Расчет емкости конденсатора онлайн: Расчёт ёмкости конденсатора онлайн / Калькулятор / Элек.ру

Энергия заряженного конденсатора. Калькулятор онлайн для любых конденсаторов.

Онлайн калькулятор вычисления энергии электростатического поля заряженного конденсатора, позволит найти энергию заряженного конденсатора через напряжение, емкость и электрический заряд на одной из обкладок. Калькулятор произведет вычисление и даст подробное решение. Единицы измерения, могут включать любые приставки Си. Калькулятор автоматически переведет одни единицы в другие.

Калькулятор вычислит:
Энергию заряженного конденсатора через напряжение (разность потенциалов), до которого заряжен конденсатор и емкость.
Энергию заряженного конденсатора через напряжение (разность потенциалов), до которого заряжен конденсатор и электрический заряд на одной из обкладок
Энергию заряженного конденсатора через электрический заряд на одной из обкладок и емкость

Для записи десятичной дроби используйте точку либо запятую (например, 1.12 или 1,12), для ввода обыкновенных дробей воспользуйтесь знаком «/» (например, 1/2 или 3/4), для записи произведения двух чисел используйте знак «*» (например, 5*6), для возведения числа в целую степень (не более 100 и не меньше -100) используйте знак «^» (например, 5^-12 или 6^3), для умножения числа на число в целой степени используйте запись типа, 5*10^2 или 2.3*10^-4 или (1/2)*4^6 или 17*3^-12 и т.д.

Если значение включает приставку Си, например 5 Нанофарад, то Вы можете выбрать соответствующую приставку из раскрывающегося списка, что равносильно домножению на 10 в соответствующей целой степени, либо непосредственно домножить значение на 10 в целой степени, например 5*10^-9 Фарад.

Так же для вычисления энергии электростатического поля плоского, цилиндрического и сферического конденсаторов, можно воспользоваться калькулятором вычисления энергии заряженного конденсатора для плоского, цилиндрического и сферического конденсаторов.

Вам могут также быть полезны следующие сервисы
Калькуляторы (физика)

Механика

Калькулятор вычисления скорости, времени и расстояния
Калькулятор вычисления ускорения, скорости и перемещения
Калькулятор вычисления времени движения
Калькулятор времени
Второй закон Ньютона. Калькулятор вычисления силы, массы и ускорения.
Закон всемирного тяготения. Калькулятор вычисления силы притяжения, массы и расстояния.
Импульс тела. Калькулятор вычисления импульса, массы и скорости
Импульс силы. Калькулятор вычисления импульса, силы и времени действия силы.
Вес тела. Калькулятор вычисления веса тела, массы и ускорения свободного падения

Оптика

Калькулятор отражения и преломления света

Электричество и магнетизм

Калькулятор Закона Ома
Калькулятор Закона Кулона
Калькулятор напряженности E электрического поля
Калькулятор нахождения точечного электрического заряда Q
Калькулятор нахождения силы F действующей на заряд q
Калькулятор вычисления расстояния r от заряда q
Калькулятор вычисления потенциальной энергии W заряда q
Калькулятор вычисления потенциала φ электростатического поля
Калькулятор вычисления электроемкости C проводника и сферы

Конденсаторы

Калькулятор вычисления электроемкости C плоского, цилиндрического и сферического конденсаторов
Калькулятор вычисления напряженности E электрического поля плоского, цилиндрического и сферического конденсаторов
Калькулятор вычисления напряжения U (разности потенциалов) плоского, цилиндрического и сферического конденсаторов
Калькулятор вычисления расстояния d между пластинами в плоском конденсаторе
Калькулятор вычисления площади пластины (обкладки) S в плоском конденсаторе
Калькулятор вычисления энергии W заряженного конденсатора
Калькулятор вычисления энергии W заряженного конденсатора. Для плоского, цилиндрического и сферического конденсаторов
Калькулятор вычисления объемной плотности энергии w электрического поля для плоского, цилиндрического и сферического конденсаторов
Калькуляторы по астрономии
Вес тела на других планетах
Ускорение свободного падения на планетах Солнечной системы и их спутниках
Калькуляторы (Теория чисел)
Калькулятор со скобками
Калькулятор разложения числа на простые множители
Калькулятор НОД и НОК
Калькулятор НОД и НОК по алгоритму Евклида
Представление многозначных чисел в виде суммы разрядных слагаемых
Калькулятор деления числа в данном отношении
Калькулятор процентов
Калькулятор перевода числа с Е в десятичное
Калькулятор нахождения факториала числа
Калькулятор нахождения логарифма числа
Калькулятор квадратных уравнений
Калькулятор остатка от деления
Калькулятор корней с решением
Калькулятор нахождения периода десятичной дроби
Дроби
Калькулятор интервальных повторений
Учим дроби наглядно
Калькулятор сокращения дробей
Калькулятор преобразования неправильной дроби в смешанную
Калькулятор преобразования смешанной дроби в неправильную
Калькулятор сложения, вычитания, умножения и деления дробей
Калькулятор возведения дроби в степень
Калькулятор перевода десятичной дроби в обыкновенную
Калькулятор перевода обыкновенной дроби в десятичную
Калькулятор сравнения дробей
Калькуляторы систем счисления
Калькулятор перевода чисел из арабских в римские и из римских в арабские
Калькулятор перевода чисел в различные системы счисления
Системы счисления теория
N2 | Двоичная система счисления
N3 | Троичная система счисления
N4 | Четырехичная система счисления
N5 | Пятеричная система счисления
N6 | Шестеричная система счисления
N7 | Семеричная система счисления
N8 | Восьмеричная система счисления
N9 | Девятеричная система счисления
N11 | Одиннадцатиричная система счисления
N12 | Двенадцатеричная система счисления
N13 | Тринадцатеричная система счисления
N14 | Четырнадцатеричная система счисления
N15 | Пятнадцатеричная система счисления
N16 | Шестнадцатеричная система счисления
N17 | Семнадцатеричная система счисления
N18 | Восемнадцатеричная система счисления
N19 | Девятнадцатеричная система счисления
N20 | Двадцатеричная система счисления
N21 | Двадцатиодноричная система счисления
N22 | Двадцатидвухричная система счисления
N23 | Двадцатитрехричная система счисления
N24 | Двадцатичетырехричная система счисления
N25 | Двадцатипятеричная система счисления
N26 | Двадцатишестеричная система счисления
N27 | Двадцатисемеричная система счисления
N28 | Двадцативосьмеричная система счисления
N29 | Двадцатидевятиричная система счисления
N30 | Тридцатиричная система счисления
N31 | Тридцатиодноричная система счисления
N32
| Тридцатидвухричная система счисления
N33 | Тридцатитрехричная система счисления
N34 | Тридцатичетырехричная система счисления
N35 | Тридцатипятиричная система счисления
N36 | Тридцатишестиричная система счисления
Калькуляторы площади геометрических фигур
Площадь квадрата
Площадь прямоугольника
Калькуляторы (Комбинаторика)
Калькулятор нахождения числа перестановок из n элементов
Калькулятор нахождения числа сочетаний из n элементов
Калькулятор нахождения числа размещений из n элементов
Калькуляторы линейная алгебра и аналитическая геометрия
Калькулятор сложения и вычитания матриц
Калькулятор умножения матриц
Калькулятор транспонирование матрицы
Калькулятор нахождения определителя (детерминанта) матрицы
Калькулятор нахождения обратной матрицы
Длина отрезка. Онлайн калькулятор расстояния между точками
Онлайн калькулятор нахождения координат вектора по двум точкам
Калькулятор нахождения модуля (длины) вектора
Калькулятор сложения и вычитания векторов
Калькулятор скалярного произведения векторов через длину и косинус угла между векторами
Калькулятор скалярного произведения векторов через координаты
Калькулятор векторного произведения векторов через координаты
Калькулятор смешанного произведения векторов
Калькулятор умножения вектора на число
Калькулятор нахождения угла между векторами
Калькулятор проверки коллинеарности векторов
Калькулятор проверки компланарности векторов
Генератор Pdf с примерами
Тренажёры решения примеров
Тренажер сложения
Тренажёр вычитания
Тренажёр умножения
Тренажёр деления
Тренажёр таблицы умножения
Тренажер счета для дошкольников
Тренажер счета на внимательность для дошкольников
Тренажер решения примеров на сложение, вычитание, умножение, деление. Найди правильный ответ.
Тренажер решения примеров с разными действиями
Тренажёры решения столбиком
Тренажёр сложения столбиком
Тренажёр вычитания столбиком
Тренажёр умножения столбиком
Тренажёр деления столбиком с остатком
Калькуляторы решения столбиком
Калькулятор сложения, вычитания, умножения и деления столбиком
Калькулятор деления столбиком с остатком
Генераторы
Генератор примеров по математике
Генератор случайных чисел
Генератор паролей

Онлайн калькулятор расчета запасаемой энергии в конденсаторе

Конструктивно конденсатор представляет собой емкостной элемент, состоящий из двух параллельно расположенных пластин, пространство между которыми заполнено диэлектриком.

Устройство конденсатораУстройство конденсатора

Принцип работы конденсатора заключается в способности накапливать определенную величину заряда на пластинах и отдавать их обратно в сеть при прохождении через него переменного тока. Для цепи постоянного тока конденсатор представляет собой разрыв, но пластины все равно способны накапливать заряд. Основным параметром конденсатора является емкость, выражающаяся в Фарадах и способность накапливать заряд, выражаемая величиной энергии в Джоулях.

Если емкость конденсатора указывается на корпусе элемента и является его паспортным значением, то количество запасаемой энергии можно определить путем вычислений. Наиболее простым способом вычисления является использования онлайн калькулятора.

Для этого выполните такую последовательность действий:

  • Внесите в первую графу калькулятора значение напряжения на конденсаторе в Вольтах;
  • Укажите во втором поле величину емкости элемента в микрофарадах;
  • Внесите значения сопротивления конденсатора и нажмите кнопку «Рассчитать».

В результате онлайн калькулятор расчета запасаемой энергии в конденсаторе выдаст значение заряда и времени, расходуемого на полный заряд емкостного элемента, подключенного к цепи.

Расчет величины заряда, накапливаемого в конденсаторе, и времени, необходимого для накопления этого заряда производится по таким формулам:

Формула количества запасаемой энергии в конденсаторе

Где,

  • W – это количество запасаемой энергии в конденсаторе;
  • U – величина напряжения, приложенного к конденсатору;
  • C – емкость конденсатора.

Для определения времени, затрачиваемого на накопление этого количества запасаемой энергии, в калькуляторе используется формула: Tзар = R*C

Где

  • Tзар  — период времени, необходимый для накопления заряда, зависящий от параметров элемента;
  • R – величина омического сопротивления конденсатора;
  • C – емкость конденсатора.

 

Онлайн калькулятор расчета параллельного соединения конденсаторов

В устройствах радиоэлектроники конденсаторы представляют собой один из важнейших элементов, способный накапливать и отдавать электрический заряд. В сравнении с другими элементами, конденсатор обладает такими параметрами как емкость и сопротивление. Сопротивление конденсатора обусловлено изолирующим промежутком, который может выйти со строя из-за скачков напряжения или других аварийных процессов в сети. При необходимости заменить какой-либо конденсатор, многие радиолюбители сталкиваются с трудностью достать модель нужной емкости.

В таком случае на помощь придет правило сложения, позволяющее заменить одно устройство несколькими меньшей емкости, чтобы в суме их хватило для компенсации вышедшего со строя конденсатора. В этом месте многие не могут определить, каким способом вычисляется суммарная мощность параллельно соединенных конденсаторов. Следует отметить, что физически для схемы конденсатор представляет собой разрыв.

Параллельное соединение конденсаторовРис. 1. Параллельное соединение конденсаторов

Посмотрите на рисунок 1, это принципиальная схема параллельного подключения конденсаторов. Как видите, в этом случае одноименные выводы емкостного элемента подводятся к соответствующей точке электрической цепи. Поэтому и емкость между плоскостями двух  и более конденсаторов, соединенных между собой параллельно складывается в одно целое. Исходя из этого, суммарная емкость для параллельно включенных конденсаторов будет вычисляться по формуле:

С0 = С1 + С2 + … + Сn

Где,

  • С0 — общая емкость параллельно соединенных конденсаторов
  • С1 — емкость первого конденсатора;
  • С2 — емкость второго конденсатора.

В данном примере рассматривается ситуация, когда параллельно соединяются только два емкостных элемента, поэтому их результирующая емкость будет равна арифметической сумме емкостей обоих конденсаторов. На практике можно применять и большее число, если вам необходимо получить определенную емкость.

Чтобы рассчитать результирующую емкость при параллельном соединении 2 и более конденсаторов вы можете воспользоваться нашим онлайн калькулятором ниже.

Программа для определения емкости конденсатора по цифровой маркировке

Данная программа позволяет оперативно определить емкость конденсатора по цифровой маркировке. Определение емкости конденсатора выполняется в соответствии со стандартами IEC по таблице 1. Сам принцип определения емкости конденсатора показан на рис.1.

Таблица 1

Рис.1 – Определение емкости конденсатора

Рассмотрим на примере определение емкости конденсатора по цифровой маркировке с помощью данной программы. Выберем конденсатор с цифровой маркировкой 104, для данного конденсатора в соответствии с таблицей 1 и представленным методом определения емкости (см.рис.1), емкость составит: 104 = 10 х 104 = 100000 pF = 100 nF = 0,1 µF, для цифровой маркировки 330, емкость составит: 330 = 33 pF = 0,033 nF = 0,000033 µF. Как мы видим, программа правильно определяет емкость конденсатора по цифровой маркировке.

Если же Вам нужно определить емкость конденсатора по цветовой маркировке, воспользуйтесь программой «Конденсатор v1.2».

конденсатор по цифровой маркировке, определить емкость конденсатора по цифровой маркировке, определить емкость по цифровой маркировке, программа определения емкости по цифровой маркировке

Поделиться в социальных сетях

Благодарность:

Если вы нашли ответ на свой вопрос и у вас есть желание отблагодарить автора статьи за его труд, можете воспользоваться платформой для перевода средств «WebMoney Funding».

Данный проект поддерживается и развивается исключительно на средства от добровольных пожертвований.

Проявив лояльность к сайту, Вы можете перечислить любую сумму денег, тем самым вы поможете улучшить данный сайт, повысить регулярность появления новых интересных статей и оплатить регулярные расходы, такие как: оплата хостинга, доменного имени, SSL-сертификата, зарплата нашим авторам.

Расчёт блока питания с гасящим конденсатором + онлайн-калькулятор — radiohlam.ru

Осторожно, текст под спойлером перегружен физикой!

Итак, процессы в этой схеме будут достаточно нелинейны, поэтому при рассчётах придётся делать различные упрощения и допущения.

Для начала давайте будем считать, что ёмкость конденсатора C2 достаточна для полного сглаживания пульсаций напряжения после моста, то есть напряжение на конденсаторе C2 = const. Далее попробуем нарисовать пару графиков, — напряжение на входе моста (UM) и ток через конденсатор C1 (IC1), опираясь на график сетевого напряжения UС(t). Будем считать, что сетевое напряжение у нас изменяется по синусоидальному закону и имеет амплитуду Uca (вообще-то рисовать мы будем косинусоиду, нам так будет удобнее, но это по сути одно и то же, только косинусоида сдвинута относительно синусоиды на π/2).

Рассуждаем следующим образом: в каждый момент времени полное напряжение и полный ток в этой цепи можно описать следующими уравнениями:

UC=UC1+UМ (1), iC=iC1+iМ (2)

В момент времени t0 уравнение напряжения примет вид: Uca=UC1+UМ. Поскольку Uca — это максимальное значение сетевого напряжения, то UC1 и UМ также в этот момент должны иметь максимальные значения (здесь в логике есть небольшой провал, максимум суммы — это не всегда сумма максимумов, функции могут быть сдвинуты по фазе, но… в общем, мы потом всё экспериментально проверим).

Максимальное значение UМ равно Uвых, поскольку если бы напряжение на мосту поднималось выше, то и конденсатор C2 заряжался бы до большего напряжения (мост бы открылся и к конденсатору C2 потёк бы зарядный ток, увеличивая напряжение на нём).

Токи через конденсатор и мост в момент t0 равны нулю. Про мост я выше уже написал (если бы через него тек ток, то конденсатор C2 заряжался бы дальше), а через C1 ток не течёт, поскольку ток через конденсатор — это первая производная от напряжения, которая в точках экстремума обращается в ноль (значит когда напряжение на конденсаторе максимально — ток равен нулю).

Далее сетевое напряжение (UC) начинает уменьшаться. При этом напряжение на C1 не меняется (тока-то через мост нет, заряд на C1 не меняется), следовательно вместе с падением UC уменьшается напряжение на входе моста.

В момент, когда сетевое напряжение упадёт до значения Uca-2Uвых (момент времени t1) — напряжение на входе моста достигнет значения -Uвых (находим с помощью формулы 1), диоды моста откроются и в первичной цепи (через мост и конденсатор C1) потечёт ток. При этом напряжение на входе моста перестанет меняться (помните, мы договорились, что ёмкость C2 достаточно большая для того, чтобы полностью сгладить пульсации).

Обратите внимание, что напряжение на входе моста в этот момент равно -Uм, так что ток потечёт в обратную сторону от того направления, в котором он тёк до момента времени t0. Этот ток, поскольку он течёт в обратную сторону, начнёт перезаряжать конденсатор C1.

К моменту времени t3 напряжение в сети достигнет максимума, только с противоположной относительно момента t0 полярностью. Соответственно, для этого момента экстремума сетевого напряжения будут справедливы все те же рассуждения касательно напряжений и токов, которые мы использовали для момента t0. То есть, к этому моменту конденсатор C1 полностью перезарядится (напряжение на нём достигнет максимального значения отрицательной полярности), а ток через C1 и мост упадёт до нуля.

Далее, по мере роста сетевого напряжения, напряжение на конденсаторе C1 будет оставаться неизменным, а напряжение на входе моста будет расти.

В момент времени t4, когда сетевое напряжение вырастет до значения -(Uca-2Uвых), напряжение на входе моста достигнет значения Uвых, диоды моста откроются и в первичной цепи (через мост и конденсатор C1) снова потечёт ток. Этот ток снова будет перезаряжать конденсатор C1, но уже напряжением положительной полярности.

В момент t6 напряжение на конденсаторе C1 достигнет максимального значения положительной полярности, а ток через C1 и мост упадёт до нуля.

Далее весь цикл повторится с самого начала.

Теперь давайте вспомним закон сохранения заряда. В соответствии с этим законом за один полный цикл через конденсатор C1, мост и нагрузку должно протекать одинаковое количество заряда. Поскольку ток нагрузки у нас постоянный, то количество заряда, протекающего через нагрузку за один цикл, можно найти по формуле Q=Iн*tцикла=Iн/fc, где fc — частота питающего сетевого напряжения. Количество заряда, протекающего через конденсатор C1, будет равно площади под графиком тока (заштрихованная площадь графика IC1(t)). Остаётся только найти эту площадь, приравнять её к заряду, протекающему за один цикл через нагрузку, и выразить из полученного выражения необходимую ёмкость конденсатора C1 в зависимости от тока нагрузки.

Подробные математические расчёты можно найти под вторым спойлером.

[свернуть]

Калькулятор конденсаторов

Как работает этот калькулятор конденсаторов?

Это полезный инструмент, который вычисляет общую емкость группы конденсаторов, подключенных последовательно или параллельно. В калькуляторе конденсаторов предусмотрено две вкладки: одна для последовательного расчета, а другая — для параллельного расчета. Все, что вам нужно сделать, это выбрать правильную вкладку, ввести необходимые данные, которые представляют собой значения конденсаторов, разделенные точкой с запятой, после чего инструмент выполнит работу.

Последовательная цепь

Это электрическая цепь, в которой ток проходит через все компоненты в этой цепи, потому что компоненты расположены один за другим. Формула для общей емкости группы последовательно соединенных конденсаторов равна сумме отдельных сопротивлений конденсатора:

C всего = 1 / (1 / C1 + 1 / C2 + 1 / C3 … + 1 / Cn)

, где C total — общая емкость, а C — емкость параллельных конденсаторов.

Возьмем для примера схему с 3 последовательно включенными конденсаторами.Последовательные конденсаторы: 15; 7; 10; Суммарная емкость указанной группы конденсаторов в последовательной цепи составляет: 3,23 фарад (Ф)

Параллельная цепь

Это электрическая цепь, в которой компоненты цепи соединены между двумя точками. К каждой точке подсоединяется один из двух концов каждого компонента. Компоненты могут быть простыми элементами ветвей, которые имеют последовательно соединенные элементы.

Формула для общей емкости группы параллельных конденсаторов:

C всего = C1 + C2 + C3… + Cn

, где C total — общая емкость, а C — емкость последовательных конденсаторов.

Пример: схема с 5 параллельными конденсаторами. Параллельные конденсаторы: 4; 5; 6; 8; 9; Суммарная емкость указанной группы конденсаторов, включенных в параллельную цепь: 32,00 фарад (Ф)

Что такое конденсатор?

Это в основном устройство, которое используется для накопления электрического заряда, энергии электростатически в поле. Он состоит как минимум из двух проводников или нескольких пластин, разделенных диэлектриком или изолятором.Впервые он был известен как конденсатор.

26 марта 2015 г.

Калькулятор разряда суперконденсатора

Подробнее об этом расчете

  • Vcapmax — это максимальное значение V CC , до которого заряжается конденсатор.
  • Vcapmin — это минимальное рабочее напряжение, которое вы можете выдержать до того, как ваша схема или компонент, поддерживаемые конденсатором, перестанут работать.
  • Imax — это максимальный ток, при котором ваша цепь разряжает конденсатор.Это может быть постоянный ток или начальный линейный ток при Vcapmax. Значения Imax и Vcap используются для расчета эквивалентного сопротивления цепи, которое используется в уравнение для расчета времени резервного копирования.

RC Capacitor discgarge circuit
Рисунок 1.
Из базовой электроники формула для определения напряжения на конденсаторе в любой момент времени (для Схема разряда на рисунке 1) составляет: V (t) = E (e -t / RC )

Преобразование этой формулы для времени дает нам: t = — log (V / E) (RC)
Где :
В — конечное напряжение в вольтах (В)
E — начальное напряжение в вольтах (В)
R — резистивная нагрузка в омах (Ом)
C — емкость конденсатора в фарадах 1F = 1000 000 мкФ = 1000 000 000 нФ = 10000000000000pF
t — время в секундах

Подробнее о суперконденсаторах
Суперконденсатор, суперконденсатор, псевдоконденсатор, электрохимический двухслойный конденсатор (EDLC) или ультраконденсатор, представляет собой электрохимический конденсатор с относительно высокой плотностью энергии, обычно порядка тысяч раз больше, чем у электролитического конденсатора.Например, электролитический конденсатор типичного размера D-ячейки может иметь емкость в диапазоне десятков миллифарад. Электрический двухслойный конденсатор такого же размера может достигать нескольких фарад, что на два порядка больше. Суперконденсаторы обычно дают более низкое рабочее напряжение в диапазоне 2,5 — 20 В.
По состоянию на 2010 год более крупные двухслойные конденсаторы имеют емкость до 5000 фарад. [1] Также в 2010 году самая высокая доступная плотность энергии суперконденсатора на 30 Втч / кг [2] ниже, чем у быстрозаряжаемых литий-титанатных батарей.EDLC
имеют множество коммерческих применений, особенно в устройствах «сглаживания энергии» и устройств с мгновенной нагрузкой. Они используются в качестве накопителей энергии в транспортных средствах, а также для небольших приложений, таких как домашние солнечные энергетические системы, где чрезвычайно быстрая зарядка является важной функцией. Суперконденсаторы уже много лет широко используются в качестве резервного источника питания для схем часов реального времени и памяти в микроконтроллерах. Больше информации в Википедии здесь.

.

Последовательный и параллельный калькулятор емкости

[1] 2020/08/13 03:32 Мужчина / 30 лет / Инженер / Полезно /

Цель использования
Проверить мою собственную работу по созданию проблем для младшего технические специалисты для решения

[2] 2019/11/15 17:26 Мужчина / Уровень 20 лет / Средняя школа / Университет / Аспирант / Полезно /

Цель использования
ПОНЯТЬ
Комментарий / Запрос
ДЛЯ ПОЛУЧЕНИЯ ЗНАНИЙ

[3] 10.04.2019 15:25 Мужчина / 30 лет / Самозанятые / Очень /

Цель использования
Генератор Колпитца на УКВ, рассчитать общую емкость на двойные варикапные диоды, используемые для настройки, а также общая емкость на делителе обратной связи.

[4] 2019/03/08 07:04 Мужчина / 60 лет и старше / Пенсионер / Очень /

Цель использования
Помимо того, что я радиолюбитель, я также занимаюсь изготовлением кристаллических радиоприемников ,
Для многих конструкций требуется воздушный конденсатор емкостью 500 пФ, но все, что я смог найти, это 630 пФ.
Итак, используя ваш калькулятор, я смог увидеть, сколько емкости мне нужно было добавить последовательно, чтобы снизить емкость конденсатора 630 пФ до 500 пФ.

Отлично сработало, мои искренние благодарности.

[5] 2018/08/27 21:07 Мужской / 40-летний уровень / Другое / Очень /

Цель использования
За исключением правильных значений на двух крышках. Используется для расчета заменяемых колпачков для старой магнитофонной деки.
Комментарий / запрос
Очень полезно

[6] 2018/08/17 13:15 Мужской / 40-летний уровень / Самостоятельно занятые люди / Очень /

Цель использования
Рассчитать шину питания для ламповый усилитель

[7] 2018/08/12 01:16 Мужчина / 60 лет и старше / Офисный работник / Государственный служащий / Полезно /

Цель использования
Устранение неисправностей источника питания.У него был счетчик, который показывал максимум 10000 мкФ. Итак, мне пришлось последовательно соединить два одинаковых, чтобы проверить значение крышки фильтра.

[8] 2018/08/06 18:40 Мужчина / Уровень 20 лет / Инженер / Очень /

Цель использования
Расчет емкости для настройки антенны

[9] 2018/06/ 13 16:08 Мужской / возраст 50 лет / средняя школа / университет / аспирант / очень /

Цель использования
Два последовательно соединенных диода общей емкости для планирования антенны.

[10] 2018/05/27 01:53 Мужской / До 20 лет / Начальная школа / Неполный ученик средней школы / Очень /

Цель использования
рассчитать значение для выходных конденсаторов аудиоусилителя
.

Как найти размер конденсатора в кВАр и Ф для улучшения коэффициента мощности

Привет! С очень важным руководством … Надеюсь, вы найдете его очень полезным, потому что я уже потратил два дня на подготовку этой статьи. Я думаю, что все те, кто отправлял сообщения и электронные письма по этой теме, никогда больше не спросят, следуют ли они этим простым методам для расчета правильного размера конденсаторной батареи в кВАр и микрофарадах для коррекции коэффициента мощности и улучшения как в однофазной, так и в трехфазной сети. фазовые цепи.Думаю, это слишком …

А теперь приступим …

Рассмотрим следующие примеры.

Пример: 1

Трехфазный асинхронный двигатель мощностью 5 кВт имеет коэффициент мощности, равный 0,75. Какой размер конденсатора в кВАр требуется для повышения коэффициента мощности до 0,90?

Решение № 1 (с помощью простого табличного метода)

Мощность двигателя = 5 кВт

Из таблицы, множитель для улучшения коэффициента мощности с 0.От 75 до 0,90 составляет 0,398

Требуемый конденсатор, кВАр для повышения коэффициента мощности с 0,75 до 0,90

Требуемый конденсатор, кВАр = кВт x Таблица 1, множитель 0,75 и 0,90

= 5 кВт x 0,398

= 1,99 кВАр

И Номинальные параметры конденсаторов, подключенных в каждой фазе

1,99 / 3 = 0,663 кВАр

Решение № 2 (классический метод расчета)

Входная мощность двигателя = P = 5 кВт

Исходная мощность.F = Cosθ 1 = 0,75

Конечная P.F = Cosθ 2 = 0,90

θ 1 = Cos -1 = (0,75) = 41 ° 0,41; Tan θ 1 = Tan (41 ° 0,41) = 0,8819

θ 2 = Cos -1 = (0,90) = 25 ° 0,84; Tan θ 2 = Tan (25 ° .50) = 0,4843

Требуемый конденсатор, кВАр для улучшения коэффициента мощности с 0,75 до 0,90

Требуемый конденсатор, кВАр = P (Tan θ 1 — Tan θ 2 )

= 5кВт (0,8819 — 0.4843)

= 1,99 кВАр

И номинал конденсаторов, подключенных в каждой фазе

1,99 / 3 = 0,663 кВАр

Таблицы (размеры конденсатора в кВАр и фарадах для коррекции коэффициента мощности

0002)

Следующие таблицы были подготовлены для упрощения расчета кВАр для повышения коэффициента мощности. Размер конденсатора в кВАр — это мощность в кВт, умноженная на коэффициент в таблице для улучшения существующего коэффициента мощности до предлагаемого коэффициента мощности.Ознакомьтесь с другими примерами ниже.

Пример 2:

Генератор выдает нагрузку 650 кВт при коэффициенте мощности 0,65. Какой размер конденсатора в кВАр требуется, чтобы повысить коэффициент мощности (P.F) до единицы (1)? И сколько еще кВт может выдать генератор при той же нагрузке в кВА при улучшении P.F.

Решение № 1 (с помощью простого табличного метода)

Подача кВт = 650 кВт

Из таблицы 1, множитель для улучшения коэффициента мощности с 0.65 до единицы (1) составляет 1,169

Требуемый конденсатор, кВАр для улучшения коэффициента мощности с 0,65 до единицы (1)

Требуемый конденсатор, кВАр = кВт x Таблица 1, множитель 65 и 100

= 650 кВт x 1,169

= 759,85 кВАр

Мы знаем, что PF = Cosθ = кВт / кВА. , .or

кВА = кВт / Cosθ

= 650 / 0,65 = 1000 кВА

Когда коэффициент мощности повышен до единицы (1)

Количество кВт = кВА x Cosθ

= 1000 x 1 = 1000 кВт

Следовательно увеличенная мощность, подаваемая генератором

1000 кВт — 650 кВт = 350 кВт

Решение № 2 (классический метод расчета)

Подача кВт = 650 кВт

Оригинал P.F = Cosθ 1 = 0,65

Конечная P.F = Cosθ 2 = 1

θ 1 = Cos -1 = (0,65) = 49 ° 0,45; Tan θ 1 = Tan (41 ° .24) = 1,169

θ 2 = Cos -1 = (1) = 0 °; Tan θ 2 = Tan (0 °) = 0

Требуемый конденсатор, кВАр для улучшения коэффициента мощности с 0,75 до 0,90

Требуемый конденсатор, кВАр = P (Tan θ 1 — Tan θ 2 )

= 650 кВт ( 1,169–0)

= 759.85 кВАр

Как рассчитать требуемую емкость батареи конденсаторов в кВАр и фарадах?

(Как преобразовать фарады в кВАр и наоборот)

Пример: 3

A Однофазный 400 В, 50 Гц, двигатель потребляет ток питания 50 А при коэффициенте мощности (Коэффициент мощности) 0,6. Коэффициент мощности двигателя необходимо повысить до 0,9, подключив параллельно ему конденсатор.Рассчитайте требуемую емкость конденсатора как в кВАр, так и в фарадах.

Решение .:

(1) Найти требуемую емкость в кВАр для улучшения коэффициента мощности с 0,6 до 0,9 (два метода)

Решение № 1 (By Simple Табличный метод)

Вход двигателя = P = V x I x Cosθ

= 400 В x 50 A x 0,6

= 12 кВт

Из таблицы, множитель для улучшения коэффициента мощности с 0.От 60 до 0,90 составляет 0,849

Требуемый конденсатор, кВАр для улучшения коэффициента мощности с 0,60 до 0,90

Требуемый конденсатор, кВАр = кВт x табличный множитель 0,60 и 0,90

= 12 кВт x 0,849

= 10,188 кВАр

# 2 (классический метод расчета)

Вход двигателя = P = V x I x Cosθ

= 400 В x 50 A x 0,6

= 12 кВт

Фактическое значение P.F = Cosθ 1 = 0..6

Требуемый P.F = Cosθ 2 = 0,90

θ 1 = Cos -1 = (0,60) = 53 ° 0,13; Tan θ 1 = Tan (53 ° 0,13) = 1,3333

θ 2 = Cos -1 = (0,90) = 25 ° 0,84; Tan θ 2 = Tan (25 ° .50) = 0,4843

Требуемый конденсатор, кВАр для улучшения коэффициента мощности с 0,60 до 0,90

Требуемый конденсатор, кВАр = P (Tan θ 1 — Tan θ 2 )

= 5кВт (1.3333–0.4843)

= 10,188 кВАр

(2) Чтобы найти требуемую емкость в Фараде, чтобы улучшить коэффициент мощности с 0,6 до 0,9 (два метода)

Решение № 1 (с использованием простой формулы )

Мы уже рассчитали требуемую емкость конденсатора в кВАр, поэтому мы можем легко преобразовать ее в фарады с помощью этой простой формулы

Требуемая емкость конденсатора в фарадах / микрофарадах

C = кВАр / (2 π f V 2 ) в микрофарадах

Вычисление значений в приведенной выше формуле

= (10.188 кВАр) / (2 x π x 50 x 400 2 )

= 2,0268 x 10 -4

= 202,7 x 10 -6

= 202,7 мкФ

Решение № 2 (Простой метод расчета)

кВАр = 10,188… (i)

Мы это знаем;

I C = V / X C

Тогда как X C = 1/2 π FC

I C = V / (1/2 π FC)

I C = V 2 FC

= (400) x 2π x (50) x C

I C = 125663.7 x C

And,

kVAR = (V x I C ) / 1000… [kVAR = (V x I) / 1000]

= 400 x 125663,7 x C

I C = 50265,48 x C… (ii)

Приравнивая уравнения (i) и (ii), мы получаем

50265,48 x C = 10,188C

C = 10,188 / 50265,48

C = 2,0268 x 10 — 4

C = 202,7 x 10 -6

C = 202,7 мкФ

Пример 4

Какое значение емкости должно быть подключено параллельно с рисунком нагрузки 1 кВт при 70% отставании коэффициент мощности от источника 208 В, 60 Гц для повышения общего коэффициента мощности до 91%.

Решение:

Вы можете использовать метод таблицы или метод простого расчета, чтобы найти необходимое значение емкости в фарадах или кВАр, чтобы улучшить коэффициент мощности с 0,71 до 0,97. Поэтому в данном случае я использовал табличный метод.

P = 1000 Вт

Фактический коэффициент мощности = Cosθ 1 = 0,71

Требуемый коэффициент мощности = Cosθ 2 = 0,97

Из таблицы, множитель для улучшения коэффициента мощности с 0,71 до 0.97 составляет 0,783

Требуемый конденсатор, кВАр для улучшения коэффициента мощности с 0,71 до 0,97

Требуемый конденсатор, кВАр = кВт x Табличный множитель 0,71 и 0,97

= 1 кВт x 0,783

= 783 ВАр (требуемое значение емкости в кВАр)

Ток в конденсаторе =

I C = Q C / V

= 783/208

= 3.76A

И

X C = V / I C

,
Опубликовано в категории: Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *