Схема подключения лб 40: Схема подключения люминесцентных ламп — пошаговая инструкция!

3 схемы подключения люминесцентной лампы без дросселя и стартера.
подключение лампы дневного света без дросселя и стартера

Лампы дневного света несмотря на всю их «живучесть», по сравнению с обычными лампочками накаливания, в один прекрасный момент также выходят из строя и перестают светить.

Конечно, срок их службы не сравнить со светодиодными моделями, но как оказывается, даже при серьезной поломке, все эти ЛБ или ЛД светильники опять можно восстановить без каких либо серьезных капитальных затрат.

В первую очередь вам нужно выяснить, что же именно сгорело:

  • сама люминесцентная лампочка

Как это сделать и быстро проверить все эти элементы, читайте в отдельной статье.

как проверить лампу дневного света дроссель стартер

Если сгорела сама лампочка и вам надоел такой свет, то вы легко можете перейти на светодиодное освещение, без какой-либо серьезной модернизации светильника. Причем делается это несколькими способами.

как проверить лампу дневного света дроссель стартер

Одна из наиболее серьезных проблем — это вышедший из строя дроссель.

как проверить дроссель лампы дневного света

Большинство при этом считают такой люминесцентный светильник полностью негодным и выбрасывают его, либо перемещают в кладовку на запчасти для остальных.

Сразу оговоримся, что запустить ЛБ светильник без дросселя, просто выкинув его из схемы и не поставив туда чего-нибудь другого, у вас не получится. В статье пойдет речь об альтернативных вариантах, когда этот самый дроссель можно заменить другим элементом, имеющимся у вас под рукой дома.

Как запустить лампу дневного света без дросселя

Что советуют делать в таких случаях самоделкины и радиолюбители? Они рекомендуют применить, так называемую бездроссельную схему включения люминесцентных ламп.

бездроссельная схема включения лампы дневного света

В ней используется диодный мост, конденсаторы, балластное сопротивление. Несмотря на некоторые преимущества (возможность запуска сгоревших ламп дневного света), все эти схемы для рядового пользователя темный лес. Ему гораздо проще купить новый светильник, чем паять и собирать всю эту конструкцию.

как собрать бездроссельную схему запуска ламп дневного света

Поэтому сперва рассмотрим другой популярный способ запуска ЛБ или ЛД ламп со сгоревшим дросселем, который будет доступен каждому. Что вам для этого потребуется?

Вам понадобится старая сгоревшая энергосберегающая лампочка с обычным цоколем Е27.

энергосберегающая лампочка что внутри

Конечно, схему с ее использованием нельзя считать абсолютно бездроссельной, так как на плате энергосберегайки дроссель все таки присутствует. Просто он по габаритам гораздо меньше, так как экономка работает на частотах до нескольких десятков килогерц.

Этот минидроссель ограничивает ток через лампу и дает высоковольтный импульс для зажигания. Фактически это ЭПРА в миниатюрном варианте.

Раньше была большая рекламная компания по замене ламп накаливания на энергосберегающие. Сегодня уже их активно меняют на светодиодные.

Выкидывать в мусорку экономки не рекомендуется, впрочем как и отдельные модели светодиодных.

можно ли выбрасывать светодиодные лампочки в мусорку

Поэтому некоторые сознательные и бережливые граждане, которые еще не сдали их в специальные пункты приема, хранят подобные изделия у себя на полках в шкафчиках.

зачем хранить сгоревшие энергосберегающие лампочки

Меняют их не зря. Эти лампочки в рабочем состоянии очень вредны для здоровья, как в плане пульсаций света, так и в отношении излучения опасного ультрафиолета.

Хотя ультрафиолет не всегда бывает вреден. И порой приносит нам много пользы.

лампы от комаров инсектицидные лампы работают ли они

При этом не забывайте, что теми же самыми негативными факторами, в равной степени обладают и линейные люминесцентные модели. Именно ими активно пугают любителей выращивать растения под светом фитоламп.

вред от фитоламп мифы или правда

Но вернемся к нашим энергосберегайкам. Чаще всего у них перестает работать светящаяся спиральная трубка (пропадает герметичность, разбивается и т.д.).

негодная энергосберегающая лампочка вторая жизнь

При этом схема и внутренний блок питания остаются целыми и невредимыми. Их то и можно использовать в нашем деле.

Сперва разбираете лампочку. Для этого по линии разъема, тонкой плоской отверткой вскрываете и разделяете две половинки.

как разобрать энергосберегающую лампочку

При разделении ни в коем случае не держитесь за стеклянную трубчатую колбу.

разбор экономки энергосберегающей лампочки как правильно

Далее вытаскиваете плату. На ней находите места, к которым подключаются проводки от «нитей накала» колбы. Они обычно идут в виде штырьков.

куда в энергосберегающей лампе подключаются нити накала

При разборе запомните, какая пара куда подключена. Эти штырьки могут находиться как с одной стороны платы, так и с разных сторон.

  • куда подключать люминисцентную лампу к энергосберегающей
  • куда подключать люминисцентную лампу к энергосберегающей

Всего у вас должно быть 4 контакта, куда вам и следует подпаять в дальнейшем провода.

Ну и естественно не забываем про питание 220В. Это те самые жилки, которые идут от цоколя.

куда подключать питание 220в на плату энергосберегающей лампочки через предохранитель

Все что нужно сделать далее, это припаять по два проводника к каждому контакту на плате (от бывших нитей накала трубок) и вывести их к боковым штырькам лампы дневного света.

схема подключения люминесцентной лампы дневного света без дросселя и стартера

То есть, отдельно два провода справа и два провода слева. После чего, остается только подать напряжение 220В на схему энергосберегайки.

Лампочка дневного света будет прекрасно гореть и нормально работать. Причем для запуска вам даже не нужен стартер. Все подключается напрямую.

как запустить лампу дневного света без дросселя подключение лампы дневного света без дросселя

Если стартер в схеме присутствует, его придется выкинуть или зашунтировать.

Как выбрать мощность энергосберегающей лампы

Запускается такой светильник моментально, в отличие от долгих морганий и мерцаний привычных ЛБ и ЛД моделей.

разные размеры светоидодных ламп для переделки под светильники дневного света

Какие есть недостатки у такой схемы подключения? Во-первых, рабочий ток в энергосберегайках при равной мощности, меньше чем у линейных ламп дневного света. Чем это чревато?

что такое индукционная лампа сравнение с ДРЛ ДНаТ люминесцентными и светодиодными

А тем, что выбрав экономку равной или меньшей по мощности с ЛБ, ваша плата будет работать с перегрузкой и в один прекрасный момент бабахнет. Чтобы этого не случилось, мощности плат от экономок в идеале должны быть на 20% больше, чем у ламп дневного света.

То есть, для модели ЛДС на 36Вт, берите плату от лапочки на 40Вт и выше. Ну и так далее, в зависимости от пропорций.

таблица соответствий мощности разных ламп освещения

Если вы переделываете светильник с одним дросселем на две лампочки, то учитывайте мощности обеих.

схема подключения люминесцентной лампы с одним дросселем и двумя лампочками

Почему еще нужно брать именно с запасом, а не подбирать мощность КЛЛ равную мощности ламп дневного света? Дело в том, что в безымянных и недорогих лампочках КЛЛ, реальная мощность всегда на порядок меньше заявленной.

Поэтому не удивляйтесь, когда подключив к старому советскому светильнику ЛБ-40, плату от китайской экономки на те же самые 40Вт, вы в итоге получите негативный результат. Это не схема не работает — это качество товаров из поднебесной не соответствует «железобетонным» советским гостам.

2 схемы бездроссельного включения ламп дневного света

Если вы все таки намерены собрать более сложную конструкцию, при помощи которой запускаются даже сгоревшие линейные светильники, то давайте рассмотрим и такие случаи.

Самый простейший вариант — это диодный мост с парой конденсаторов и подключенная последовательно в цепь в качестве балласта, лампочка накаливания. Вот схема такой сборки.

бездроссельная схема включения лампы дневного света

Главное преимущество ее в том, что подобным образом можно запустить светильник не только без дросселя, но и перегоревшую лампу, у которой вообще нет целых спиралей на штырьковых контактах.

спираль на лампе дневного света

Для трубок мощностью 18Вт подойдут следующие компоненты:

  • диодный мост GBU408
диодный мост GBU408
  • конденсатор 2нФ (до 1кв)
  • конденсатор 3нФ (до 1кв)
  • лампочка накаливания 40Вт

Для трубок в 36Вт или 40Вт емкости конденсаторов следует увеличить.  Все элементы соединяются вот таким образом.

как подключить сгоревшую люминесцентнрую лампочку через диодный мост

После чего схемка подключается к лампе дневного света.

подключение сгоревшей лампы дневного света

Вот еще одна подобная бездроссельная схема.

бездроссельная схема запуска лампы дневного света

Диоды подбираются с обратным напряжением не менее 1kV. Ток будет зависеть от тока светильника (от 0,5А и более).

Зажигаем сгоревшую лампу

В данной схеме при сгоревшей лампе двойные штырьки на концах замыкаются между собой.

зачем замыкать штфрьки на лампе дневного света при включении без дросселя

Подбор компонентов в зависимости от мощности лампы, делайте ориентируясь на табличку ниже.

подбор конденсаторов и диодов для бездроссельной схемы запуска люминесцентной лампы

Если лампочка целая, перемычки все равно устанавливаются. При этом не требуется предварительный разогрев спиралей до 900 градусов, как в исправных моделях.

Электроны необходимые для ионизации, вырываются наружу и при комнатной температуре, даже если спираль и перегорела. Все происходит за счет умноженного напряжения.

ультрафиолетовой свечение внутри люминесцентных ламп

Весь процесс выглядит следующим образом:

  • первоначально в колбе разряд отсутствует
  • затем на концы подается умноженное напряжение
  • свет внутри за счет этого моментально зажигается
свет от ламп дневного света
  • далее загорается лампочка накаливания, которая своим сопротивлением ограничивает максимальный ток
  • в колбе постепенно стабилизируется рабочее напряжение и ток
  • лампочка накаливания немного тускнеет

Недостатки подобной сборки:

  • низкий уровень яркости
  • повышенная пульсация
пульсации света светодиодных ламп какой вред здоровью наносят как влияют на глаза

А еще при питании люминесцентных ламп постоянным напряжением, вам придется очень часто менять полярность на крайних электродах колбы. Проще говоря, перед каждым новым включением переворачивать лампу.

В противном случае пары ртути будут собираться только возле одного из электродов и светильник без периодического обслуживания долго не протянет. Это явление называется катафорез или унос паров ртути в катодный конец светильника.

из-за чего оьбразуются почерения на концах люминесцентной лампы

Там где подключен «плюс», яркость будет меньше и этот край начнет чернеть значительно быстрее.

Особенно это заметно при монтаже светильников ЛБ в холодных помещениях — гараж, сарай, коридор, подвал. Если колба не прогрета, она может даже не запуститься.

В этом случае стоит до нее дотронуться теплой рукой и она тут же начинает гореть.

почему лампа дневного света загорается при дотрагивании рукой

Поэтому запомните — люминесцентная лампа это источник света переменного тока. Постоянный ей противопоказан и убивает лампу. Особенно импортные дохнут очень быстро.

люминесцентные лампы для освещения аквариума и растений в нем

Еще один минус подобных диодных схем, про который мало кто говорит — итоговый ток потребления из розетки. Для 40Вт ЛБ лампочки при не идеально подобранных компонентах, ток потребления из сети 220В может доходить до 1А.

А это даже превышает нагрузку обычной лампы накаливания в 200Вт. Вот это экономия у вас получится!

Поэтому какой из способов подойдет именно вам, решайте сами, исходя из имеющихся под рукой запчастей и познаний в электронике.

Простая Схема Подключения Люминесцентных Ламп

Схемы подключения люминесцентных лампСхемы подключения люминесцентных ламп

Обычные лампы накаливания малоэффективны – они выделяют больше тепла, чем света. Да и срок службы их невелик. Подключение люминесцентных ламп позволяет почти в 3 раза сэкономить на оплате электроэнергии. Плюс подобные источники освещения имеют больший диапазон цветов и менее вредны для глаз. Однако для их монтажа требуется приобретение специальных устройств: дросселей или электронных плат ЭПРА.

Беседки с мангалом и барбекю — (80+ ФОТО) Чертежи проектов которые можно реализовать своими рукамиБеседки с мангалом и барбекю — (80+ ФОТО) Чертежи проектов которые можно реализовать своими руками Читайте также: Беседки с мангалом и барбекю — (80+ ФОТО) Чертежи проектов которые можно реализовать своими руками

Особенности люминесцентных светильников

Читайте также:  Какая должна быть электропроводка в частном доме, укладка своими руками, инструкция для новичков

Устройство люминесцентной лампыУстройство люминесцентной лампы

Устройство люминесцентной лампы

Чтобы понять, каким образом осуществляется подключение люминесцентных ламп, требуется понять принцип их работы. Внешне они выглядят как стеклянные цилиндры, воздух в которых полностью заменен инертным газом, находящимся под небольшим давлением. Здесь же находится небольшое количество паров ртути, способных ускорять ионизацию – движение электронов.

С двух сторон цилиндра расположены электроды. Между ними находится вольфрамовая спираль, покрытая оксидами веществ, способных при пропускании тока и нагреве легко перемещаться на довольно большие расстояния, создавая ультрафиолетовое излучение (УФ).

Читайте также:  [Инструкция] Соединение проводов в распределительной коробке: типы соединений и их применение

Электромагнитный ПРАЭлектромагнитный ПРА

Электромагнитный ПРА

Но, так как этот вид излучения невидим, его преобразуют с помощью люминофора (особого состава на основе галофосфата кальция, которым покрыты стенки цилиндра), способного поглощать УФ, взамен выделяя видимые лучи света. Именно от вида люминофора зависит цвет освещения.

После включения устройства и перехода в рабочее состояние сила тока в нем может возрастать за счет падения сопротивления газов. Если не ограничить этот процесс, оно может быстро сгореть.

Для снижения силы тока используют дроссели (ограничители) – винтоспиральные катушки индуктивности, дающие дополнительную нагрузку и способные сдвигать фазу переменного тока и поддерживать желаемую мощность на весь период включения. Ограничительные устройства имеют и иное название: балласты или ПРА (пускорегулирующие аппараты).

Читайте также:  Двухтрубная система отопления частного дома: устройство, типы систем, схемы, компоновка, разводка, монтаж и запуск системы (Фото & Видео) +Отзывы

Электронный пускорегулирующий аппаратЭлектронный пускорегулирующий аппарат

Электронный пускорегулирующий аппарат

Более совершенными видами балласта являются электронные механизмы (ЭПРА), принцип работы которых будет описан в следующей главе. Для запуска разряда используется пусковое устройство, называемоестартером.

Электромагнитный дроссель или ЭПРА следует подбирать в зависимости от количества ламп и их мощности. Подсоединять предназначенное для двух ламп устройство к одной запрещено. Во избежание выхода прибора из строя подключать ЭПРА без нагрузки, то есть лампы, также не следует.

Отличие нуля от земли в чем принципиальная разница? Схемы соединений и их применение Отличие нуля от земли в чем принципиальная разница? Схемы соединений и их применение Читайте также: Отличие нуля от земли в чем принципиальная разница? Схемы соединений и их применение | (Фото и Видео)

Принцип действия

Читайте также:  Установка газового котла в частном доме: все необходимые требования для быстрого и законного запуска системы отопления (Фото & Видео) +Отзывы

Принцип действия люминесцентных ламп

Опишем кратко схему взаимодействия стартера, балласта и светильника:

Канализация в частном доме своими руками – быстро и без проблем. Описание устройства, какие бывают виды и схемы (20 Фото & Видео) +ОтзывыКанализация в частном доме своими руками – быстро и без проблем. Описание устройства, какие бывают виды и схемы (20 Фото & Видео) +Отзывы Читайте также: Канализация в частном доме своими руками – быстро и без проблем. Описание устройства, какие бывают виды и схемы (20 Фото & Видео) +Отзывы

Основные этапы подключения

Читайте также:  Газовый баллон на даче: для плиты, обогревателя и других нужд: правила пользования (Фото & Видео) +Отзывы

Схема подключения одного источника освещения к одному дросселюСхема подключения одного источника освещения к одному дросселю

Схема подключения одного источника освещения к одному дросселю

Схема подключения люминесцентной лампы с дросселем довольно проста:

К сожалению, стартер – не слишком надежное устройство. Плюс при работе лампа может мерцать, негативно влияя на зрение. В принципе, возможно и подключение без него. Заменить эту деталь можно подпружинной кнопкой-выключателем.

Лучшие полотенцесушители для ванной комнаты водяные и электрические: 15 популярных моделей с разным типом подключения Лучшие полотенцесушители для ванной комнаты водяные и электрические: 15 популярных моделей с разным типом подключения Читайте также: Лучшие полотенцесушители для ванной комнаты водяные и электрические: 15 популярных моделей с разным типом подключения | 2019

Монтаж двух ламп

Читайте также:  Секреты шумоизоляции стен в квартире: используем современные материалы и технологии (25+ Фото & Видео) +Отзывы

Варианты подключенийВарианты подключений

Варианты подключений

Какое бы количество источников света не требовалось включить в осветительную систему, все они подключаются последовательно. Для запуска двух ламп потребуется соответственно два стартера. Их подсоединяют параллельно.

Итак, опишем процесс подключения сразу 2 люминесцентных ламп:

Если вы поняли принцип этой схемы, то легко сможете этим же способом подключить 3 или 4 люминесцентных лампы.

ТОП-20 Лучших средств для мытья посуды: полный обзор брендов с достоинствами и недостатками +ОтзывыТОП-20 Лучших средств для мытья посуды: полный обзор брендов с достоинствами и недостатками +Отзывы Читайте также: ТОП-20 Лучших средств для мытья посуды: полный обзор брендов с достоинствами и недостатками +Отзывы

Пара ламп и один дроссель

Читайте также:  Обогрев теплицы: виды отопления, пошаговые рекомендации обустройства своими руками (20 Фото & Видео) +Отзывы

Схема с одним дросселемСхема с одним дросселем

Схема с одним дросселем

Стартеров здесь понадобится два, а вот дорогостоящий ПРА вполне можно использовать один. Схема подключения в этом случае будет чуть сложней:

Установка кондиционера в квартире или частном доме: пошаговая инструкция для монтажа своими руками Установка кондиционера в квартире или частном доме: пошаговая инструкция для монтажа своими руками Читайте также: Установка кондиционера в квартире или частном доме: пошаговая инструкция для монтажа своими руками | Фото & Видео

Подключение без дросселя

Читайте также:  Инфракрасный потолочный обогреватель с терморегулятором — современные технологии в вашем доме (Цены) +Отзывы

В данном подключении дроссель не используетсяВ данном подключении дроссель не используется

В данном подключении дроссель не используется

Этот способ используется в основном в старых лампах при выходе из строя балласта. Сделать это можно посредством использования постоянного тока, номинал которого выше обычного. То есть напряжение в момент пуска следует повысить. Сила этого напряжения подбирается исходя из характеристик как сети, так и самого источника света.

Для подключения люминесцентной лампы без дросселя требуется подсоединение диодного моста (или пары диодов). Контакты замыкаются с обеих сторон попарно. На одну сторону источника освещения должен приходиться плюс, на другую минус.

Подобную схему можно использовать даже при сгоревшей нити накаливания. Ведь цилиндр с газом при этом способе будет подпитываться за счет постоянного напряжения. Учтите лишь, что данный способ можно использовать на короткий период – со временем труба быстро потемнеет, а затем из-за выгорания люминофора вовсе перестанет излучать свет.

Тандыр: устройство, пошаговая инструкция как построить знаменитую узбекскую печь из кирпича, бочки своими руками Тандыр: устройство, пошаговая инструкция как построить знаменитую узбекскую печь из кирпича, бочки своими руками Читайте также: Тандыр: устройство, пошаговая инструкция как построить знаменитую узбекскую печь из кирпича, бочки своими руками | Фото & Видео

Подключение ЭПРА

Читайте также:  Как сделать монтаж водяного теплого пола своими руками: пошагавшая инструкция монтажа на все виды покрытий (20+ Фото & Видео) +Отзывы

Подсоединение ЭПРА (электронного пускового механизма)Подсоединение ЭПРА (электронного пускового механизма)

Подсоединение ЭПРА (электронного пускового механизма)

Дроссели являются довольно шумными устройствами. Поэтому их последние годы подключают в систему люминесцентного освещения нечасто, заменяя их ЭПРА, цифровыми или аналоговыми.

В стартере подобные устройства уже не нуждаются. По сути, электронные пусковые устройства – это небольшие электронные платы. Они сами способны регулировать уровень напряжения и обеспечивают ровный свет, без мерцания. Плюс они более безопасны и менее пожароопасны в эксплуатации и имеют больший срок службы.

Вариантов реализации ЭПРА может быть немало, но основных способов запуска два:

  • источники предварительно разогревают; это помогает увеличить КПД прибора и снизить его мерцание
  • с использованием колебательного контура; нить накала в этом случае является его частью; при прохождении разряда параметры контура меняются, в результате напряжение падает до требуемого уровня

Избавиться от надоедливого гудения и моргания можно, заменив старый дроссель на современный электронный пускорегулирующий механизм. Для этого следует:

Достоинства и недостатки люминесцентных источников света

Читайте также:  Печь на отработке: виды, устройство, чертежи, инструкция по изготовлению своими руками (Фото & Видео) +Отзывы

Использование ламп для тепличного выращивания растенийИспользование ламп для тепличного выращивания растений

Использование ламп для тепличного выращивания растений

ПЛЮСЫ:

  • Первым значительным плюсом таких устройств является существенная экономия электроэнергии. Источники света последнего поколения, работающие по этому принципу, тратят ее в 4-5 раз меньше, чем обычные лампы накаливания.
  • Кроме высокой светоотдачи, положительным моментом является длительный срок службы. Он может составлять 12-25 тыс. часов. Подобные устройства часто используют для контрастного освещения помещений большой площади (офисов, торговых центров, школ) или уличного освещения. Используют их на транспорте, в уличных фонарях, туннелях.

МИНУСЫ:

  • Необходимость подключения дополнительных устройств (стартеров и дросселей)
  • Доминирование в спектре желтого света и искажение цветопередачи освещаемых предметов
  • Значительные габариты колбы, из-за чего становится сложно равномерно перераспределить поток света
  • На силу света в таких источниках способна влиять температура окружающей среды
  • Разогрев лампы происходит не сразу; полную яркость она набирает спустя некоторое время, иногда оно может длится 10-15 минут
  • значительная пульсация света, что может сказаться отрицательно на зрении
  • Наличие, пусть в минимальных количествах ртути, опасной для здоровья человека, растений и животных

Последними разработками ученых стали компактные люминесцентные источники освещения, внешне схожие с обычными лампами накаливания. Они снабжены стандартным патроном, и их можно легко вкрутить в любую люстру или торшер. Никакой модернизации при этом не требуется.

Вся пускорегулирующая аппаратура (ПРА) в них расположена в самом патроне или выносится отдельно в небольшие блоки. Подобные устройства часто называют энергосберегающими.

Сравнение параметров разных источников освещенияСравнение параметров разных источников освещения

Сравнение параметров разных источников освещения

Но все же последние годы пользователи предпочитают подключать вместо люминесцентных ламп современные светодиодные. Принцип работы этих устройств существенно отличается. Люминесцентные колбы заполняются газом и парами ртути, и световое излучение образуется за счет разогревания вольфрамовой спирали. В светодиодных устройствах излучателем света является группа диодов или единичный светодиод. Именно он преобразует ток в световые лучи при протекании его через полупроводник.

Подобные устройства не только более прочны и менее опасны (повреждение люминесцентных же грозит попаданием в организм человека ртути). КПД светодиодных источников освещения гораздо больше, поэтому они более экономичны. Схема подключения люминесцентной или светодиодной лампы в обеих случаях максимально проста – достаточно лишь вкрутить ее патрон в цоколь.

Подробно о способах подключения люминесцентных ламп смотрите на следующем видео:

7 Total Score

Для нас очень важна обратная связь с нашими читателями. Если Вы не согласны с данными оценками, оставьте свой рейтинг в комментариях с аргументацией Вашего выбора. Благодарим за ваше участие. Ваше мнение будет полезно другим пользователям.

БЕЗОПАСНОСТЬ

6

Добавить свой отзыв  |  Отзывы и комментарии

Схемы подключения люминесцентных ламп | ehto.ru

Вступление

Существует два способа подключения люминесцентных ламп: при помощи стартера и дросселя (ЭМПРА) и при помощи электронного пускового аппарата (ЭПРА). Нельзя сказать, что они отличаются принципиально, но в схемах подключения задействованы различные устройства.

Схемы подключения люминесцентных ламп при помощи ЭМПРА

ЭМПРА это электромагнитный пускорегулирующий аппарат, а по сути, обычный дроссель. В схеме подключения ЭМПРА обязательно задействуется стартер, который создает первый импульс для начала свечения люминесцентной лампы.

Читать, ЭПРА и ЭмПРА. В чем отличия пускорегулирующих аппаратов

Схема подключения люминесцентной лампы ЭМПРА

схема подключения люминесцентной лампысхема подключения люминесцентной лампы

Данная схема подключения используется в большинстве стандартных одноламповых светильниках местного освещения эконом класса.

две реализации подключения люминесцентной лампыдве реализации подключения люминесцентной лампы

Схема индуктивная реализация

  • Напряжение питания 220 Вольт;
  • Дроссель (LL) подключается последовательно к проводу питания и выводу 1 лампы;
  • Стартер подключается параллельно к выводам 2 и 3 лампы;
  • Вывод  4 лампы подключается ко второму проводу питания;
  • В схеме участвует конденсатор, который снижает импульс напряжения, увеличивает срок службы стартера и снижает радиопомехи при работе светильника.

Схема индуктивно-ёмкостная реализация

Вторая схема подключения называется индуктивно-ёмкостной. В ней дроссель и конденсатор (индуктивное и ёмкостное сопротивление схемы) включаются последовательно. Стартер по-прежнему подключен параллельно вывода 2-3 лампы.

Схема подключения 2-х люминесцентных ламп до 18 Вт (ЭМПРА)

Несколько меняются схемы подключений при двух лампах. Наиболее распространены две схемы для ламп до 18 Вт (последовательная) и ламп 36 Вт (параллельная).

схема подключения двух ламп 18 ваттсхема подключения двух ламп 18 ватт

В первой схеме, по-прежнему участвуют два стартера, один стартер для каждой лампы. Дроссель подключается, как в схеме с индуктивной реализацией. Мощность дросселя подбирается суммированием мощности ламп.

Важно! В данной (последовательной) схеме необходимо использовать стартеры на 127 (110-130) Вольт. Мощность ламп не может быть больше 22 Вт.

схеме используются стартеры на 220-240 Вольтсхеме используются стартеры на 220-240 Вольт

Во второй параллельной схеме, участвуют уже два дросселя (LL1 и LL2). Стартеров по-прежнему два, один стартер для каждой лампы.

Важно! В данной схеме используются стартеры на 220-240 Вольт. Мощность ламп до 80 Вт.

Важно замечание. Современные ЭмПРА выпускаются в едином корпусе. Для подключения на корпусе есть только выводы контактов. Схема подключения ламп указывается на корпусе.

ЭмПРА в едином корпусеЭмПРА в едином корпусе

Схемы подключения люминесцентных ламп при помощи ЭПРА

ЭПРА это электронное пускорегулирующие устройство. По сути это сложная электронная схема которая обеспечивает и запуск и стабильную работу люминесцентных ламп (светильников).

Отмечу, что каждый производитель ЭПРА по-своему выводит контакты для подключения к ним ламп. Схема подключения люминесцентных ламп указана на корпусе или в паспорте ЭПРА Пример на фото.

пример ЭПРАпример ЭПРА

Для информации публикую подбор схем подключения различных ламп к ЭПРА различной маркировки.

Схемы подключения компактных люминесцентных ламп к нерегулируемым ЭПРА (OSRAM), марки QT-ECO

Схемы подключения компактных люминесцентных лампСхемы подключения компактных люминесцентных ламп Схема подключения компактных люминесцентных лампСхема подключения компактных люминесцентных ламп

Схемы подключения нерегулируемым ЭПРА QTP-DL, QTP-D/L, QTP-DVE, лампы 2х55, 1х10-13, 2х16-42.

подключения нерегулируемым ЭПРА QTP-DL, QTP-D/L, QTP-DVEподключения нерегулируемым ЭПРА QTP-DL, QTP-D/L, QTP-DVE

Схемы подключения нерегулируемым ЭПРА QTP5 лампы 2х14-35Вт, 2х24-39Вт, 2х54Вт, 1х14-35Вт, 1х24-39Вт, 1х54Вт, 1х80.

подключения нерегулируемым ЭПРА QTP5подключения нерегулируемым ЭПРА QTP5

Схемы подключения ЭПРА QT-FQ, QT-FC ламп Т5 (трубчатые)

Схемаподключения ЭПРА QT-FQ,ламп Т5Схемаподключения ЭПРА QT-FQ,ламп Т5 Схемы подключения ЭПРА ламп Т5Схемы подключения ЭПРА ламп Т5

©Ehto.ru

Еще статьи

Похожие посты:

Подробная схема подключения люминесцентной лампы, устройство 

Люминесцентные лампы обычно используют для освещения супермаркетов, учебных аудиторий, промышленных объектов, общественных закрытых помещений и прочего. С появлением более современных видов, которые выпускаются со стандартным цоколем E27, их начали использовать и в домашних условиях.

По истечении времени они набирают всё большей популярности. Но схема включения люминесцентных ламп достаточно сложная и требует особых познаний в этой области. Обычно подключают двумя схемами, о которых мы и поговорим дальше. Но сначала следует разобраться в принципе работы и строении такого светильника.

Принцип работы

Давайте разберём, что такое люминесцентная лампа, и как она работает. Представляет из себя стеклянную трубку, которая начинает работать за счёт разряда, который зажигает газы внутри её оболочки. На обоих концах установлен катод и анод, именно между ними и происходит разряд, который вызывает пусковое загорание.

Пары ртути, которые помещают в стеклянный футляр, при разряде начинаю излучать особый невидимый свет, который активизирует работу люминофора и других дополнительных элементов. Именно они и начинают излучать тот свет, который нам необходим.

Принцип работы лампы

Благодаря разным свойствам люминофора, такой светильник излучать большой спектр разнообразных цветов.

Подключаем, используя электромагнитный балласт

Электромагнитный Пускорегулирующий аппарат, сокращённой аббревиатурой для него является ЭмПРА. Также часто называют дросселем. Мощность такого устройства должна быть равной той мощности, которую потребляют лампы при работе. Довольно старая схема, с помощью которой раньше подключали люминесцентные лампы.

Схема с электромагнитным балластом

Принцип работы такого устройства состоит в следующем. После начала подачи тока, он попадает на стартер, после чего на небольшой период времени биметаллические электроды замыкаются. Благодаря этому, весь ток, который появляется в цепи, замыкается между электродами и ограничивается только сопротивлением дросселя.

Таким образом, он возрастает примерно в три-четыре раза, и электроды начинают практически моментально разогреваться.

Таким образом, именно дроссель образует сильный разряд в среде газов, и они начинают выделять свой свет. После включения, напряжение в схеме будет равно примерно половине от входящего с сети.

Такого показателя мало для создания повторного импульса, из-за чего лампа начинает стабильно работать.

Какими недостатками она обладает:

  1. Сравнивая со схемой, где применяется электронный балласт, расход электроэнергии выше на десять-пятнадцать процентов.
  2. В зависимости от того, сколько лампа уже проработала времени, период запуска будет увеличиваться и может дойти до трёх-четырёх секунд.
  3. Такая схема подключения люминесцентных ламп со временем способствует появлению гудения. Такой звук будет исходить от пластин дросселя.
  4. В процессе работы светильника будет довольно высокий коэффициент пульсации света. Такое явление негативно сказывается на зрении человека, а при продолжительном нахождение действие таких мерцающих лучей может стать причиной ухудшения зрения.
  5. Неспособны работать при низкой температуре. Таким образом, отпадает возможность использовать такие лампы на улице или в неотапливаемых помещениях.

Подключаем лампу, используя электронный балласт

Главным отличием такой системы от электромагнитной то, что напряжение, которое доходит до самой лампы имеет повышенную частоту начиная от 25 и доходит до 140 кГц. Благодаря повышению частоты тока, значительно уменьшается показатель мерцания, и он находит на таком уровне, который уже не является слишком вредным для человеческого глаза.

Подключение с ЭПРА

Система ЭПРА используется специальный автогенератор в своей схеме, такое дополнение включает трансформатор и выходной каскад на всех транзисторах. Зачастую производители указывают схему прямо на задней части блока светильника. Таким образом, у вас сразу есть наглядный пример, как правильно подключить и установить устройство для работы от сети.

Преимуществами стартерной схемы подключения

  • Стартерная система продлевает период работы светильника.
  • Особый принцип работы также продлевает период службы примерно на десять процентов.
  • Благодаря принципу действия, устройство экономит около двадцати-тридцати процентов потребляемой электроэнергии.
  • Облегчённая установка, так как производитель указывает схему, по которой должна происходить установка взятого вами светильника.
  • Во время работы практически полностью отсутствует мерцание и шум от светильника. Такие явления присутствуют, но они незаметны для человека и никак не влияют на здоровье.

Существуют модели, которые поддерживают установку диммера в качестве регулятора. Установка таких приборов несколько отличается от стандартной установки.

Подведём итог

Мы постарались раскрыть вопрос как подключить люминесцентную лампу, показали схемы, с помощью которых происходит подключение люминесцентных ламп. Разобравшись со схемой электромагнитного и электронного балласта, вы можете решить какую лучше использовать именно в вашем случае. Но так как первая имеет ряд значительных недостатков, то скорей всего выбор ляжет именно на электронный балласт.

Причины неисправностей — решение проблем

Схема электронного дросселя была придумана позже, и разрабатывалась специально для того, чтобы убрать все недостатки электромагнитного аналога, с целью максимального повышения качества освещения с помощью люминесцентных ламп.

Установка таких устройств уже не составляет особого труда, как это было раньше. Производители начали указывать схему, по которой производится установка на тыльной стороне прибора что значительно облегчает работу монтажника.

Оценка статьи:

Загрузка…

Поделиться с друзьями:

Схемы подключения люминесцентных ламп дневного света


Схема включения люминесцентных ламп гораздо сложнее, нежели у ламп накаливания.
Их зажигание требует присутствия особых пусковых приборов, а от качества исполнения этих приборов зависит срок эксплуатации лампы.

Чтоб понять, как работают системы запуска, нужно до этого ознакомиться с устройством самого осветительного устройства.

Люминесцентная лампа представляет из себя газоразрядный источник света, световой поток которого формируется в главном за счёт свечения нанесённого на внутреннюю поверхность колбы слоя люминофора.

При включении лампы в парах ртути, которыми заполнена пробирка, случается электронный разряд и возникшее при всем этом уф-излучение воздействует на покрытие из люминофора. При всем этом происходит преобразование частот невидимого уф-излучения (185 и 253,7 нм) в излучение видимого света.
Ети лампы обладают низким потреблением электроэнергии и пользуются большой популярностью, особенно в производственных помещениях.

Схемы

При подключении  люминесцентных ламп используется особая пуско-регулирующая техника – ПРА. Различают 2 вида ПРА : электронная – ЭПРА (электронный балласт) и электромагнитная – ЭМПРА (стартер и дроссель).

Схема подключения с применением электромагнитный балласта или  ЭмПРА (дросель и стартер)

Более распространённая схема подключения люминесцентной лампы – с использованием ЭМПРА. Это стартерная схема включения.




Принцип работы:  при подключении электропитания в стартере появляется разряд и
замыкаются накоротко биметаллические электроды, после этого ток в цепи электродов и стартера ограничивается лишь внутренним сопротивлением дросселя, в следствии чего же возрастает практически втрое больше  рабочий ток в лампе и мгновенно нагреваются электроды люминесцентной лампы.
Одновременно с этим остывают биметаллические контакты стартера и цепь размыкается.
В то же время разрыва дроссель, благодаря самоиндукции создает запускающий высоковольтный импульс (до 1 кВольта), который приводит к разряду в газовой среде и загорается лампа. После чего напряжение на ней станет равняться половине от сетевого, которого станет недостаточно  для повторного замыкания электродов стартера.
Когда лампа светит стартер не будет участвовать в схеме работы и его контакты будут и останутся разомкнуты.

 Основные недостатки

  • В сравнении со схемой с электронным балластом на 10-15 % больший расход электричества.
  •  Долгий пуск  не менее 1 до 3  секунд (зависимость от износа лампы)
  •  Неработоспособность при низких температурах окружающей среды. К примеру, зимой в неотапливаемом гараже.
  • Стробоскопический результат мигания лампы, что плохо оказывает влияние на зрение, при чем  детали станков, вращающихся синхронно с частотой сети-  кажутся неподвижными.
  • Звук от гудения пластинок дросселя, растущий со временем.

Схема включения с двумя лампами но одним дросселем. Следует заметить что индуктивность дросселя должна быть достаточной по мощности етих двух ламп.
Следует заметить что в последовательной схеме включения  двох ламп применяются стартеры на 127 Вольт,  они не будут работать в одноламповой схеме, для которой понадобятся стартеры на 220 Вольт

Ета схема где, как видите, нет ни стартера ни дроселя, можна применить если у ламп перегорели нити накала. В таком случае зажечь ЛДС можно при помощи повышающего трансформатора Т1 и конденсатора С1 который ограничит ток протекающий через лампу от сети 220вольт.

Ета схема подойдет все для тех же ламп у которых перегорели нити накала, но сдесь уже ненада повышающего трансформатора что явно упрощает конструкцию устройства

А вот такая схема с применением диодного выпрямительного моста устраняет ее мерцание лампы с частотой сети, которое снановится очень заметным при ее старении.

или сложнее

Если в вашем светильнике вышел с строя стартер или мигает постоянно лампа (вместе с стартером если присмотрется под корпус стартера) и под рукой нечем заменить, зажечь лампу можна и без него — достаточно на 1-2 сек. закоротить контакты стартера или поставить кнопку S2 (осторожно опасное напряжение)

тот же случай но уже для лампы с перегоревшей нитей накала

Схема подключения с применением электронного балласта или ЭПРА

Электронный Пускорегулирующий Аппарат (ЭПРА) в отличии от электромагнитного  подает на лампы  напряжение не сетевой частоты, а высокочастотное от 25 до 133 кГц. А это полностью исключает вероятность появления приметного для глаз мерцания ламп. В ЭПРА используется автогенераторная схема, включающая трансформатор и выходной каскад на транзисторах.

Основные преимущества схем с ЭПРА

  •   Повышение срока эксплуатации люминесцентных ламп, благодаря особому режиму работы и пуска. 
  •   В сравнении с ПРА до 20% экономия электричества.
  •   Отсутствие в ходе работы шума и мерцания. 
  •   Отсутствует в схеме  стартер, который часто ломается.
  •   Особые модели выпускаются с возможностью диммирования  либо регулировки яркости свечения.

Схема подключения конкретного электронного балласта изображена на каждом конкретном устройстве и не составляет особой проблемы в подключении 

Внутри такого электронного «дросселя» как правило схема на подобие етой…

Схемы Подключения Люминесцентных Ламп Без Дросселя

При включении лампы в парах ртути, которыми заполнена пробирка, случается электронный разряд и возникшее при всем этом уф-излучение воздействует на покрытие из люминофора.


Рассмотрим несколько вариантов.

Тандемное подключение Ниже показана схема, где две лампы люминесцентного типа включены последовательно.
Подключение лампы дневного света

ЭПРА для двух ламп дневного света Преимущества электронных балластников описаны в видео. Простейшим вариантом является схема автогенераторного преобразователя на 1 транзисторе.

Для устранения указанных недостатков разработаны схемы электронной пуско-регулирующей аппаратуры ЭПРА.

По истечении времени подается высоковольтный импульс, из-за которого происходит зажигание разряда между электродами.

Схема включения устроена таким образом, что в ней есть один дроссель на две лампочки.

Возможно, перегорела одна из нитей электродов. После чего, за счет энергии, накопленной в дросселе, происходит всплеск напряжения и в лампе возникает тлеющий разряд.

Схема включения люминесцентных ламп дневного света через электромагнитный дроссель и стартер.

Устройство люминесцентных ламп

Второй контакт группы направляется на второй стартер. Это тоже люминесцентные лампы, только форма другая. В таком режиме лампа накаливания едва светится. Запуск люминесцентной лампы без дросселя и стартера можно осуществить по нескольким рассмотренным схемам.


Внутренняя часть устройства содержит печатную плату, на основе которой можно собрать всю схему.

Это не идеальное решение, а скорее выход из ситуации.

По мере износа устройства звук нарастает.

Принцип работы люминесцентного светильника Особенность работы люминесцентных светильников заключается в том, что их нельзя напрямую подключать в сеть питания.

Если разряд в колбе не возник, процесс подогрева и поджига повторяется несколько раз.

За счет резкого скачка очень быстро разогреваются электроды.
схема люминесцентного светильника с 1 лампой

Основные функции

При появлении устойчивого разряда сопротивление между электродами на противоположных концах колбы падает и ток протекает по цепи дроссель-электроды.


Работа ЭПРА может осуществляться в двух режимах: с предварительным подогревом электродов; с холодным запуском.

Автор: Engineer Схемы подключения люминесцентных ламп без дросселя и стартера Люминесцентные трубчатые лампы долгое время были популярны в освещении помещений любой площади. Пока лампа погашена, напряжения на удвоителе VD1, VD2, С2, С3 достаточно для открывания стабилитронов, поэтому на электродах лампы присутствует удвоенное напряжение сети. В таких случаях только вам решать стоит ли продлевать жизнь умершим светильникам дневного света или бежать в магазин за новыми.

Лампу накаливания использовать на Вт, как показано на фото: Альтернативой описанным способам является использование платы от энергосберегающих ламп. ЭПРА, размещенный в цоколе В качестве примера приведем схему простого электронного балласта, типичную для большинства недорогих устройств. Указывается мощность ламп и их количество, а также технические характеристики устройства. Для её работы также не нужен дроссель и стартер.

Как правило, первой наматывают первичную обмотку, затем главную вторичную на схеме обозначена, как III. Схема ее подключения есть справа. Такой способ запуска не рекомендован для частого использования, поскольку сильно сокращает срок работы, но его можно использовать даже с лампами с неисправными электродами с перегоревшими нитями накала. Он наступает после того, как испарилась вся ртуть.

Классическая схема включения люминесцентных ламп


Возможно вам понравится одна из вариаций рассмотренной схемы. Использование электронного ПРА позволяет избавиться от большинства из перечисленных выше недостатков. Наиболее дорогостоящий элемент схемы — дросселя.

Соответственно это может привести к несчастным случаям. Также можно с легкостью обыгрывать стандартные схемы подключения и избавляться от компонентов, которые неисправны. При включении более мощных трубок емкость конденсаторов стоит увеличить. Однако подчеркнём, что такие схемы позволяют некоторое время запускать даже ЛДС со сгоревшими нитями электродов.

Это аналогичный осветительный прибор, только сильно видоизмененный. По ней сразу понятно, сколько ламп к нему подключается. В данном случае используется не сетевая частота 50 Гц , а высокие частоты 20 — 60 кГц. Лампа работает.
СПОСОБ ПОДКЛЮЧЕНИЯ ЛАМПЫ ДНЕВНОГО СВЕТА БЕЗ ДРОССЕЛЯ

Схема подключения люминесцентных ламп без стартера

Питание от В без дросселя и стартера Дело в том, что стартеры периодически выходят из строя, а дроссели перегорают.

Для работы больше никаких устройств не надо.

Следующая схема позволяет запустить лампу дневного света с перегоревшими пусковыми спиралями мощностью до 40 Вт при использовании лампы меньшей мощности дроссель L1 придется заменить на соответствующий используемой лампе. Это можно заметить по наличию темных пятен люминофора с одной из сторон колбы. На вход подают электропитание.

Индуктивности дросселя должно хватать на оба источника света. Как видно из рисунка ниже, кроме дросселя и стартера в схеме присутствует обычный диоднй мост. Запуск люминесцентной лампы без дросселя и стартера можно осуществить по нескольким рассмотренным схемам.

Читайте дополнительно: Сроки измерения сопротивления заземляющих устройств

Принцип работы газоразрядных люминесцентных ламп

Исключение составляет регулярная замена стартеров, поскольку в их состав входит группа размыкающих контактов для формирования импульсов запуска. Для работы больше никаких устройств не надо. При включении лампы в парах ртути, которыми заполнена пробирка, случается электронный разряд и возникшее при всем этом уф-излучение воздействует на покрытие из люминофора.

Ток в электроцепи проводников и стартера ограничивается только внутренним дроссельным сопротивлением. В случае перегорания одной или двух нитей катодов люминесцентной лампы её можно продолжать эксплуатировать некоторое время, применяя упомянутые схемы с повышенным напряжением. Кроме транзистора нам понадобится намотать трёхобмоточный трансформатор на ферритовом кольце или стержне.

Схема подключения люминесцентных ламп с дросселем

Во всех используется принцип создания высокого напряжения запуска при помощи умножителя напряжения. Для его преобразования в видимый световой поток стенки колбы покрывают специальным слоем, люминофором. Как только контакты соединились, ток в цепи мгновенно вырастает в раза.

В схеме, приведенной ниже, роль токоограничивающего дросселя выполняет обычная лампа накаливания, мощность которой равна мощности используемой ЛДС. Правильно собранная схема при исправных элементах начинает работать сразу же. Схема ее подключения есть справа. В работающем светильнике его контакты разомкнуты и он никак в ее работе не участвует. Кроме транзистора нам понадобится намотать трёхобмоточный трансформатор на ферритовом кольце или стержне.
Проверка стартера люминесцентной лампы

Схема ЭПРА для ЛБ-40

на главную

Лампы дневного света (ЛДС) в виде длинной трубки давно применяются как в быту, так и в офисах. Главное их преимущество, по сравнению с лампами накаливания, – большая светоотдача, долговечность и экономия электроэнергии.

В старых светильниках применяли тяжелые дроссели и стартеры, они долго и с миганием зажигали лампы, работали ненадежно, гудели, а лампы мигали. На смену им пришли электронные балласты. Они легче по весу, мгновенно зажигают лампу, не гудят, работают в широком диапазоне питающих напряжений, не мигают, так как работают на больших частотах, и по стоимости приблизились к светильникам с тяжелыми дросселями.

Фото. Внешний вид светильника

Внешний вид такого светильника китайского производства типа DL-3011 для ЛДС мощностью 36 Вт показан на фото. Его номинальное питающее напряжение 220…240 В/50 Гц, но при испытаниях показал работоспособность и в диапазоне напряжений 100…240 B. Сам электронный блок питания (балласт) помещается внутри светильника в пластмассовой коробке. Он смонтирован на монтажной плате размерами 107х27 мм (рис.1).

Рис 1. Электронный ПРА

Принципиальная схема ЭПРА нарисована по монтажной плате и показана на рис.2 Все элементы на ней обозначены так же, как и на монтажной плате.

Рис 2. Принципиальная схема ЭПРА

Вначале вспомним принцип зажигания люминесцентных ламп, в том числе и при применении электронных балластов. Для этого необходимо выполнить два условия: первое – разогреть обе ее нити накала, второе – приложить большое (около 600 В) напряжение. Величина напряжения зажигания прямо пропорциональна длине стеклянной люминесцентной лампы, т.е. для коротких (18 Вт) ламп оно меньше, а для длинных (36…40 Вт) ламп – больше.

Работа электронного балласта

Вначале сетевое напряжение выпрямляется до постоянного напряжения 260…270 В (измерено на работающем преобразователе при напряжении сети ~220 В) и сглаживается электролитическим конденсатором С1 (15 мкФ/400 В).

Далее двухтактный полумостовой преобразователь, активными элементами которого являются два биполярных высоковольтных транзистора структуры n-p-n (MJE13005), называемыми ключами (рис.2), преобразует постоянное напряжение 260…270 В в высокочастотное напряжение частотой 38 кГц, что позволяет значительно уменьшить габариты и вес балласта. Нагрузкой и одновременно управляющим элементом преобразователя является трансформатор (обозначен на схеме как TU38Q2) со своими тремя обмотками, из них две – управляющие обмотки (каждая по 4 витка) и одна – рабочая, состоящая из двух витков (рис.2 см. прикрепленные данные). Цепь с рабочей обмоткой создает нагрузку на преобразователь.

Первоначальный запуск преобразователя обеспечивает симметричный динистор, обозначенный в схеме DB3. Он открывается, когда после включения электросети напряжение в точках его подключения превысит порог срабатывания. При открытии динистор подает импульс на базу транзистора, после чего преобразователь запускается.

Транзисторные ключи открываются противофазно от импульсов с управляющих обмоток. Для этого обмотки включены в базы транзисторов противофазно (на рис.2 начало обмоток обозначены точками). Открытие каждого ключа вызывает наводку импульсов в двух противоположных обмотках, в том числе и в рабочей обмотке (2 витка). Переменное напряжение с рабочей обмотки L1 подается на люминесцентную лампу через последовательную цепь, состоящую из обмотки L1, первой нити накала лампы, С5 (4700 пФ/1200 В), второй нити накала лампы, С4 (100 нФ/400 В). Величины индуктивностей и емкостей в этой цепи подобраны так, что в ней возникает резонанс напряжений при неизменной частоте преобразователя.

На конденсаторе С5 (470 пФ/1200 В), включенном в резонансную цепь (к лампе), происходит самое большее падение напряжение (так как у С5 самое большое реактивное сопротивление из всех элементов контура), оно зажигает лампу.

Следовательно, максимальный ток в резонансной цепи разогревает обе ее нити накала, а большое резонансное напряжение на конденсаторе С5 зажигает лампу.

Зажженная лампа хотя и уменьшает свое сопротивление, но, как показали измерения, переменное напряжение на ней (и на конденсаторе С5) составляет около 295 В, а на дросселе L1 – около 325 В. Т.е. резонанс напряжений в цепи продолжается, из-за чего уже зажженная лампа и продолжает гореть. Дроссель L1 своей индуктивностью ограничивает ток в зажженной лампе, так как ее сопротивление после зажигания уменьшается. После зажигания лампы преобразователь продолжает работать в автоматическом режиме, не меняя свою частоту с момента запуска. Весь этот процесс зажигания длится менее 1 с.

При испытаниях светильник сохранял работоспособность в диапазоне питающего напряжения переменного тока от 220 В до 100 B, при этом частота преобразования увеличивалась с 38 кГц до 56 кГц, но яркость свечения лампы при напряжении 100 B заметно уменьшилась.

Следует отметить, что на люминесцентную лампу все время подается переменное напряжение, так как это обеспечивает равномерный износ эмиссионных способностей нитей накаливания и этим увеличивает срок службы лампы. При питании лампы постоянным током срок ее службы уменьшается на 50%.

Детали электронного балласта

Типы радиоэлементов указаны в принципиальной схеме (рис.2 см. прикрепленные данные). В состав устройства входят:

  1. Т1, Т2 – транзисторные ключи MJE13005 китайского производства (аналог КТ8164А), структуры n-p-n, в корпусе TO-220 (400 В/4 A, в импульсе 8 А). Их можно заменить КТ872А (1500 В/8 A, корпус Т26а). Цоколевка MJE13005 показана на рис.2 (см. прикрепленные данные). При установке новых транзисторов всегда определяйте правильность выводов БКЭ, так как в аналогах она может не совпадать.
  2. Трансформатор TU38Q2 с ферритовым кольцом, размер которого 11х6х4,5, его вероятная магнитная проницаемость около 2000. Трансформатор имеет 3 обмотки, две из них (управляющие) содержат по 4 витка и одна (рабочая) – 2 витка.
  3. Диоды D1–D7 типа 1N4007 (1000 В/1 А). D1–D4 – выпрямительный мост, D6, D7 – демпферные диоды, а диод D5 разделяет источники питания.
  4. Цепочка R1C2 обеспечивает задержку пуска преобразователя с целью его «мягкого» пуска и не допущения большого пускового тока.
  5. Симметричный динистор типа DВ3 (Uзс.max=32 B; Uос=5 В; Uнеотп.и.max=5 B) обеспечивает первоначальный запуск преобразователя.
  6. R3, R4 – ограничивающие резисторы в цепи эмиттера транзисторов. При экстремальных условиях сгорают, защищая более дорогие транзисторы.
  7. R5, R6 – гасящие резисторы в цепи базы транзисторов.
  8. D6, С3, R2 – демпферная цепочка, препятствующая выбросам напряжения на ключе в момент его запирания, демпферную функцию выполняет и диод D7, но на втором ключе. Кроме того, С3 уменьшает частоту преобразования.
  9. Дроссель L1 состоит из двух склеенных между собой Ш-образных ферритовых половинок. L1 участвует в резонансе напряжений (совместно с С5 и С4) для обеспечения зажигания лампы и поддержки ее в рабочем состоянии, а также ограничивает ток в светящейся лампе.
  10. С5 (4700 пФ/1200 B), С4 (100 нФ/400 B) – конденсаторы в цепи люминесцентной лампы, участвующие в ее зажигании (через резонанс напряжений), а после зажигания поддерживают ее в рабочем (светящемся) режиме. Максимально допустимое напряжения конденсатора С5=1200 В, такая величина подобрана неслучайно. При зажигании напряжение на С5 может превышать 600…700 В, и конденсатор должен выдержать его.
  11. Конденсаторы 22 нФ/100 В (на схеме производители их не обозначили) предназначены для уменьшения частоты работы преобразователя. Напомним, что она равна 38 кГц при номинальном питающем напряжении.
  12. С1 (15 мкФ/400 В) – единственный оксидный конденсатор в балласте, выполняющий функцию сглаживания выпрямленного напряжения питающей электросети.
  13. F1 – мини-предохранитель в стеклянном корпусе номиналом 1 А.

Ремонт

При ремонте платы под напряжением будьте осторожны, так как ее радиоэлементы находятся под фазным напряжением.

Перегорание (обрыв) накальных спиралей люминесцентной лампы, при этом блок питания остается исправным. Это типичная неисправность. Устраняется она простой заменой стеклянной лампы, которая продается в любом магазине электротоваров и стоит около 1,5 USD. Применять можно лампы мощностью 36 и 40 Вт.

Трещины в пайке монтажной платы

Причины их появления: периодическое нагревание и последующее, после выключения, остывание места пайки, а также низкокачественная пайка платы изготовителем. Нагреваются места пайки от элементов, которые греются, – это транзисторные ключи. Такие трещины могут проявиться после нескольких лет эксплуатации, т.е. после многократного нагревания и остывания места пайки. Устраняется неисправность повторной пайкой трещины. Иногда необходимо предварительно зачистить место пайки.

Повреждение отдельных радиоэлементов

Отдельные радиоэлементы могут повредиться от скачков напряжения в электросети. В первую очередь, это транзисторы MJE13005. Производители не предусмотрели защиты схемы от всплесков напряжений, например, варисторами. Скачки напряжений часто имеют место в сельских электросетях во время сильных ветров и молний, поэтому во время таких атмосферных явлений светильник лучше не включать. Имеющийся в схеме предохранитель (1А) не защитит радиоэлементы от скачков напряжений, а лишь при пробое радиоэлементов.


на главную
.
LG TV сервис мануалы PDF и принципиальные схемы, схемы

File

Прямая ссылка для скачивания

LG PLASMA-TV-42PT350R, шасси 42PT351R Руководство по ремонту PP11K.PDF

Загрузить

Учебное пособие по плазменной технике LG. PDF

Загрузить

LG плазменный ч.RF-030B RT-50PZ60 (70) Руководство по техническому обслуживанию .pdf

Загрузить

LG PLASMA 42-ДЮЙМОВОЕ РУКОВОДСТВО ПО ОБУЧЕНИЮ PDP Принципиальная схема + Сервисное руководство pdf.rar

Загрузить

Принципиальная схема LG PDP42V6.PDF

Загрузить

LG PDP 50PS8000 ch PD91A Сервис мануал .pdf

Загрузить

Принципиальная схема LG PDP 42V7xxx pdf.ЭОР

Загрузить

LG P4247L-12LBP-3PM EAY62608903 сервис мануал .pdf

Загрузить

LG P32-ATN Сервис мануал.PDF

Загрузить

LG MZ-60PZ12 / MZ-60PZ14 / MT-60PZ12 / MT-60PZ14 Шасси NP-00KB Принципиальная схема + Руководство по техническому обслуживанию .pdf

Загрузить

LG MZ-50PZ93V Шасси RF-03FB PLAZMA Принципиальная схема + Руководство по обслуживанию pdf.ЭОР

Загрузить

Принципиальная схема LG MW-30LZ10 + Сервис мануал pdf.rar

Загрузить

Принципиальная схема LG MV64A pdf.ЭОР

Загрузить

LG MV-995A сервис мануал .pdf

Загрузить

Принципиальная схема шасси LG MV-64A.PDF

Загрузить

LG MULTIPLEX-72 шасси MV-033A COMBI принципиальная схема + руководство по обслуживанию pdf.rar

Загрузить

Принципиальная схема LG MT-42PZ40 pdf.ЭОР

Загрузить

Принципиальная схема LG MT-42PZ12 MZ42PZ12 Chassis MP-00MC + Сервис-мануал pdf.rar

Загрузить

Принципиальная схема LG MT-42PZ12 pdf.ЭОР

Загрузить

Принципиальная электрическая схема шасси LG MC-994A .pdf

Загрузить

Схема подключения LG MC-84A / Plat + Сервис мануал pdf.ЭОР

Загрузить

Принципиальная схема LG MC-83A CHASSIS + Сервис мануал pdf.rar

Загрузить

Принципиальная схема LG MC-71B CHASSIS + Сервис мануал pdf.ЭОР

Загрузить

Принципиальная электрическая схема LG MC-64A pdf.rar

Загрузить

Принципиальная схема LG MC-059D + Сервис мануал pdf.ЭОР

Загрузить

Принципиальная схема LG MC-059A pdf.rar

Загрузить

Принципиальная схема LG MC-036A pdf.ЭОР

Загрузить

LG M4716T принципиальная схема + сервис мануал pdf.rar

Загрузить

LG M2380A Ch.LP92E Сервис мануал .pdf

Загрузить

LG M227WDP сервис мануал .pdf

Загрузить

Принципиальная схема LG m2262d / pzl / chassis / ld93a pdf.ЭОР

Загрузить

LG m1721a / m1921a / bmf / chassis / cl-81 принципиальная схема pdf.rar

Загрузить

LG lp78a / chassis / 32lc41-4r / 32lc42 / 32lc43 / 32lc44 / sm Принципиальная схема pdf.ЭОР

Загрузить

LG LM24MT45V шасси LD41A Руководство по техническому обслуживанию .pdf

Загрузить

Принципиальная схема LG lg26LX2R TE + Сервис мануал pdf.ЭОР

Загрузить

LG LG ca14f33 принципиальная схема + сервис мануал pdf.rar

Загрузить

LG LG 47LW5600 (схема) Схема + Сервисное руководство pdf.PDF

Загрузить

LG Le-15a10 сервис мануал pdf .rar

Загрузить

LG ld91a / chassis / 37lh3000 / 37lh3010 / lcd / tv / sm Принципиальная схема pdf.ЭОР

Загрузить

LG ld88f / chassis / 42lg7000 / lcd / tv / sm принципиальная схема pdf.rar

Загрузить

Принципиальная схема LG ld83a / chassis / 22ls4d / lcd / tv / sm pdf.ЭОР

Загрузить

LG LD33B принципиальная схема + сервис мануал pdf.rar

Загрузить

Принципиальная схема LG lcd32lb75 / lb75-zb / lb76 / lb76-zd pdf.ЭОР

Загрузить

LG LCD TV LG 32LC7R, 32LC51, 32LC52, LP78A Ch принципиальная схема pdf .rar

Загрузить

ЖК-телевизор LG Шасси LA92G 47Lh51 (UE) Руководство по обслуживанию.PDF

Загрузить

LG LCD TV ch.LP69C 19LS4R Руководство по техническому обслуживанию .pdf

Загрузить

LG LCD TV ch.LP61A 26LC3R сервис мануал .pdf

Загрузить

LG LCD TV ch.LD91B 42LH5000 Руководство по техническому обслуживанию .pdf

Загрузить

LG RZ-20LA70 шасси ML-024D принципиальная схема + сервис мануал pdf.ЭОР

Загрузить

LG Lcd шасси ML-051B (RZ / RT-37LZ55) принципиальная схема + Сервисное руководство pdf.rar

Загрузить

Принципиальная схема LG LCD 42LF66 / 42LF66-ZE Chasis LD75A + Сервис-мануал pdf.ЭОР

Загрузить

LG LCD 42LD450 сервис мануал .pdf

Загрузить

Шасси LG LCD 32LH7000-ZA Схема подключения LD91D + Сервис-мануал pdf.ЭОР

Загрузить

Принципиальная электрическая схема LG LB01U / 47LV3500-TA / [SM] pdf.rar

Загрузить

Принципиальная схема LG LB01P 22lk330-й / 332-tj + Сервис мануал pdf.ЭОР

Загрузить

LG KE-21P32X Chassis MV-031 Схема TVCR + Сервис-мануал pdf.rar

Загрузить

Шасси LG GOLDSTAR CF-25C26 / CF-25C36 / CF-25C76 / CF-28C26 / CF-29C26 / CF-29C Схема MC-51B + Сервис-мануал.ЭОР

Загрузить

Принципиальная схема LG GF29V CHASSIS + Сервис мануал pdf.rar

Загрузить

Принципиальная схема шасси LG GF-2910 MD-66A + Сервис мануал pdf.ЭОР

Загрузить

LG flatron / m198wa / шасси / lp69g / sm принципиальная схема pdf.rar

Загрузить

Принципиальная схема LG EAX65391401 + Сервис мануал.PDF

Загрузить

Принципиальная схема LG DU-42PY10X-XH + Сервис-мануал pdf.rar

Загрузить

LG DPDP40V Сервис мануал pdf.ЭОР

Загрузить

Принципиальная схема LG dm2352d-pz pdf.rar

Загрузить

LG DLP 52SZ8D ch.NB-05ED Сервис мануал .pdf

Загрузить

Принципиальная схема LG CT-29Q901P + Сервис-мануал pdf.rar

Загрузить

Принципиальная электрическая схема LG CT-29Q12IP + Сервис мануал pdf.ЭОР

Загрузить

Принципиальная схема LG CP-29K40 / CP29K40P (MC-7CD CHASSIS) + Сервис-мануал pdf.rar

Загрузить

Принципиальная схема шасси LG CP-21D70M MC-83A + Руководство по обслуживанию pdf.ЭОР

Загрузить

LG шасси PP61A 42PC1RV принципиальная схема pdf.rar

Загрузить

Принципиальная схема шасси LG PC58A + Руководство по обслуживанию pdf.ЭОР

Загрузить

Принципиальная схема LG Chassis PC-99DA + Сервисное руководство pdf.rar

Загрузить

Принципиальная схема LG Chassis PC-63A + Руководство по обслуживанию pdf.ЭОР

Загрузить

Принципиальная схема шасси LG PC-53A + Руководство по обслуживанию pdf.rar

Загрузить

LG шасси NP-00KB, PDP TV, MTMZ-60PZ12B, принципиальная схема MTMZ- 60PZ14B / SM / 1 + Руководство по обслуживанию pdf.ЭОР

Загрузить

Принципиальная схема шасси LG NC71A + Сервис мануал .pdf

Загрузить

LG шасси MP-03AB Руководство по обслуживанию.PDF

Загрузить

LG шасси ML-05TA, модель T23WL55E-ZA принципиальная схема + руководство по обслуживанию pdf.rar

Загрузить

LG шасси ML-05TA, модель T15CL7E-TA T20CL7E-TA Принципиальная электрическая схема + Сервисное руководство pdf.ЭОР

Загрузить

LG шасси ML-042A, принципиальная схема 15LW1R + сервисная инструкция pdf.rar

Загрузить

Принципиальная схема шасси LG ML-041F + Сервис мануал pdf.ЭОР

Загрузить

LG шасси ML-041D, модель 27LZ5RV-ZC принципиальная схема + руководство по обслуживанию pdf.rar

Загрузить

Шасси LG ML-041B, RZ-20LZ50 Схема + Руководство по обслуживанию pdf.ЭОР

Загрузить

Принципиальная схема LG Chassis ML-03JA, DI-30LZ30 + Сервисное руководство pdf.rar

Загрузить

Шасси LG ML-038C, модель RZ-37LZ30. Принципиальная схема + Сервисное руководство pdf.ЭОР

Загрузить

LG шасси ML-027A, модель RZ-17LZ10 принципиальная схема + руководство по обслуживанию pdf.rar

Загрузить

LG шасси ML-012A, модель RT-15LA31. Схема + Руководство по обслуживанию pdf.ЭОР

Загрузить

Принципиальная схема LG CHASSIS MF-056C + Сервис мануал pdf.rar

Загрузить

.

Схемы подключения | VEM Group

Схемы подключения

PDF
Трехфазные двигатели с короткозамкнутым ротором; КП 0001
с одной скоростью; Подключение: Delta-Star
DE EN
Трехфазные двигатели с короткозамкнутым ротором; КП 0003
с 2 скоростями и 1 обмоткой; Подключение: Delta-double Star
DE EN
Трехфазные двигатели с короткозамкнутым ротором; КП 0007
с 2 скоростями и 1 обмоткой; Подключение: звезда-двойка звезда
DE EN
Трехфазные двигатели с короткозамкнутым ротором; КП 0006
с 2 скоростями и 2 обмотками; Подключение: Star-Star
DE EN
Трехфазные двигатели с короткозамкнутым ротором; КП 0005
с 2 скоростями и 2 обмотками; Подключение: Star-Delta-Star
DE EN
Трехфазные двигатели с короткозамкнутым ротором; КП 0032
с 3 скоростями и 2 обмотками; Подключение: звезда-треугольник-двойка звезда
DE EN
Трехфазные двигатели с короткозамкнутым ротором; КП 0034
с 3 скоростями и 2 обмотками; Подключение: Delta-Star-double Star
DE EN
Трехфазные двигатели с короткозамкнутым ротором; КП 0044
с 4 скоростями и 2 обмотками; Подключение: Delta-Delta-двойная звезда-двойная звезда
DE EN
Трехфазные двигатели с короткозамкнутым ротором; КП 0037
с 3 скоростями и 2 обмотками; Подключение: Delta double Star Delta
DE EN
Трехфазные двигатели с короткозамкнутым ротором; КП 0040
с 3 скоростями и 2 обмотками; Подключение: звезда-звезда-двойная звезда
DE EN
Трехфазные двигатели с короткозамкнутым ротором; КП 0041
с 3 скоростями и 2 обмотками; Подключение: Delta-double Star-Star
DE EN
Трехфазные двигатели с короткозамкнутым ротором; КП 0038
с 3 скоростями и 2 обмотками; Подключение: звезда-двойник звезда-звезда
DE EN
трехфазные двигатели с короткозамкнутым ротором; КП 0043
с 3 скоростями и 2 обмотками; Подключение: звезда-звезда-двойная звезда
DE EN
Трехфазные двигатели с короткозамкнутым ротором; КП 0042
с 3 скоростями и 2 обмотками; Подключение: звезда-двойник Star-Delta
DE EN
Трехфазные двигатели с короткозамкнутым ротором; КП 0036
с 3 скоростями и 2 обмотками; Подключение: Delta-double Star-Delta
DE EN
Трехфазные двигатели со скользящим ротором; KP 0002 DE EN
.
THOMSON 32LB040S5 CH EFC031 Сервис мануал скачать, схемы, eeprom, информация о ремонте для специалистов по электронике

Sziasztok! Мэр рег вольт, долгое время, ил … мег туджа, валаки мондани, мёрт цирипель, stdby-ban a tapja?

Sziasztok!
Megint Egy Kérdés!
От того, что вы хотите, у вас есть все, что нужно, чтобы сделать это 1-1 вела Felvillanást Produkál. Отвечает за семью.Мегемон бонтоттам сzз, борзальмасан хеzз, а.з. репедт вальм мег нем.Az innen letöltött руководство szerint ez valami timer, ваги менне-е?
Nagyon megköszönném segítséget, ha mód lesz rá.
Üdv: Sándor

Tisztelt Szakik, Впервые в истории. Ha valakinek van adata róla azt megköszönném.San sajnos nem találtam. Röviden Hogy Miert: Képcső fűtése nem megy. Szeretnék tutira menni hogy szakadt vagy sem a fűtőszál. Azalatam Feeltetelezett Fűtési Пин-ан-Шокпаль КБ 21,4Vpp Mérek. Tudom ez nem trurms de azt feelételezem hogy kapna meghajtást. Képcső nyakán ez pin szakadást mutat a többi pinnel. Ebben szeretnék biztos lenni hogy tuti ez e a fűtőszál csatija. Segítségeteket köszönöm. UDV .: Гы

Sziasztok Ван эги ильен csodám., Кепа Хибас .. Меню Алат О’Кей .. Ами сэтз Ас Хибас, офигенный Резек О’Кей … Хеню гомогом мегнёмом, Мёготтэ Кэп О’Кей … Sztem a kijelző OK, csak TV bolond … St, ha VGA -ра раком, лекапксол .. стб .. Tud Valaki Ehhez Szervíz Menü Belépést ?? Találtam már 1-2 kereső embert … Vol — vol. OK. Menü 103 nem OK .. 🙁 Illetve, ha valakinek lenne hozzá eeprom tartalma, sztem az is megoldaná a problémáma … Előre is köszi Лачи UI .. Sztem a 27LB030B5 является ugyan ez.

Frigidaire FFMV162LB Схема | Manualsbrain.com

МИКРОВОЛНОВАЯ ПЕЧЬ TECH БАЛАНС

ВНИМАНИЕ

Отключение от системы электроснабжения Перед началом обслуживания блока

МЕРЫ ПРЕДОСТОРОЖНОСТИ НАБЛЮДАЕМЫЙ ДО И

ВО ОБСЛУЖИВАНИИ ИЗБЕЖАТЬ PROSSIBLE

ОБЛУЧЕНИЯ EXCESSIVE МИКРОВОЛНОВАЯ ЭНЕРГИЯ

A. Не работайте и не разрешайте печь

работать с открытой дверцей.

B. Выполните следующие проверки безопасности на всех печах

, которые нужно обслуживать, прежде чем активировать

Magnetron или другой микроволновый источник,
и при необходимости отремонтировать.

1. Блокировка работает.
2. Правильное закрытие двери.
3. Уплотнение и уплотнительные поверхности (искрение, износ

и другие повреждения.)

4. Повреждение или ослабление шарниров

и защелки.

5. Доказательства падения или злоупотребления.

C. Перед включением микроволнового питания для

проведите любой сервисный тест или осмотр в отсеках генерирующих микроволновую печь
.

проверьте магнетрон. Волновод или

линия передачи

. И полость для правильного выравнивания, целостности и соединения
.

D. Необходимо отремонтировать любые детективные или неправильно отрегулированные компоненты

в системе блокировки, мониторе, уплотнении двери
, а также в системах генерации микроволн и

. Заменил
. или скорректированы производителями.

разработан в данном руководстве до того, как духовой шкаф
выпущен владельцу.

E. Проверка утечки в микроволновой печи для проверки

Соответствие федеральному стандарту качества
должно быть выполнено на каждой печи
перед выпуском владельцу.

F. Не пытайтесь эксплуатировать духовку, если стекло двери

разбито.

Компоновка деталей

принципиальная схема

Предупреждение: Необходимо отключить питание перед обслуживанием данного устройства

Электрическая схема

Предупреждение:

ПРИМЕЧАНИЕ: перед этим обслуживанием следует отключить питание Дверь открыта

Сделано в Китае

МОДЕЛЬ НЕТ.:

ПРИМЕЧАНИЕ. Для обслуживания запасных частей используйте провод с защитным покрытием из термопластичного материала 16GA, 105 C

, за исключением проводов высокого напряжения или, как указано на специальных проводах.

1

12

RD-5

BR-22

OG-18

GN-23

GY-26

BL-25

BK-24

WH-31

32

BK-17

WH-15

T / TABLE
МОТОР

ВЕНТИЛЯТОР
МОТОР

WH-16

YW-7

WH-15

OG-18

WH000 BL-20

YW-6

BK-17

ПЕЧЬ
ЛАМПА

GN-23

BL-20

YW-19

YW-21

COOKTOP
ЛАМПА

WH000 BK-10

POWER
RELAY

WH-30

GN-28

YW-29

OG-27

BL-25

ВЕНТ
МОТОР

CAVITY
THERMOSTAT 9000

20002000

20005000000 БК-1

БК-2

БК-3

МГТ
ТЕРМОСТАТ

ДНО
ТЕРМОСТАТ

БК-4

9000 2 BK-3

GY-26

BK-24

HOOD
THERMOSTATA

OG-27

WH-31

YW-32

DOOR
SENSING
SWITCH

Y0007

Y0007000000 YW

-6

PRIMARY
SWITCH

BK-

4

BK-

8

MONITOR
SWITCH

WH

-1

-2

9

GN

-2

8

MOTOR
КОНДЕНСАТОР

BK

WH

BK

WH

GND

000000

000 WH

-1

2

OUT

IN

BK

WH

POWER
CORD

WH

-1

1

10005

10005

10005

0002 -9

BK-

8

H.V.TRANS

HVCAPACITOR

MGT ТРУБА

FA

F

HVDIODE

WH

RD

RD

RD

:

:

:

:

:

СИНИЙ

ГОД: ЖЕЛТЫЙ

РД: КРАСНЫЙ

БК: ЧЕРНЫЙ
ДГ: СЕРЫЙ

БЕЛ: БЕЛЫЙ

ОГ: ОРАНЖЕВЫЙ БР: БРАУН

ЗЕМЛЯ

VENT MOTOR

MOTOR
КОНДЕНСАТОР

ШУМОВЫЙ ФИЛЬТР

ПЕЧЬ ЛАМПЫ

H.V.CAPACITOR

МАГНЕТРОН

HVTRANSFORMER

ВЕНТИЛЯТОР МОТОР

ТЕРМОСТАТ КУЗОВА

НИЖНЯЯ
ТЕРМОСТАТ

ПЕРВИЧНАЯ
ВЫКЛЮЧАТЕЛЬ

ТИПОГРАФИЯ ПЕРЕДВИЖИТЕЛЯ

0 S0005

0 S0005

S0005 9003 S0005 9003 S0005 9003 S0005 9003 S0005 9003 S0005 9003 S0005
S0005
S0005
S0005
S0005
S0005
S0005
S0005
S0005
S0005 9003 S0005 9003 S0005 9003 S0005 9003 S0005 9003 S5 ТАБЛИЦА
МОТОР

HVDIODE

МАГНЕТРОН
ТЕРМОСТАТА

VE
N

T R

E

LAY

HI (RY5)

P

.

LOW

(RY4)

9000 9000

H

OOD

T

H

E

R

M

A

L

CUT

-O

) MO
TO
R

C

APA
C

IT

O

R

6

COOKTOP

ЛАМПА

L

000

ЛАМПА

120 В

ВЕНТИЛЯТОР

МОТОР

FM

120 В

ВКЛЮЧЕНА

МОТОР

ТТМ

12

RELAY RAYAY R000 AGNETRON

H.V.

КОНДЕНСАТОР

11

F

FA

H.V.

TRANS

HVDIODE

22 B

R

10 B

K

8 B
K

7 Y
W

18 OG

15 W

9000 H

17 B

K

6 Y
W

20 B

L

19 Y

W

21 Y

W

23 GN

29 Y

W 280005

W

30 Вт

H

5 R
D

26 GY

25 B

L

24 B

K

32 Y

W

31 W

O

H

H

H

H

ВЫКЛЮЧАТЕЛЬ (НИЖНЯЯ)

СМЫСЛ

ДВЕРЬ

КАВИТА

ТЕРМАЛЬНЫЙ

ВЫКЛЮЧЕНИЕ

(1 10/0) ​​

M

G

9000

M

A

L

9 0002 CUT

-O

UT

(1

6 0/

95

)

B

O

TTO
M

TH
E

L

CUT

-O

UT

(1

2 0/

0)

PK: РОЗОВЫЙ

GN: ЗЕЛЕНЫЙ

BL: СИНИЙ

D000000 RW: ЖЕЛТЫЙ

BK: ЧЕРНЫЙ
GY: СЕРЫЙ

WH: БЕЛЫЙ

OG: ОРАНЖЕВЫЙ BR: КОРИЧНЕВЫЙ

IN

TE

R

LO

C

U000000

PR
IM

AR
Y

S

IN

G

LE

PH
ASE

P

O

WE
R

SU
PP

SU
PP

ON
LY

FIL

TE 90 005

R

ASS’Y

FU
SE

BK

WH

GN

GN

1 B
K

2 B
K

3 B
K 3

4 9005

B 9005

C

O

N

TR

O

L P.W
.B.
A

SS ‘
Y

12 Вт

H

11 W

H

9 Вт
H

МОНИТОР

INTERLOOK

ПЕРЕКЛЮЧАТЕЛЬ

3. Измеритель сопротивления: ооо )

Обмотка накаливания

Первичная обмотка на землю

Первичная обмотка
Вторичная обмотка

Трансформатор

от розетки перед снятием

Отсоедините шнур питания

7.Нормальное повышение температуры для этой модели составляет от 9,9 до 10,3 ° C при «ВЫСОКОМ».
ПРИМЕЧАНИЕ 1. Изменения или ошибки в процедуре испытаний могут вызвать отклонения в повышении температуры.

ВЫКЛЮЧАТЕЛЬ

Компонентные тесты

Переключатель Chart

ПРОВЕРКА НА

ДВЕРЬ

ВНИМАНИЕ микроволновой радиация

ДВЕРЬ
ЗАКРЫТЬ

Первичных
блокиратор

Disconnect провода на коммутаторе Первичных блокировок.
Проверьте от общего терминала
до нормально открытого терминала.

_

+

Датчик двери
Блокировка

Отсоедините провода от переключателя блокировки датчика.
Проверка от общей клеммы и
Нормально замкнутая клемма

_

+

Монитор
Блокировка

Отсоедините провода на переключателе монитора.
Проверка от общего терминала и
Нормально закрытый терминал.

+

_

() Непрерывность
() НЕТ Непрерывность

_

+

ДВЕРИ
ОТКРЫТЫЙ

л

Н

Первичная
блокиратор
Переключатель

Дверь
Чувствительный
Переключатель

Монитор
Коммутатор

ДВЕРЬ
ЗАКРЫТЬ

L

N

Первичный
Коммутатор

Дверь
Датчик

Коммутатор

0 Монитор
Коммутатор
Предназначены для

Диаграмма Примечание: эти не являются этими показывают полную схему, они представляют положение переключателей

во время «ОТКРЫТА ДВЕРЬ» и «ЗАКРЫТА ДВЕРЬ».(только проверка целостности)

ВЫХОДНАЯ МОЩНОСТЬ МАГНЕТРОНА

ПЕРСОНАЛ НЕ ДОЛЖЕН ВОЗДЕЙСТВОВАТЬ ИЗЛУЧЕНИЕ МИКРОВОЛНОВОГО ИЗЛУЧЕНИЯ
ГЕНЕРАТОР ДРУГИХ ЧАСТЕЙ, ПРОВОДЯЩИХ МИКРОВОЛНУЮ ЭНЕРГИЮ.

Выходную мощность магнетрона можно измерить, выполнив тест на повышение температуры воды.
Необходимое оборудование:
* Два 1-литровых цилиндрических сосуда из боросиликатного стекла (наружный диаметр 190 мм)
* Один стеклянный термометр с ртутной колонкой
ПРИМЕЧАНИЕ. Проверьте напряжение линии под нагрузкой.Низкое напряжение снизит выход магнетрона.

Выполните все температурные и временные испытания с точным оборудованием.

1. Заполните стеклянную емкость объемом 1 литр водой.
2. Размешайте воду в стеклянном сосуде с помощью термометра и запишите температуру в стеклянном сосуде («T1», 10 1 C).

+

_

3. Переместив воду в другую стеклянную емкость, поместите ее в центр противня.

Установите духовку на большую мощность и работайте ровно 47 секунд.
(3 секунды включены как время удержания магнетронных колебаний)

4. По окончании нагрева снова размешайте воду термометром и измерьте температуру («Т2»).
5. Вычтите Т1 из Т2. Это даст вам повышение температуры воды. (T)
6. Выходная мощность получается по следующей формуле:

Выход

= 4,187x1000x T + 0,55xMcx (T2-T0)

42

45: время нагрева (с)

(3 секунды включены как время удержания

колебаний магнетрона.)

4.187: коэффициент для воды

1000: вода (куб. См)

T: повышение температуры (T2-T1)

T0: комнатная температура

Mc: вес цилиндрического боросиликатного стекла

Если необходимо выполнить дополнительную проверку мощности, если повышение температуры является незначительным.

ПРИМЕЧАНИЕ 2. Выходная мощность в ваттах рассчитывается путем умножения повышения температуры (шаг 5) на коэффициент

, в 91 раз превышающий градус Цельсия.

ПРЕДУПРЕЖДЕНИЕ

Травмы персонала / опасность для продукта

внешний шкаф из устройства.

Разрядите высоковольтный конденсатор

и отсоедините провода от
Первичной обмотки трансформатора

высокого напряжения перед проведением любого из
следующих испытаний.
Проведите все эксплуатационные испытания с 1 литром
воды в духовке.
Проведите тест микроволновой энергии

после выполнения любого теста или ремонта

в микроволновой печи.
Убедитесь, что все провода находятся в правильном положении
перед началом эксплуатации
Микроволновая печь.

Возьмитесь за соединители проводов, когда

снимает провода с

микроволновых деталей.

Несоблюдение этих инструкций может

привести к поражению электрическим током или другим
травмам или повреждению изделия.

Компоненты высокого напряжения

Компоненты

Вторичный
Клемма

Нить накала
Клеммы

Первичный
Клемма

Магнетрон

недорогие
метра могут указывать
Бесконечное сопротивление в
обоих направлениях

Вентиляционный двигатель

Испытание

1.Удалить провода.

2. Измерьте сопротивление. (Шкала омметра: Rx1)

Обмотка нити накала на землю

1. Снимите провода. Установите магнетронное уплотнение в правильное положение

и

. Проверьте, что уплотнение находится в хорошем состоянии.

2. Измерьте сопротивление. (Шкала омметра: Rx1)

Обмотка нити

3. Измерьте сопротивление (шкала ома: Rx1000)

Нить на шасси

1. Снимите провода.

2. Измерьте сопротивление.(Шкала омметра: Rx1000)

Клемма к клемме

Клемма к корпусу

1. Измерьте целостность цепи. Вперед (шкала омметра: Rx1000)

2. Измерьте непрерывность. Реверс (шкала омметра: Rx1000)

1. Снимите провода.
2. Измерьте сопротивление. (Шкала омметра: Rx1)

2 уровня: белый и синий провод

Результаты

Прибл. 0,334 + 2% Ом.
ок. 118,7 + 2% Ом.
0 Ом ..

Нормальный: Бесконечный.

Нормальный: Бесконечный.

Нормальный: Менее 1 Ом

Нормальный: Бесконечный.

Normal:

На мгновение указывает несколько
Ом, а затем постепенно
возвращается к бесконечности.

Нормальный: Бесконечный.

Нормальный: Непрерывность.

Ненормальный: Бесконечный.

Нормальный: Бесконечный.

Ненормальный: Непрерывность.

Приблизительно 35,2 Ом

T / Table Motor

Вентилятор

Другие испытания компонентов

1.Удалить провода.

2. Измерьте сопротивление. (Шкала омметра:

Rx1000)

Normal:

Приблизительно: 3,3 кОм

1. Снимите провода.

2. Измерьте сопротивление. (Шкала омметра:

Rx1)

Normal:

Приблизительно: 97,4 Ом

NO МОДЕЛИ. :

p / n 316495069

(C) / FMV152K; C / FFMV162L; C / FFMV164L

(C) / FMV152K; C / FFMV162L; C / FFMV164L

.

Опубликовано в категории: Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *