходит через алюминиевые провода, дополнительное тепло заставляет металл расширяться и сжиматься сильнее, чем медные провода, что может привести к ослаблению соединений.По этой причине алюминиевые провода никогда не рекомендуется устанавливать в розетку с помощью вставных приспособлений, а всегда следует оборачивать вокруг винта и осторожно затягивать. Приложения для врезания или вдавливания со временем могут расшататься, вызывая опасные дуговые ситуации.

Исправления для алюминиевой проводки

Перепроводка дома медью, хотя и обходится дорого и навязчиво, конечно же, решит ваши проблемы до такой степени, что вам больше не придется о них беспокоиться.Но могут быть некоторые лучшие и более рентабельные варианты ниже, чтобы обеспечить безопасность вашего дома, если у вас есть алюминиевая проводка, оставшаяся после опасного периода 1965-1973 годов.

Без вставных соединений

Как я уже говорил выше, этого типа соединений следует избегать любой ценой, когда дело касается алюминиевой проводки. Всегда подключайте розетки, переключатели или любые другие приспособления, оборачивая провод вокруг винта и затягивая его. Это обеспечит более безопасное соединение по всему дому.

Специальные соединители

Поскольку самая большая проблема с алюминиевой проводкой связана с соединениями, были разработаны специальные конструкции соединителей для алюминиевой проводки. Не стоит просто идти в строительный магазин, брать стандартную розетку и думать, что вы сможете ее безопасно установить. Следует особо отметить, что он безопасен для алюминия. Ниже приведен список элементов, безопасных для алюминиевой проводки. В случае сомнений попросите одного из продавцов в магазине подтвердить, что вы действительно выбрали безопасную работу с алюминиевой проводкой.

  • Маленькие розетки с маркировкой CO / ALR или AL-CU
  • Большие розетки (> 20 ампер) с маркировкой AL-CU или CU-AL
  • Выключатели с маркировкой CO / ALR
  • Проволочные гайки с маркировкой AL-CU или CU-AL
  • Электрические панели и выключатели с маркировкой AL-CU или CU-AL

Как насчет страхования?

Многие люди не могут найти страховую компанию, которая застрахует дом с алюминиевой проводкой. Если это ваша ситуация, то вам, возможно, придется серьезно заняться шоппингом.Некоторые компании спрашивают, а другие не спрашивают. Я бы посоветовал, если они не спросят, не говорите.

Вы можете найти страховые компании, которые застрахуют ваш дом, но, как и многие старые дома, некоторые компании сочтут вас нежелательными. Не расстраивайтесь, просто ищите.

Если у вас алюминиевая проводка, я не думаю, что вам нужно ее заменять, но вам определенно нужно принять некоторые дополнительные меры, чтобы обезопасить свой дом.

Основатель и старший редактор

Я люблю старые дома, работать своими руками и учить других делать это самостоятельно! Все можно научить, если вы только дадите этому шанс.

Подпишитесь сейчас и получите БЕСПЛАТНУЮ электронную книгу!

Более легкая и экономичная альтернатива

Выбор токопроводящих металлов для различных отраслей и областей применения может оказаться сложной задачей. Медь часто используется в кабелях и проводах из-за ее отличной проводимости и пластичности. Но он относительно тяжелый и дорогой по сравнению с алюминием. Во многих случаях целесообразным вариантом является переход на алюминий, который легче и значительно дешевле меди. Успешное использование алюминия — это вопрос понимания возможностей этого проводящего металла и того, как справляться с проблемами, которые он создает.Медь по цене 4323 доллара за тонну в настоящее время более чем в два раза дороже алюминия, который стоит 2043 доллара за тонну (по состоянию на 02.02.15). Большая доступность сырого алюминия по сравнению с медью объясняет эту значительную разницу в цене. После кислорода и кремния алюминий является третьим по распространенности элементом в верхней коре Земли, а медь занимает 25-е место в списке сырья по доступности. Оценка текущих цен дополнительно подкрепляется волатильностью рынка сырья.Если посмотреть на цифры за последние пять лет (2010-2014), цены на медь колеблются в диапазоне от 3 674 до 5 980 долларов за тонну. В 2004 году среднегодовая стоимость все еще составляла 1895 долларов за тонну. В алюминиевом секторе такого диапазона колебаний не существует, что позволяет лучше планировать материалы. Если алюминий используется в качестве материала проводника, его более низкая проводимость требует размера провода, который примерно на треть больше, чем у медного провода. Однако в конечном итоге изолирующий материал, используемый с проводом, играет решающую роль в рабочих характеристиках, и алюминиевый провод может обладать той же допустимой нагрузкой по току, что и медный провод H07RN-F.Большой размер алюминиевых проводов был бы недостатком только в тех случаях, когда требуются узкие промежутки, например, при установке в плотно упакованных блоках управления. Когда речь идет о весе, факты об алюминии говорят сами за себя. В качестве сырья алюминий примерно на 70 процентов легче меди. Это может быть полезно в многочисленных областях применения, стремящихся снизить вес всех компонентов. Естественно, что при использовании в электрических кабелях меньший вес упрощает их установку.Линии высокого напряжения давно делают из алюминия; меньший вес значительно снижает растягивающее усилие на трос и мачты. Но даже такие отрасли, как автомобилестроение и авиационная промышленность, переходят на алюминиевую проволоку. Вот почему в Airbus A380 уже установлены целые жгуты проводов из алюминия. Алюминиевые провода могут быть на 60 процентов легче, чем аналогичные токоведущие медные провода. Даже для приложений, требующих гибких кабельных соединений, медь больше не должна быть лучшим выбором.Серия HELUWIND® WK POWERLINE ALU обеспечивает программу тонкой проводки, включая технологию подключения. Характеристики материала алюминия значительно отличаются от свойств меди. Эти различия необходимо учитывать при обработке кабеля и выборе компонентов для подключения.

Окисление на воздухе

При воздействии кислорода на поверхности алюминия за короткий промежуток времени образуется твердое и стойкое оксидное покрытие.Покрытие защищает находящийся ниже материал от дальнейшей коррозии. Этот эффект делает алюминий очень прочным материалом. Однако защитное оксидное покрытие на поверхности материала нежелательно, когда дело касается электротехники. Это ухудшает проводимость алюминия и затрудняет контакт. Если оксидированный проводник подключается без какой-либо предварительной обработки (для удаления покрытия), контактное сопротивление между алюминиевым проводником и соединительным элементом будет увеличиваться.Это может привести к повышению температуры и, в худшем случае, к возгоранию кабеля. Чтобы предотвратить такие проблемы, оксидное покрытие необходимо физически сломать или удалить. Это можно сделать, очистив щеткой оголенные концы алюминиевых проводов перед установкой контактов, а также во время процесса обжима: компоненты разъемов для алюминиевых проводов снабжены специальной контактной смазкой с завода, обычно это зернистый абразивный материал, такой как корунд. В сочетании с высоким давлением частицы корунда вызывают абразивный эффект, который разрушает непроводящее оксидное покрытие алюминия, улучшая контактные свойства и электрические соединения.Смазка также препятствует проникновению влаги и кислорода и возникновению новой коррозии в точках контакта. Кабельные наконечники более высокого качества обычно оснащены пластиковыми заглушками, которые предотвращают высыхание или утечку контактной смазки во время хранения.

Гибридный кабельный наконечник Al / Cu прикреплен к тонкопроволочному алюминиевому проводнику с помощью обжима C8.

Оптимальный контакт с опрессовкой C8

Для конструкций с тонкопроволочными проводниками мы рекомендуем IEC 61238-1 Cl.Из-за большей окислительной поверхности проводника можно использовать обжимные соединения C8, прошедшие тестирование A. Контуры обжима C8 очень глубоко проникают в скрученный жгут, равномерно разрывают отдельные жилы и, таким образом, обеспечивают оптимальные контакты на всех жилах, даже в жгуте жил. Использование обжимов C8 (которые были разработаны как часть серии POWERLINE Aluminium) позволяет достичь наилучших возможных электрических параметров (низкое контактное сопротивление) и механических усилий извлечения.

Совместимость с электрохимическими драгоценными металлами

Когда дело доходит до определения компонентов электрического соединения, необходимо также учитывать коррозионные реакции алюминия в присутствии других металлов, в основном меди.Когда алюминий вступает в контакт с более благородными металлами (с более высоким электропотенциалом), такими как медь, железо или латунь, может возникнуть электрохимическая реакция за счет образования контактных элементов. Эта реакция активируется проводящими жидкостями — в полевых условиях в основном конденсированной водой (конденсация). В этом процессе решающую роль играют разности потенциалов, создаваемые серией электрохимических напряжений. Медный электрод (анод), электролит (вода) и алюминиевый электрод (катод) образуют контактный элемент.Любое напряжение на этих элементах закорачивается из-за контакта между медью и алюминием. Возникающий в результате ток вызывает процесс разложения алюминия, который виден как лучистая точка окисления, обнаруживающая загрязнение крошечных частиц меди. Однако медь не разлагается. Но процесс разложения отрицательно влияет на электрическое соединение в долгосрочной перспективе, увеличивая контактное сопротивление, что приводит к повышению температуры и даже к пожарам. Поэтому мы рекомендуем использовать кабельный наконечник алюминий / медь (Al / Cu) для подключения алюминия к медным периферийным устройствам.Биметаллические соединители, такие как кабельные наконечники из алюминия / меди, пресс-соединители и штифты соединительных болтов, производятся с использованием процесса сварки трением. Они инкапсулированы, чтобы предотвратить проникновение жидкости в соединение и нежелательную утечку. Использование соединителей и соединений Al / Cu — наиболее разумный способ борьбы с воздействием окисления на алюминий. Еще одно средство защиты от влаги — установка вторичной изоляции на месте контакта. В зависимости от области применения, механической нагрузки и условий окружающей среды можно использовать трубку холодной, рулонной или горячей усадки.Наилучшие результаты защиты достигаются при использовании термоусадочных трубок с внутренним клеем. В то же время электрические контакты следует тщательно проверять во время регулярного планового технического обслуживания.

Снижение прочности соединения из-за утечки

И, наконец, необходимо учитывать характеристики утечки алюминия. Алюминий — более мягкий металл, чем медь, и имеет тенденцию расширяться или растягиваться со временем, особенно под воздействием более высокого давления и температуры.Классические обжимные соединения, страдающие от утечки, теряют прочность и перестают быть надежными для обеспечения надлежащего соединения. Обжим HELUKABEL C8 имеет степень заполнения 95 процентов, чего нельзя добиться с помощью обычных обжимных соединений. Описанный процесс расширения / растяжения компенсируется выдающимися показателями экстракции. В то же время мы рекомендуем проводить регулярное техническое обслуживание и осмотр всех точек зажима в соответствии с их уровнями нагрузки.

Рекламный контент Helukabel


В рубрике: Рекламный контент
С тегами: Helukabel

Медь Vs.Алюминий — перетягивание каната между GC и электриком

Они говорят, что нет ничего лучше, чем увидеть, чтобы поверить. Много лет назад я видел большие алюминиевые проводники, которые почти испарились в своих соединениях. Он находился внутри большого распределительного электрораспределительного устройства в здании через 1 и 9 от международного аэропорта Ньюарка. Здание называлось «Полушарие», и, когда я иногда проезжаю мимо, приятно видеть, что оно все еще стоит. Мы исследовали распределительное устройство, потому что владелец, наш клиент, хотел внести некоторые изменения в здание и нуждался в большей мощности.Мы сняли задние панели редуктора, чтобы посмотреть, где можно сделать новый кран на шинах. И тогда я это увидел. Моей первой реакцией было выбежать из здания. Алюминиевые проводники толще, чем мой большой палец, потеряли несколько футов изоляции в точках соединения, и был виден чистый алюминий. Но не просто алюминий, в основном белый порошок. Как будто проводники начали улетучиваться в воздух. Когда железо ржавеет, окисленный продукт становится красным. Когда медь ржавеет / окисляется, она становится зеленой.А когда алюминий ржавеет, он становится белым. Окисленная медь по-прежнему является довольно хорошим проводником, но окисленный алюминий — очень плохим проводником. Еще в 1960-х и 1970-х годах около 2 миллионов домов в США были залиты алюминиевой проводкой. Это был пик войны во Вьетнаме, и в нашей стране был большой дефицит меди. Алюминий был дешевле и легче по весу, и еще в 1945 году он был одобрен для использования в домашней электропроводке. Так почему не! Что ж, как оказалось, на то были очень веские причины.Во-первых, электрики не знали, что им нужно использовать устройства с алюминиевым рейтингом, такие как выключатели и розетки. Используемые ими устройства несовместимы с алюминиевой проволокой. В результате алюминиевые проводники расшатались под винтами и начались возгорания. Все провода при протекании тока нагреваются. И когда они нагреваются, они расширяются. И когда они остынут, они сокращаются. Алюминий расширяется и сжимается на 35% больше, чем медь. Соедините это с соединительными наконечниками и винтами, которые не подходят для оконцевания из алюминия, и у вас будет очень хороший шанс ослабить соединение.Неплотное соединение еще больше нагревается и ускоряет окисление. В целом, это плохая комбинация и беспроигрышный вариант для разжигания огня. Это испортило строительную отрасль, но еще больше испортило страховую отрасль. До такой степени, что страховщики не хотели иметь ничего общего с домами с алюминиевой проводкой. С проводом все было в порядке. Просто устройства не подходили. Но страховые компании настояли на полной замене всей проводки за большие деньги.


Так что забудьте о проводах малого калибра.Давайте поговорим о большом. Питатели к панелям и к большому, не вибрирующему оборудованию являются приемлемыми кандидатами в качестве алюминиевых проводников. Медь по-прежнему лучший проводник. Это все равно, что ехать на работу в кадиллаке, а не в шевроле. Они оба доставят вас туда, но вам удобнее в Caddy, и вы привлечете больше внимания. Вам нужно использовать более крупный провод, потому что алюминий имеет меньшую проводимость. Но я должен признать, что алюминий намного легче меди.Электрики любят с ним работать. Нет никаких сомнений в том, что вы должны проявлять осторожность при заделке как меди, так и алюминия. Но уход за алюминием находится на совершенно другом уровне. Медь гораздо снисходительнее. Алюминий не только должен заканчиваться специально одобренными устройствами, он также не допускает небрежности. Он не такой податливый, как медь, поэтому его можно повредить, потянув с чрезмерным усилием. Если согнуть слишком много раз, он сломается. И, что очень важно, при контакте с воздухом он очень быстро окисляется.Поэтому любые оголенные концы необходимо покрыть антиоксидантом. Есть два способа завершить любой провод, обжимное или механическое соединение. Обжим выполняется с помощью гидравлического инструмента, который, по сути, заделывает проводник в заделку. Механический — просто прикручивает винт к проводу и проворачивает его вниз. Они оба одобрены и с соответствующими устройствами работают хорошо. Я неравнодушен к клеммам обжимного типа, и опять же, это просто сравнение Caddy / Chevy. Я просто знаю, что могу вычеркнуть обжатое окончание как сделано.Вроде финал. И, наконец, алюминиевые проводники не так хорошо погружаются в воду, как при подземной прокладке. Полностью держитесь подальше от этого сценария.

ПРОТИВ.

В конце концов, вопрос о меди и алюминия поднимается регулярно. В KEA мы проектируем все наши проекты на основе медных проводов. Мы рассчитываем размеры всех трубопроводов в соответствии с размерами медных проводов. Если объект должен быть выполнен из алюминия, проводники должны быть большего размера, и в большинстве случаев это означает больший диаметр кабелепровода.Этот вопрос часто задает электрик, который пытается сэкономить, в основном для оценки проекта. В этом нет ничего плохого, если инженер или электрик, если они имеют квалификацию, регулируют размеры проводов и кабелепроводов, чтобы перейти от меди к алюминию, и используют подходящие устройства и концевые заделки. В моей книге они должны быть покрыты антиоксидантом, а также должны использоваться соединения обжимного типа.

Опубликовано в категории: Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *