Обозначение двухполюсного автомата в однолинейной схеме: Обозначение автомата на однолинейных схемах

Обозначение автомата на однолинейных схемах

Автоматический выключатель является основным элементом однолинейных схем в электрике.

В настоящее время встречается масса вариантов того, как проектировщики показывают его на планах и схемах, но далеко не всегда правильно, что нередко приводит к ошибке при сборке электрощитов или монтаже электропроводки.

Чтобы этого не произошло, необходимо следовать простым правилам отображения автоматов и их маркировки.


Графический вид автоматов стандартизирован в:

ГОСТ 2.755-87 ЕСКД «Обозначения условные графические в электрических схемах. Устройства коммутационные и контактные соединения»

ГОСТ Р МЭК 60617-DB-12M-2015 «Графические символы для схем», который идентичен международному стандарту IEC 60617-DB-12M:2012* «Графические символы для диаграмм» (IEC 60617-DB-12M:2012 «Graphical symbols for diagrams»).

Согласно этим стандартам

условное обозначение автомата на однолинейной схеме выглядит так:

Обозначение автомата на однолинейной схеме

Оно создано из нескольких графических символов ГОСТа, говорящих об определенных признаках и функциях устройства.
У однополюсного автомата их три:

— Замыкающее коммутационное устройство

— Функция выключателя

— Автоматическое срабатывание

 Пример простой однолинейной схемы электрощита, состоящего всего из одного такого однополюсного автоматического выключателя:

Однолинейная схема с автоматическим выключателем


Двух-, трех- или четырехполюсный автомат обозначается косыми черточками, размещенными на входящей линии, количество которых соответствует числу полюсов:

двух- трех- и четырехполюсный автомат на схеме

БУКВЕННЫЙ КОД

Буквенный код, которым маркируется автоматические выключатели, укзаан в ГОСТ 2.710-81 (ЧИТАТЬ PDF) Единая система конструкторской документации (ЕСКД). «Обозначения буквенно-цифровые в электрических схемах».

Согласно ему автоматы на схемах обозначаются символами — QF:

Q — Выключатели и разъединители в силовых цепях

F — Устройства защитные

За буквенным кодом пишется порядковый номер автомата.

Двухполюсный Автомат Схема Подключения — tokzamer.ru

Схемотехника двухполюсного прибора выполнена с учётом контроля и сравнения условий работы двух независимых токовых линий. Как подключить однополюсный автомат Наиболее часто используемые однополюсные автоматы надежны, легки в установке и обеспечивают необходимую защиту линии от перегрузок и короткого замыкания.



Все что выше 25 Ампер будет оказывать на него губительное воздействие, он будет чрезмерно нагреваться, от чего со временем произойдет разрушение изоляции и в следствии этого произойдет короткое замыкание.

Сначала следует вычислить мощность и ток оборудования на линии питания от автомата.
Автоматический выключатель: установка и подключение

Крепится автомат на специальную рейку DIN рейка. Достоинства и недостатки Двухполюсные автоматы обеспечивают контроль линий при однофазном питании, а также защиту оборудования, работающего в трехфазных цепях.

Данный автомат имеет четыре контакта, два подходящих, они расположены сверху.

Схемотехника двухполюсного прибора выполнена с учётом контроля и сравнения условий работы двух независимых токовых линий.

Подходящие и отходящие провода необходимо уложить таким образом, чтобы избежать излишков длинны. Поэтому покупаем выключатель с током срабатывания на 16 ампер.

Наш провод имеет двойную изоляцию, общую наружную и разноцветную внутреннюю. Применение двухполюсных автоматов Область применения двухполюсных автоматов достаточно широка.

Как правильно подключить УЗО

Для чего нужны двухполюсные автоматы

Использование двухполюсных автоматов в системе сети TN-S с нейтралью и защитным заземлением Подключение автоматов в трехфазной сети В трехфазной сети используются трех или четырех полюсные автоматы. Маркировка автоматических выключателей Маркировка автоматических выключателей На электросхемах двойной защитный автомат маркируется унифицированными обозначениями. Ввод в верхней части автомата, выход — в нижней. Что касается трехфазной сети , то в данном случае лучше всего ставить трехполюсные или четырехполюсные конструкции.


При их монтаже необходимо соблюдать основные правила. Рукоятка соединена с механизмом взвода, который, в свою очередь, двигает силовые контакты.

При номинальном напряжении магнитные потоки в катушках соленоида, наводимые равновеликими встречными токами, компенсируются.

Подключение автоматического выключателя подошло к своему логическому завершению, все провода подключены, можно подавать напряжение.

Данный автомат имеет четыре контакта, два подходящих, они расположены сверху. Она ни в коем случае не подключается через автоматический выключатель, для нее предусмотрен проходной контакт.

Мы уже подробно изучили конструкцию и основные технические характеристики автоматов, давайте рассмотрим схемы их подключения.

Чаще всего применяются однополюсные автоматы, они устанавливаются в разрыв фазного провода и в случае возникновения аварийной ситуации отключают питающую фазу от нагрузки. Крепится автомат на специальную рейку DIN рейка.
Обзор двухполюсного автоматического выключателя ЕН 2.20 от компании ElectroHouse

Читайте дополнительно: Примеры смет на электромонтажные работы

Назначение

Важно не перепутать: вход — сверху, выход — снизу, иначе автомат может выйти из строя и не будет выполнять своих функций. Видео об автоматических выключателях.

Монтируется автомат на рейку с помощью подпружиненной защелки внизу корпуса. В практике использования подобного оборудования отмечается частое применение трёх видов устройств: однополюсные, двухполюсные, трёхполюсные. Фото — двухполюсный автомат Такая реализация предусмотрена ПУЭ Правила установки электрооборудования , где сказано, что запрещается отключать фазный провод, не отключая нейтраль.


Обязательно нужно помнить что все работы по установке, подключению и монтажу необходимо производить безопасно, а значит с полным отключением и проверкой отсутствия напряжения. Раскручиваем контактные винты и вставляем провода в контакты автомата.

После счётчика с однофазным вводом монтируется двухполюсный АВ. В случае возникновения аварийной ситуации все полюса автоматического выключателя отключаются одновременно. Герметичный корпус не дает просочиться внутрь пыли и влаге. Графическое обозначение или принципиальная схема прибора.

То есть, к первой клемме прибора подключается фаза, ко второй ноль. Таким образом, преимущества: Безопасность — электрическая цепь разрывается целиком.

Особенности работы однополюсного и двухполюсного АВ


Также выбор автомата по значению длительного допустимого тока следует производить, в зависимости от характеристик кабеля проводки. Тепловой расцепитель защищает цепь от перегрузок, а электромагнитный от сверхтоков короткого замыкания.

Пример изображен на картинке. При этом обязательно соблюсти условие целостности изоляции везде, кроме клемных колодок.

В случае, когда сработало УЗО, необходимо найти неисправность в цепи. Электроток, отсекаясь на одном проводе, может остаться на другом. Обозначается она буквами латинского алфавита и наносится на корпус самого автоматического выключателя.
Подключение дифференциального автомата

Устройство автоматического выключателя

Для этого на задней части автомата предусмотрена специальная защелка. В случае срабатывания автомата напряжение остается только на верхних контактах, это полностью безопасно и предусмотрено схемой подключения автоматического выключателя.

Отмеряем необходимое количество провода заземления, откусываем лишнее, снимаем изоляцию 1 сантиметр и подключаем провод в контакт.

Чем больше сечение кабеля, тем выше допустимый длительный ток. Многополюсные автоматы собираются из нескольких однополюсных. Кстати, вот ниже данная система подключения автомата.

Выбирать автомат нужно с ближайшим большим значением номинального тока. Корпусное исполнение двухполюсного выключателя позволяет осуществить монтаж на стандартную DIN-рейку. Модифицированное устройство на три фазовых полюса с добавочным нулевым полюсом.

Автомат двухполюсный: установка, схема подключения

Они отключают ноль и фазу от защищаемого участка цепи и позволяют проводить работы по ремонту, обслуживанию или замене автоматических выключателей. Двухполюсные автоматы- в каких случаях они применяются?

Еще одно различие — возможность использования совместно со сложным оборудованием. Наличие в сердечнике магнитного потока активирует появление тока вторичной обмотки, что способствует срабатыванию механизма защиты.

Два отходящих, они расположены снизу автомата. Рекомендую материалы по теме:. Определимся с цветами подключения: синий провод — всегда ноль желтый с зеленой полосой — земля оставшийся цвет, в нашем случае черный, будет фазой Фаза и ноль подключаются на клеммы автомата, земля отдельно на проходную клемму. Снимаем второй слой изоляции с фазного и нулевого провода, примерно 1 сантиметр.

Вот так все выглядит в конечном итоге. Газы горения выводятся из внутренней части через специальный канал. Это то самое блокирующее устройство, о котором речь шла выше. Верхняя контактная пара предназначена для подключения фазного и нулевого проводов. Однако существует особый тип устройства, встающий первой преградой на пути от подстанции до объекта.
Автоматические выключатели полюсность и схемы подключения

для чего нужен и как подключить?

Автоматические системы защиты электрических цепей, пришедшие на смену плавким предохранителям, широко применяются не только в разветвлённых сетях производственных предприятий, но и в бытовых электропроводках. Автоматы компактны, надёжны, просты в управлении. Защитить электрическую проводку домашней сети можно с помощью однополюсных автоматов. Но нередки случаи, когда для полноценной защиты электрических установок необходимо устанавливать двухполюсный автомат. Иногда сложную электрическую сеть можно защитить исключительно с помощью групповых автоматов.

Особенность многополюсных автоматов в том, что они разъединяют несколько линий одновременно. Это свойство очень полезно в трехфазных цепях, так как отключение лишь одного фазного провода может привести к выводу из строя электромоторов и другого оборудования. Подобные проблемы в двухпроводной схеме решаются с помощью двухполюсников.

Устройство и принцип работы

Конструкция двухполюсника идентична автоматическому выключателю с одним полюсом. Иначе говоря, этот прибор состоит из двух однополюсных автоматов объединённых в одном корпусе. Его особенность в том, что в этих защитных устройствах в аварийных ситуациях автоматически отключаются обе защищаемые линии одновременно. В принципе, элементарный двухполюсный автомат можно сделать самому, соединив планкой намертво рычажки управления двух однополюсников.

Внимание! Заменять двухполюсный автомат двумя одиночными выключателями, работающими по отдельности, нельзя! Не стоит также использовать в качестве двухполюсного автомата одиночные выключатели, соединённые перемычкой. В конструкции двухполюсника присутствует ещё блокировочный механизм, которого нет в «усовершенствованном» устройстве из однополюсных автоматов.

Для понимания устройства и принципа работы двухполюсного автоматического выключателя достаточно разобраться в строении автомата с одним полюсом. Самый простой такой прибор состоит из биметаллической пластины и конструкции механизма взвода и расцепления. Кстати устаревшие автоматы именно так и выглядели. Устройство такого выключателя изображено на рисунке 1.

В ситуациях, равносильных короткому замыканию или при длительных перегрузках в однофазных цепях биметаллическая пластина нагревается и вследствие деформации действует на рабочий рычаг конструкции. Срабатывает механизм защитного отключения и цепь разрывается.

Автоматический выключатель старого образцаРисунок 1. Автоматический выключатель старого образца

Принцип работы этого устройства очень простой. Когда величины номинальных токов превысят допустимые параметры, тепловой расцепитель приводит в действие подвижный контакт и цепь разрывается. Механизм отключения питания может сработать в двух случаях – при перегрузке или вследствие КЗ. Для подключения питания необходимо устранить причину возникновения токов срабатывания, а потом нажатием рычага управления включить автомат.

Схема работы проста и надёжна. Однако у неё есть существенный недостаток: автомат не реагирует на токи утечки, поэтому не может защитить от поражения током или предупредить загорание проводки в случае искрения. С целью полной защиты требуются дополнительные устройства.

Упомянутого недостатка лишены современные двухполюсные пакетники. На рисунке 2 изображено устройство такого автоматического выключателя. В его конструкции есть одна важная деталь – электромагнитный расцепитель. Такие двухполюсные устройства сочетают в себе функции обычных дифференциальных автоматов-выключателей и устройства защитного отключения (УЗО).

Устройство современного автоматаРисунок 2. Устройство современного автомата

Благодаря электромагнитному расцепителю  механизм взвода и расцепления двухполюсного автомата реагирует на токи утечки. Это то самое блокирующее устройство, о котором речь шла выше.

Принцип действия электромагнитного расцепителя.

По двухпроводной линии ток проходит в двух противоположных направлениях – по фазному проводнику в одну сторону, а по нулевому – в другую. При номинальном напряжении магнитные потоки в катушках соленоида, наводимые равновеликими встречными токами, компенсируются. Поэтому результирующий магнитный поток нулевой.

Но стоит появиться утечке, как баланс нарушится, и возникший магнитный поток втянет стержень в соленоид. Он, в свою очередь, приведёт в действие рычаги механизма взвода и расцепления. Двухполюсный автомат разомкнёт 2 полюса, не зависимо от того, в каком из проводников появилась утечка или короткое замыкание. Произойдёт срабатывание УЗО, как реакция на изменение параметров дифференциальных токов.

Назначение

В случае одноконтурной электрической схемы, часто используемой в электрификации домов, не целесообразно применение двухполюсных автоматов для защиты сети. Эту задачу успешно решают однополюсные выключатели, так как нет особой необходимости в одновременном отключении различных сегментов цепи. В однофазной проводке с заземлённой нейтралью, когда все нулевые проводники закорочены на нулевые шины, также можно обойтись одиночными выключателями.

Совсем другая ситуация возникает в случаях, когда некое оборудование не может быть подключено в одну общую цепь. Например, если для питания группы электрических приборов используется трансформатор, то без двухполюсного автомата уже не обойтись. Объяснение простое – на выходе трансформатора нет фазы и нуля. Отсечение электрического тока на одном из проводов не исключает наличия напряжения на другом. Только одновременное отключение двух полюсов обеспечивает безопасность оборудования.

Установка двухполюсника позволяет совместить в одном устройстве задачи дифференциальных защит и УЗО. При этом уже не требуется устанавливать отдельные дискретные устройства защитного отключения.

По аналогичному принципу работают четырехполюсные автоматы, работающие в трехфазных сетях с использованием нулевых проводов. Трехполюсными автоматами осуществляется защита трехфазных нагрузок от КЗ.

Кстати, ПУЭ не запрещает использование двухполюсных выключателей в качестве вводных автоматов. Их можно также применять для защиты групповой и индивидуальной нагрузки. Но, ни в коем случае через это устройство нельзя подключать провода заземления. Помните, что разрыв РЕ-провода допускается только при извлечении штепселя из розетки.

Достоинства и недостатки

Двухполюсные автоматы обеспечивают контроль линий при однофазном питании, а также защиту оборудования, работающего в трехфазных цепях.

К достоинствам этих устройств можно отнести:

  • надёжную защиту домов, офисов и производственных помещений от сетевых перенапряжений;
  • возможность контроля мощности отдельных электроприборов и установок;
  • лёгкость монтажа и обслуживания. Двухполюсные АВ идеально подходят для выполнения разветвлений и структурирования проводки в электроснабжении помещений.

Конечно, главное преимущество в том, что двухполюсный автомат одновременно обесточивает два проводника, не зависимо от того, в котором из них произошла авария. Это гарантирует полное отсутствие напряжения в защитных проводниках.

Из недостатков можно отметить:

  • существование вероятности пробоя кабеля при одновременном включении двух нагруженных линий;
  • в редких случаях, при выходе из строя теплового расцепителя, возможно произвольное отключение питания даже в режиме номинальных напряжений;
  • необходимость подбора двухполюсных автоматов в соответствии с расчётными параметрами сети. Если чувствительность выключателя будет завышена – он без веских причин будет часто срабатывать, а при заниженном показателе скорости реакции на нестандартную ситуацию, автомат не заметит перегрузки сети.

Благодаря уникальным преимуществам применение двухполюсных выключателей оправдано даже с учётом существующих вероятностей проявления указанных недостатков.

Установка и схемы подключения

Монтаж устройств на дин-рейку выполняется очень просто. Для этого предусмотрены специальные захваты (защёлки) с тыльной стороны автомата (Рис.3). Подсоединение проводов к клемме прибора тоже не вызывает трудностей: провода легко зажимаются болтами на клеммах прибора. По умолчанию к верхним клеммам подключают провода ввода, а к нижним – вывода.

Крепление автоматовРисунок 3. Крепление автоматов

Общепринятая схема подключения выглядит следующим образом:

  1. Перед счётчиком устанавливают выключатель вводной AB.
  2. После счётчика с однофазным вводом монтируется двухполюсный АВ.
  3. Если предусмотрен трехфазный ввод, то используют трёхполюсный или четырёхполюсный автоматический выключатель, в зависимости от схемы подключения нулевых проводников.

В сложных разветвлённых схемах может быть несколько двухполюсников, после которых, на каждую ветвь устанавливается ещё по одному однополюсному автомату. Пример такой схемы с общей нулевой шиной представлен на рисунке 4. Обратите внимание, что для фазного ввода использован двухполюсный автомат. На этой схеме нет других вводных устройств.

Схема включения автоматических выключателейРис. 4. Пример схемы включения автоматических выключателей

Как выбрать двухполюсник?

Для того чтобы автоматический выключатель в полной мере обеспечивал необходимую защиту, необходимо взвешено подойти к его выбору. Главное не ошибиться с номиналом. Для этого необходимо знать номинальную нагрузку, которую планируете подключить к прибору.

Ток в цепи, защищаемой автоматом, вычисляем по формуле: I = P / U, где P – номинальная нагрузка, а U – напряжение в сети.

Например: если к прибору буден подключен холодильник на 400 Вт, электрочайник на 1500 Вт и две лампочки по 100 Вт, то P= 400 Вт+1500 Вт+ 2×100= 2100 Вт. При напряжении 220 В максимальный ток в цепи будет равен: I=2100/220= 9.55 A. Ближайший к этому току номинал автомата – 10 А. Но при расчётах мы не учли ещё сопротивления проводки, которое зависит от типа проводов и их сечения. Поэтому покупаем выключатель с током срабатывания на 16 ампер.

Приводим таблицу, которая помогает определить мощность сети для учёта при расчётах силы тока.

Сила тока1234568101620253240506380100
Мощность однофазной сети020407091,11,31,72,23,54,45,578,81113,917,622
Сечения проводов

 

 

медных

 

 

1111111,51,51,52,5461010162535
алюминиевых2,52,52,52,52,52,52,52,52,546101616253550

Пользуясь таблицей можно с большой точностью вычислить необходимые параметры двухполюсного автомата.

Что касается магазинов, где можно их приобрести, ориентируйтесь на цены и на ассортимент продукции. Из списка производителей можем порекомендовать, например, бренд Legrand.

Список использованной литературы

  • Кузнецов Р. С. «Аппараты распределения электрической энергии на напряжение до 1000В» 1970
  • Буль Б.К. «Основы теории электрических аппаратов» 1970
  • Е.Д. Тельманова «Электрические и электронные аппараты» 2010

Обозначение дифавтоматов на однолинейной схеме

Для автоматического выключателя дифференциального тока (АВДТ или дифавтомат) нет утвержденного в ГОСТ или СП, индивидуального графического и буквенного обозначения.

Даже в современном ГОСТ Р МЭК 60617-DB-12M-2015, содержащем в себе все условные графические знаки для электрических схем, который введен в действие в 2016г, не представлен АВДТ.


Поэтому, обозначение дифавтомата на электрических схемах, формируется согласно ГОСТ 2.702-2011 «Единая система конструкторской документации (ЕСКД), который разрешает самим создавать схематические обозначения оборудования или устройств, если они не определены в других нормативах, стандартах и правилах.

Согласно нему, дифавтомат на однолинейной схеме показывается следующим образом:

Условное обозначение дифавтомата на схемах

Как и сам дифференциальный автомат, его схематический вид, образуется слиянием обозначений АВ (автоматического выключателя) и УЗО, сочетая в себе их графические признаки.

Так как государственные стандарты не регламентируют вид дифавтомата, на всех планах, в обязательном порядке, добавляется блок с условными графическими обозначениями (УГО), в котором даётся расшифровка и пояснение использованным символам.

Буквенное обозначение

 

Правильная буквенная маркировка дифавтомата на схемах — QF, только она полностью соответствует ГОСТ 2.710-81 ЕСКД. При этом, такое буквенное обозначение не даёт точного определения функций устройства, не раскрывает принципа действия.

Более того, согласно того же стандарта, маркируются и АВ, и устройства защитного отключения- УЗО. Это часто вводит в заблуждение электриков или электромонтажников, поэтому проектировщики в электропроектах нередко самостоятельно вводят маркировки: Q, QD, QFD, QDF и т.д.


Однолинейная схема с дифавтоматом и его буквенная маркировка


Различие УЗО и ДИФАВТОМАТА на схемах


Из-за внешнего сходства дифавтомата и УЗО на однолинейных схемах, многие их путают, хотя, при прямом сравнении, видны явные различия:


отличие обозначений дифавтомата и узо на схемах


У автоматического выключателя дифференциального тока, в отличии от УЗО, добавлены дополнительные графические знаки, присущие модульным автоматам, это — автоматическое срабатывание и функция выключателя (отмечены на изображении выше).

Функция выключателя часто вообще не показывается проектировщиками электросхем, они оставляют лишь знак автоматического срабатывания, поэтому, лучше всегда ориентируйтесь именно на него и тогда точно не перепутаете эти устройства.

Обозначение автомата на электрической схеме


Провод — эффективный проводник тока.


Провод без соединения обозначается «методом горба».


Провод с соединением — указывает на физическую связь проводов, которая позволяет проходить току.


Постоянный ток (DC) — электрический ток, который с течением времени не изменяется по величине и направлению.


Переменный ток (AC) — электрический ток, который с течением времени изменяется по величине и направлению.


Батарея — поставка электроэнергии от одной или нескольких батарей.


Ячейка — ограниченная поставка электроэнергии.


Заземление — 0 вт или заземление в зависимости от схемы.


Диод — ограничивает направление тока, чтобы он тёк только в одном направлении.


Светодиод (LED) — полупроводниковый диод, излучающий некогерентный свет при пропускании через него электрического тока.


Фотодиод — полупроводниковый диод, обладающий свойством односторонней фотопроводимости при воздействии на него оптического излучения.


Стабилитрон (диод Зенера) — полупроводниковый прибор, предназначенный для стабилизации напряжения.


Резистор — пассивный элемент электрической цепи, предназначенный для сопротивления электрическому току.


Переменный резистор — переменный резистор в реостатном включении.


Переменный резистор с тремя выводами, используется с целью ограничения тока в электрической цепи.


Подстроечный резистор — подстроечный резистор в реостатном включении.


Термистор — полупроводниковый резистор, в котором используется зависимость электрического сопротивления полупроводникового материала от температуры.


Свето-зависимый Резистор — резистор, сопротивление которого уменьшается или увеличивается в зависимости от интенсивности падающего на него света.


Нагреватель — конвертированная электроэнергия в высокую температуру.


Плавкий предохранитель — простейшее устройство для защиты электрических цепей от перегрузок и токов короткого замыкания.


Лампа световая — электроэнергия конвертированная в свет.


Лампа, Индикатор — электроэнергия конвертированная в свет с целью предупреждения.


Мотор — электроэнергия конвертированная в механическую энергию.


Катушка индуктивности (Катушка, Соленоид) — катушка из свёрнутого изолированного проводника, который создает магнитное поле, когда ток проходит через него.


Осциллограф — прибор, который показывает форму напряжения в течение времени.


Гальванометр — прибор, который замеряет очень маленькие переменные и постоянные токи (меньше чем 1mA).


Вольтметр — прибор для измерения эдс или напряжений в электрических цепях.


Омметр — прибор непосредственного отсчета.

Условные обозначения в электрических схемах (гост 7624-55)

Его главная функция – определение активных сопротивлений электрического тока.


Амперметр — прибор для измерения силы тока в амперах.


И — логическая цепь, которой требуется два входа, если оба высоки, тогда и выход высок, во всех остальных случаях производит низкое. (00=0 01=0 10=0 11=1)


Или — логическая цепь, которой требуется два входа, если любой или оба высоки, тогда и выход высок, во всех остальных случаях производит низкое. (00=0 01=1 10=1 11=1)


НЕ-И — логическая цепь, которой требуется два входа и приводит к противоположным результатам И. (00=1 01=1 10=1 11=0). Интересное примечание, на Вашем компьютере центральный процессор (CPU) построен полностью из ворот.


Не-ИЛИ — логическая цепь, которой требуется два входа и приводит к противоположным результатам ИЛИ. (00=1 01=0 10=0 11=0).


Не — логическая цепь, которой требуется один вход, если он высок, тогда выход низок. (0=1 1=0).


Xor — логическая цепь, которой требуется два входа, если любой, но не оба высоки, тогда и выход высокий, во всех остальных случаях производит низкое. (00=0 01=1 10=1 11=0)


NXOr — логическая цепь, которой требуется два входа и приводит к противоположным результатам XOR. (00=1 01=0 10=0 11=1)


Выключатель (SPST) — электрический коммутационный аппарат, служащий для замыкания и размыкания электрической цепи.


Переключатель Двух Путей (SPDT) — электрический коммутационный аппарат, который позволяет току течь по одному из двух путей.


Выключатель (нажать, чтобы соединить) — выключатель, который позволяет току течь только в замкнутом положении.

Возвратится к разомкнутому положению.


Выключатель (нажать, чтобы разорвать) — выключатель, который позволяет току течь только в замкнутом положении. Возвратится к замкнутому положению.


Выключатель, Двойной вкл\выкл (DPST) — двухполюсный выключатель.


Выключатель, Реверсивный (DPDT) — выключатель, который позволяет току течь от двух проводов по двум различным путям.


Диск — выключатель, который позволяет току течь по многократным путям от одного источника.


Реле — устройство, предназначенное для замыкания и размыкания различных участков электрических цепей при заданных изменениях электрических или неэлектрических входных величин.


Транзистор NPN — биполярный транзистор. Состоит из трёх различным образом легированных полупроводниковых слоёв (эмиттера E, базы B и коллектора C). В данном случае NPN-транзистор пропускает ток от коллектора к эмиттеру.


Транзистор PNP — биполярный транзистор. Состоит из трёх различным образом легированных полупроводниковых слоёв (эмиттера E, базы B и коллектора C). В данном случае PNP-транзистор пропускает ток от эмиттера к коллектору.


Фото Транзистор — используется, как усилитель тока или выключатель, который задействуется светом.


Конденсатор, Постоянный — устройство для накопления заряда и энергии электрического поля.


Конденсатор, Полярный — электролитический конденсатор, у которого имеется полярность подключения.


Конденсатор, Подстроечный — конденсатор переменной ёмкости. По сути, он является переменным конденсатором, не рассчитанным на частое вращение.


Конденсатор, Переменный — его ёмкость может изменяться в заданных пределах.


Преобразователь Пьезо (Piezo) — устройство, которое преобразовывает электроэнергию в звук.


Трансформатор — две или более индуктивных обмотки, предназначенных для преобразования системы (напряжений) постоянного или переменного тока в одну или несколько других систем (напряжений), без изменения частоты.


Громкоговоритель — аппарат, который преобразовывает электроэнергию в звук.


Наушник(и) — аппарат, который преобразовывает электроэнергию в звук.


Микрофон — аппарат, который преобразовывает электроэнергию в звук.


Усилитель — усилитель электрических сигналов.


Звонок — аппарат, который преобразовывает электроэнергию в звук.


Гудок — аппарат, который преобразовывает электроэнергию в звук.


Антенна — передает или получает радио-сигналы.

Обозначение УЗИП на схемах

Устройства защиты от импульсных перенапряжений, сокращенно УЗИП, оберегают электрооборудование от грозовых и коммутационных импульсных токов, например, при удаленном ударе молнии.

Они применяются не только в промышленности, часто используются и в бытовых схемах электроснабжения, при строительстве частных домов.


Графическое обозначение УЗИП


Общий вид УЗИП для схем, регламентируется в ГОСТ Р МЭК 61643-12-2011 (Читать PDF) «Устройства защиты от импульсных перенапряжений в низковольтных силовых распределительных системах. Принципы выбора и применения», согласно которому, условное обозначение выглядит следующим образом (см. изображение ниже):


Обозначение УЗИП на схеме


Современные модульные ограничители импульсных перенапряжений, устанавливаемые в электрических щитах (ВРУ, ЩС и т.д.), в зависимости от типа, включают и другие дополнительные средства защиты.

Например, в одном корпусе содержат как ограничивающие напряжение, так и ток компоненты. В таких случаях, допустимо к стандартному схематическому обозначению, добавлять и маркировку соответствующих контролируемых величин, например, так:


Схематическое отображение устройств защиты от импульсных перенапряжений


Также нередко на схемах, где применяется УЗИП, показывается графическое обозначение основного элемента, на котором он построен — Варистора, Разрядника или Газонаполненного разрядника:

Обозначение УЗИП на варисторах, простых и газонаполненных разрядниках

Каждый из представленных видов защиты имеет свои плюсы и минусы, поэтому, информация из однолинейной схемы о том, какое оборудование установлено, бывает очень важна. Дополнительно, об этом сообщает и маркировка УЗИП на схемах буквенным кодом.


Буквенная маркировка


Для устройств защиты от импульсных перенапряжений отдельного буквенного кода нет. Поэтому, на однолинейных схемах, принято маркировать УЗИП согласно ГОСТ 2-710-81 (ЧИТАТЬ PDF) «Обозначения буквенно-цифровые в электрических схемах» двумя возможными кодами, в зависимости от основного компонента, используемого в конкретной модели УЗИП:


FV – на разрядниках

RU – на варисторах

На изображении ниже, пример правильного обозначения узип на однолинейной схеме простейшего электрического щита:


Однолинейная схема электрического щита с УЗИП


На схеме показано устройство в которое, после вводного двухполюсного автомата, подключен нулевой и фазный проводники, а третяя клемма — соединена с шиной защитного заземления электрощита PE.

обозначение трехфазного узип на схеме

Для трехфазных УЗИП допустимо использовать стандартное, представленное выше обозначение , дополнительно показывая количество подключаемых проводников.

Но встречаются схемы, на которых трехфазные УЗИП, показаны в виде трех отдельных элементов, например варисторов, объединенных в одном корпусе. Оба этих вида правильные, но для удобства, простоты и лучшей читаемости чертежа, лучше пользоваться первым вариантом.

обозначение трехфазного узип на схеме

Маркировка автоматических выключателей: класс токоограничения

Автоматические выключатели на электрическом щитке внешне заметны почти каждому. Но важным условием успешной эксплуатации являются размещенные на поверхности маркировки. Маркировка автоматов используется всеми производителями. Эти данные непосредственно влияют на соблюдение условий работы устройств.

Какие обозначения размещаются на корпусе

Маркировка, наносимая на корпус каждого устройства, включает набор цифр, схем, букв, специальные символы. Разметка выполняется нестираемой краской и находится на видимой части. Это требуется для доступности при работе после установки на распределительном щитке с подключенными проводами.

 Модель автоматического выключателя

Важно! Для проверки маркировки снимать устройства с дин-рейка и отключать не потребуется.

Каждый завод-изготовитель использует собственные обозначения. Большая часть специалистов в работе сталкивается с видом расположения знаков на бытовых модульных автоматах, понять которые помогает расшифровка символов и знаков.

Вне зависимости от компании, где было изготовлено устройство, на корпус наносятся единые данные:

  • наименование производителя, наносимое на самом верху;
  • указание модели (серия) с написанием букв и цифр серии устройства в соответствии с данными завода-производителя;
  • номинальный ток, характеристика отключения, обозначаемая буквой латинского алфавита «В», «С», «D», «K», «Z»;
  • данные о номинальном напряжении, показывающего максимальное значение проходящего через автомат без выключения при температуре окружающей среды 30 °С, при котором формируется своеобразный щит для повышенной нагрузки;
  • показатели номинальной отключающей способности, которой обладает каждый электроавтомат;
  • параметры класса токоограничения автоматического выключателя;
  • панель информации о коммутационной схеме.
 Порядок обозначений на наружной панели устройства

Обратите внимание! Параметры производители указывают в обязательном порядке. В общем списке есть некоторые показатели, учет данных маркировки которых является особенно значимым для бесперебойной эксплуатации.

Данные о производителе

Именно эта информация указывается в первой строке маркировки. Эти данные удобны покупателю и будущему пользователю перспективой найти удобную для себя модель. Это определяется или в зависимости от уже существующего опыта применения или на основании анализа описаний на специализированных сайтах.

Параметры технических особенностей

Подробная информация о технических особенностях выбранного типа изделия указывается в большинстве случаев в линейке, расположенной непосредственно под наименованием фирмы. Она находится в месте, где устанавливается щитковый выключатель.

Главной задачей автоматических выключателей становится способность отключения в автоматическом режиме при нарушении нормального хода и уровня подачи тока и действия электроцепи. Это необходимо для успешного контроля стабильной работы, препятствующей поломкам и нарушениям работоспособности электрических приборов, устройств и оборудования на производстве и в быту. Такие параметры указываются на любых типах автоматических выключателей вне зависимости от особенностей эксплуатации в зависимости от типа расцепителей.

Особенности расцепителей

Производители выпускают следующие варианты:

  • предусматривающие отключение вручную — механические;
  • срабатывающие при возникновении перегрузки — тепловые;
  • реагирующие на появление короткого замыкания — электромагнитные.

Еще одним вариантом разделения становится количество полюсов подключения:

  • применяемые для использования в цепи с одной фазой — однополюсные;
  • когда требуется отключать два полюса одновременно, устанавливаются двухполюсные;
  • при необходимости одномоментно обеспечивать защиту трехфазной цепи или трех однофазных колонок — трехполюсные;
  • в схемах с разделением по принципу «звезда с выделенной нулевой точкой» с раздельным защитным и рабочим нулем — четырехполюсные.

Конструкция автомата

Каждый АВ включает в свою конструкцию расположенные на корпусе внешние (открытые) и внутренние элементы.

Открытые

В этот перечень входит рычаг ручного управления. Он заметен сразу, так как, как правило, окрашивается в яркий или контрастный цвет. На противоположной от рычага стороне устанавливаются клеммы, к которым подключается проводка. Некоторые производители предпочитают делать их закрытыми.

Обратите внимание! Все детали АВ выполняются из ПВХ пластика, отливающегося низкой теплопроводностью.

Внутренние

Большая часть элементов АВ размещается внутри корпуса. Это токонесущие и рабочие части устройства. К таким частям относятся:

  • функционирующие в паре неподвижные и подвижные силовые контакты, коммутирующие выходной и входной контакты, размыкающие цепь при возникновении внештатных для деятельности автомата ситуациях;
  • соединенные с управляющим рычагом механизмы ввода и расцепления;
  • работающие в паре подвижный сердечник и катушка, представляющие собой электромагнит и якорь, способные разомкнуть в случае короткого замыкания цепь;
  • дугогасительная камера моментально гасит дуговой разряд, возникающий случае размыкания дуговой контактной пары;
  • биметаллическая пластина теплового расцепителя, размыкающего цепь при возникновении повышенных нагрузок.

Включенные в конструкцию элементы обеспечивают возможность использования АВ при работе в нескольких режимах:

  • нормальный;
  • короткое замыкание;
  • перегрузка.

Маркировка моделей позволяет оценивать возможности используемого автоматического переключателя и его уровень готовности к работе в каждом из представленных режимов. Оценку упрощает маркировка, нанесенная на каждую модель.

Важно! Для определения оптимального вида устройства достаточно понимать представленные показатели и знать, как расшифровывается маркировка автоматов.

Токовая характеристика

Бытовые варианты чаще всего относятся к категориям «B», «C», «D», «K» и «Z» и показывают необходимость применения для защиты в первую очередь потребителя при эксплуатации устройств с применением электроники и индуктивной нагрузки. Маркировка «С» устанавливается на наиболее распространенных в быту моделях, становясь показателем для большей части профессиональных электриков, рассматривающих класс токоограничения автоматического выключателя при установке.

Такие устройства успешно защищают электропроводку при случающихся перепадах уровня напряжения.

Обратите внимание! Категории «B» устанавливаются на изделиях, продающихся в специализированных торговых точках. Часто они выполняются по спецзаказу.

Параметры номинального напряжения

Размещаются сразу после буквенного обозначения токовой характеристики. Она показывает номинал автоматического выключения. Максимальные параметры рассчитываются с учетом температуры окружающей среды в 30 °С. Именно при таком параметре модель со стандартным номинальным напряжением в 16 А выдерживает нагрузку без автоматического выключения.

 Маркировка токов автоматического выключателя, расшифровка

Обратите внимание! В случае использования оборудования при более низких температурных показателях автоматическое срабатывание происходит несколько позже. Соответственно, превышение приводит к быстрому срабатыванию автомата для отключения.

Срабатывание в зависимости от кратности перегрузки возникает при превышении автомата от 13 до 55 %. К нему приводит образующийся с сети сверхток, на который и реагирует система автоматического расцепителя. Реакция исправного автомата происходит в течении 0,01-0,02 сек. с момента появления сверхтока, это препятствует началу плавления проводки.

Параметры номинального напряжения

Обозначаются в В/V (вольтах). В зависимости от модели они могут быть переменными и постоянными. Указание маркировки позволяет определить типы сетей использования устройства.

Информирование о предельном токе напряжения

Часто маркировку называют отключающей способностью устройства. С её помощью показана способность пропустить ток высокого напряжения без отключения и поломок.

Важно! Уровень коммутационной способности, позволяющий пропускать сверхтоки и продолжать работать, отличается у разных автоматов.

Предельное значение составляет 4000, 6000, 10000.

Информирование о классе токоограничения

Цифры, расположенные сразу под данными о предельном токе, показывают класс токоограничения. Риск образования сверхтоков основывается на появлении при их появлении тепловой энергии, провоцирующей расплавление проводки. Избежать этого позволит автоматическое отключение при достижении определенных значений токов при коротком замыкании. Оно исключает возможность току достигнуть максимальных значений, ограничивая возможную продолжительность короткого замыкания (КЗ).

 Схема однополюсного АВ

Предусмотрена следующая классность в ограничении продолжительности:

  • класс 1. Маркировка на корпусе не ставится. Показывает временную продолжительность КЗ более 10 мс;
  • класс 2. КЗ может продолжаться от 6 до 10 мс;
  • класс 3. Самый быстрый, составляющий от 2,5 до 6 мс.

Дополнительные маркировки

Часть производителей указывает на корпусе схему подключения. Указываются данные электрической цепи с информацией о электромагнитном и тепловом расцепителях. Выполняется в виде схемы с указанием подключения проводов с маркировкой контактов.

У самых часто используемых потребителями моделей верхний контакт маркируется «1», а нижний «2». К верхнему выполняется подключение питающего провода. На нижний выводится нагрузка.

 Варианты схем АВ с разным числом полюсов

Обратите внимание! При выборе двухполюсного автомата такие обозначения наносятся как «1», «3» верхний и «2», «4» нижний. Профессиональные модели могут быть трехполюсными и четырехполюсными. В такой ситуации подключение нулевого проводника обозначается «N».

Указание артикула

Еще одним обозначением на корпусе становится обозначение артикула, включающего информацию об устройстве, так называемый QR-код. Маркировка помогает легко и в короткий срок находить модель устройства, например, на сайте производителя для получения информации об эксплуатации или выполнении ремонта.

Также на многих моделях устанавливается индикатор. Он позволяет сразу определить, работает в настоящий момент устройство от сети или оно по разным причинам обесточено.

Автоматический выключатель удобен в повседневном использовании и прост в самостоятельном применении. Графические маркировки помогают покупателям выбрать оптимальную модель для дома и офиса. Установка автоматического выключателя сохраняет работоспособность приборов и устройств, подключенных к электроэнергии даже в районах с высоким риском возникновения перепадов питания и коротких замыканий.

Теория двух реакций — синхронная машина с явным полюсом

Теория двух реакций была предложена Андре Блонделем . Теория предлагает разделить данные МДС якоря на две взаимно перпендикулярные составляющие, одна из которых расположена вдоль оси ротора явного полюса. Он известен как компонент прямой оси или оси d . Другой компонент расположен перпендикулярно оси выступающего полюса ротора. Он известен как квадратурная ось , или , компонент оси q .

Компонент оси d якоря MMF F a обозначен F d , а компонент оси q — F q . Компонент F d намагничивает или размагничивает. Компонент F q приводит к эффекту перекрестного намагничивания. Если Ψ — это угол между током якоря I a и напряжением возбуждения E f и F a — это амплитуда MMF якоря, то

TWO-REACTION-THEORY-EQ-1

Синхронная машина с явным полюсом Теория двух направлений

В синхронной машине с цилиндрическим ротором воздушный зазор является равномерным.Полюсная структура ротора явнополюсной машины делает воздушный зазор очень неоднородным. Рассмотрим 2-полюсный ротор с явными полюсами, вращающийся против часовой стрелки внутри 2-полюсного статора, как показано на рисунке ниже.

two-reaction-theory-fig-1 Ось вдоль оси ротора называется прямой или d-осью. Ось, перпендикулярная оси d, называется квадратурой или осью q. Путь потока на прямой оси включает два небольших воздушных зазора и является путем с минимальным сопротивлением. Путь, показанный на приведенном выше рисунке как ϕ q , имеет два больших воздушных зазора и является путем с максимальным сопротивлением.

Поток ротора B R показан вертикально вверх, как показано на рисунке ниже.

Two reaction theory of salient pole fig 2 Поток ротора индуцирует в статоре напряжение E f . Ток якоря статора I a будет течь через синхронный двигатель, когда к нему подключена нагрузка с отстающим коэффициентом мощности. Этот ток якоря статора I a отстает от генерируемого напряжения E f на угол.

Ток якоря создает магнитодвижущую силу статора F s .Этот MMF отстает от I a на угол 90 градусов. MMF F S создает магнитное поле статора B S в направлении Fs. MMF статора делится на две составляющие, а именно на составляющую F d прямой оси и составляющую F q квадратурной оси.

Если,

  • ϕ d — поток по прямой оси
  • Φ q — поток по квадратурной оси
  • R d — сопротивление прямой оси магнитного потока

Следовательно

TWO-REACTION-THEORY-EQ-2

As, R d q , компонента прямой оси MMF F d создает больший магнитный поток, чем компонент квадратурной оси MMF.Потоки прямой и квадратурной оси создают напряжение в обмотках статора за счет реакции якоря.

Лет,

  • E и — это прямая осевая составляющая напряжения реакции якоря.
  • E aq — составляющая квадратурной оси напряжения реакции якоря.

Так как каждое напряжение реакции якоря прямо пропорционально току его статора и отстает на углы 90 градусов. Следовательно, напряжения реакции якоря можно записать, как показано ниже.

TWO-REACTION-THEORY-EQ-3

Где,

  • X и — реактивное сопротивление реакции якоря по прямой оси на фазу.
  • X aq — реактивное сопротивление якоря по квадратурной оси на фазу.

Значение х до всегда больше х . Поскольку ЭДС, индуцированная данным МДС, действующим на прямую ось, меньше, чем для квадратурной оси, из-за ее более высокого сопротивления.

Полное напряжение, индуцированное в статоре, является суммой ЭДС, индуцированной возбуждением поля.Уравнения записываются следующим образом: —

TWO-REACTION-THEORY-EQ-4

Напряжение E ’равно сумме напряжения на клеммах V и падений напряжения на сопротивлении и реактивном сопротивлении утечки якоря. Уравнение записывается как

TWO-REACTION-THEORY-EQ-5

Ток якоря делится на две составляющие; одна фаза с напряжением возбуждения E f , а другая находится в квадратуре по фазе к нему.

Если

  • I q — компонент оси I a в фазе с E f .
  • I d — ось d I a , отстающая от E f на 90 градусов.

Следовательно,

TWO-REACTION-THEORY-EQ-6

Комбинируя уравнение (4) и (5), получаем

TWO-REACTION-THEORY-EQ-7

Объединяя уравнения (6) и (7), получаем

TWO-REACTION-THEORY-EQ-8 Лет,

TWO REACTION THEORY EQ 9

Реактивное сопротивление X d называется синхронным реактивным сопротивлением прямой оси , а реактивное сопротивление X q называется синхронным реактивным сопротивлением квадратурной оси.

Комбинируя уравнения (9) (10) и (11), мы получаем уравнения, показанные ниже.

TWO-REACTION-THEORY-EQ-10 Уравнение (12), показанное выше, является окончательным уравнением напряжения для явнополюсного синхронного генератора.

.Инструментальные средства для однолинейных диаграмм

Однолинейная или однолинейная диаграмма показывает компоненты схемы посредством одинарных линий и соответствующих графических символов. На однолинейных схемах показаны два или более проводника, подключенных между компонентами реальной цепи.

Однолинейная схема показывает всю необходимую информацию о последовательности цепи, но не дает таких подробностей, как схематическая диаграмма. Обычно однолинейная схема используется для отображения очень сложных систем без отображения реальных физических соединений между компонентами и отдельными проводниками.

В качестве примера на рисунке 10 показана типичная однолинейная схема электрической подстанции.

Single Line Diagram Single Line Diagram

Рисунок 10 Однолинейная / однолинейная схема

.Однолинейная схема подстанции 11 кВ

— значение и объяснение

Подстанция

обеспечивает электроснабжение местности, в которой расположена линия. Основная функция подстанции — собирать энергию, передаваемую при высоком напряжении от генерирующей станции, а затем снижать напряжение до соответствующего значения для местного распределения и предоставлять возможности для переключения. Подстанция бывает двух типов: одна — это простой коммутационный тип, при котором выполняются различные соединения между линиями передачи, а другая — это станции преобразования, которые преобразуют переменный ток в постоянный или наоборот или преобразуют частоту с более высокой на более низкую или с более низкой на более высокую.

Подстанция выполняет дополнительную функцию, например, обеспечивает точки, в которых могут быть установлены предохранительные устройства для отключения оборудования или цепей в случае неисправности. Синхронный конденсатор размещается в конце линии передачи для повышения коэффициента мощности и для измерения работы в различных частях энергосистемы. На подстанции можно установить уличное освещение, а также устройство управления переключением уличного освещения.

Однолинейная схема подстанции 11 кВ показана на рисунке ниже.Однолинейная схема упрощает работу с системой и облегчает считывание данных об электропитании и подключении.

substation-layout

Основные элементы ПС 11кВ

Работа электрооборудования, используемого на подстанции, подробно описывается ниже.

  1. Изолятор — Изолятор подключает или отключает входящую цепь, когда питание уже прервано. Он также используется для отключения зарядного тока линии передачи.Изолятор размещается на стороне питания автоматического выключателя, так что автоматический выключатель изолирован от токоведущих частей при обслуживании.
  2. Грозовой разрядник — Грозозащитный разрядник — это защитное устройство, которое защищает систему от воздействия молнии. Он имеет две клеммы: одна — для высокого напряжения, а другая — для заземления. Клемма высокого напряжения подключена к линии передачи, а клемма заземления передает выбросы высокого напряжения на землю.
  3. Измерение ТТ — Измерительный ТТ измеряет и записывает ток, когда их вторичный вывод подключен к панели измерительного оборудования.
  4. Понижающий трансформатор — Понижающий трансформатор преобразует ток высокого напряжения в ток низкого напряжения.
  5. Конденсаторная батарея — Конденсаторная батарея состоит из последовательного или параллельного соединения конденсаторов. Основная функция конденсаторной батареи — улучшить коэффициент мощности линии. Он направляет ведущий ток в линию, уменьшая реактивную составляющую цепи.
  6. Автоматический выключатель — Автоматический выключатель прерывает ненормальный ток или ток неисправности, протекающий по линии.Это тип электрического переключателя, который размыкает или замыкает контакты при возникновении неисправности в системе.

Исходящий фидер подает входную мощность на конец потребителя.

.Однолинейная схема энергосистемы

— определение и ее значение

Определение: Однолинейная диаграмма — это представление энергосистемы с использованием простого символа для каждого компонента. Однолинейная схема энергосистемы — это сеть, которая показывает основные соединения и расположение компонентов системы вместе с их данными (такими как выходная мощность, напряжение, сопротивление и реактивное сопротивление и т. Д.).

Нет необходимости отображать все компоненты системы на одной линейной схеме, например.g., автоматический выключатель не нужно указывать в исследовании потока нагрузки, но он обязателен для исследования защиты. На однолинейной схеме компоненты системы обычно изображаются в виде их символов. Соединения генератора и трансформатора, заземление по схеме звезда, треугольник и нейтраль обозначаются символами, нанесенными сбоку от изображения этих элементов.

single-line-reoresentation-of-a-typical-power-system

Выключатели представлены прямоугольными блоками. На рисунке ниже представлена ​​однолинейная схема типичной блочной системы.Нарисовать линейную диаграмму нескольких компонентов сложно. Поэтому для упрощения диаграмма импеданса используется для представления компонентов энергосистемы.

Диаграмма импеданса энергосистемы

На диаграмме импеданса каждый компонент представлен своей эквивалентной схемой, например, синхронный генератор на генерирующей станции — источником напряжения, включенным последовательно с сопротивлением и реактивным сопротивлением, трансформатор — номинальной-схемой замещения. Предполагается, что нагрузка является пассивной и представлена ​​последовательным резистивным и индуктивным сопротивлением.Полное сопротивление заземления нейтрали не отображается на диаграмме, поскольку предполагается сбалансированное состояние.

impedance-diagram-for-the-power-system

Схема, показанная ниже, представляет собой сбалансированную трехфазную схему. Ее также называют диаграммой прямой последовательности. Также используются три отдельные диаграммы для представления сетей прямой, обратной и нулевой последовательности. Три отдельные диаграммы импеданса используются в коротком замыкании для исследования несимметричного повреждения.

Диаграмму импеданса можно дополнительно упростить, сделав определенные предположения, и свести к упрощенному реактивному сопротивлению.Диаграмма реактивного сопротивления построена без учета эффективного сопротивления якоря генератора, сопротивления обмотки трансформатора, сопротивления линии зарядки линии передачи и цепи намагничивания трансформаторов. Диаграмма реактивного сопротивления энергосистемы представлена ​​ниже.

Диаграмма реактивного сопротивления энергосистемы

Диаграмма реактивного сопротивления дает точный результат для многих исследований энергосистем, таких как исследования короткого замыкания и т. Д. Сопротивление обмотки, включая сопротивление линии, довольно мало по сравнению с реактивным сопротивлением утечки и шунтирующим трактом, который включает зарядку линии и намагничивание трансформатора. цепь обеспечивает очень высокий параллельный импеданс при КЗ.

reactance-diagram-for-power-system

Считается, что если сопротивление меньше одной трети реактивного сопротивления, а сопротивление игнорируется, то вносимая ошибка будет не более 5%. Если сопротивление и реактивное сопротивление игнорируются, могут возникать ошибки до 12%. Ошибки означают, что их расчет дает более высокое значение, чем фактическое значение.

.
Опубликовано в категории: Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *