Объем площадь на высоту: Как найти Объем Параллелепипеда?

Как найти Объем Параллелепипеда?

Понятие объема

Чтобы без труда вычислить объём любой фигуры, нужно разобраться с определениями.

Объём — это количественная характеристика пространства, занимаемого телом или веществом.

Другими словами, это то, сколько места занимает предмет.

Объём измеряется в единицах измерения размера пространства, занимаемого телом, то есть в кубических метрах, кубических сантиметрах, кубических миллиметрах.

За единицу измерения объёма можно принять куб с ребром 1 см, то есть, кубический сантиметр (см3), кубический миллиметр (1 мм3), кубический метр (1 м3).

Объём всегда выражается в положительных числах. Это число показывает, какое именно количество единиц измерения есть в теле. Например, сколько воды в бассейне, сока в графине, земли в клумбе.

Два свойства объёма


  1. У равных тел равные объёмы. Например, у двух одинаковых пакетов сока равные объемы.

  2. Если геометрическое тело состоит из нескольких геометрических тел, то его объём равен сумме объёмов этих тел.

Любое объемное тело имеет объем. Получается, при желании мы можем вычислить объем кружки, смартфона, вазы, кота — чего угодно.

Объем прямоугольного параллелепипеда

Параллелепипед — это многогранник с шестью гранями, каждая из которых является параллелограммом.

Прямоугольным параллелепипедом называют параллелепипед, у которого все грани являются прямоугольниками.



Формула объема прямоугольного параллелепипеда

Чтобы вычислить объем прямоугольного параллелепипеда, найдите произведение его длины, ширины и высоты:

V = a × b × h

Чтобы не запутаться в формулах, запоминайте табличку с условными обозначениями.

a

длина параллелепипеда

b

ширина параллелепипеда

h

высота параллелепипеда

P (осн)

периметр основания

S (осн)

площадь основания

S (бок)

площадь боковой поверхности

S (п. п.)

площадь полной поверхности

V

объем

Пример 1. Чему равен объем параллелепипеда со сторонами 9 см, 6 см, 3 см.


a = 9 см

b = 6 см

h = 3 см

V = a × b × h

V = 9 × 6 × 3 = 162 см3.

Ответ: объем прямоугольного параллелепипеда равен 162 см

3.

Следствие

Объем параллелепипеда равен произведению площади основания на высоту.

V = Sосн × h

Из этого следствия выведем формулу нахождения площади основания параллелепипеда.

Sосн = V : h

Пример 2. Найдите площадь основания параллелепипеда, если его объем равен 96 см3, а высота 8 см.


V = 96 см3

h = 8 см

V = Sосн × h

Sосн = V : h

Sосн = 82 см3 : 8 см = 12 см2.

Ответ: площадь основания параллелепипеда равна 12 см2.

Обучение на курсах по математике в онлайн-школе Skysmart поможет быстрее разобраться в теме и правильно решать задачки!

Вычисление площади

Как вы уже поняли, вычисление объёма параллелепипеда напрямую зависит от вычисления его площади. Давайте разберемся, сколько всего площадей можно найти в параллелепипеде.

Чтобы найти площадь боковой поверхности параллелепипеда, вычислите по отдельности площадь каждой боковой грани, а затем найдите сумму получившихся значений.

Так как противолежащие грани прямоугольного параллелепипеда одинаковые, то получим формулу:

Чтобы вычислить площадь полной поверхности параллелепипеда, сложите площадь боковой поверхности и две площади основания. Так как площади оснований у прямоугольного параллелепипеда одинаковые, то получим формулу:

  • Sп. п. = 2 (ab + ac + bc)

Пример 3. Найдем площадь поверхности параллелепипеда, если длина основания равна 6 сантиметров, ширина — 4 см соответственно, а высота — 3 см.


Sп. п. = 2 (ab + ac + bc)

Sп. п. = 2 (6 × 4 + 6 × 3 + 4 × 3) = 2 × (24 + 18 + 12) = 2 × 54 = 108 см2.

Ответ: площадь поверхности параллелепипеда — 108 см

2.

Как видите, вычислить объём и найти площадь параллелепипеда совсем не трудно.

Задачи на самопроверку

Пользоваться онлайн-калькуляторами можно, когда вы уже натренировались в решении задачек и с закрытыми глазами можете вычислить объем любого параллелепипеда. Давайте разберем еще несколько примеров.

Задачка 1. Найдите объём параллелепипеда со сторонами 18 см, 10 см, 7 см.


Как решаем:

a = 18 см

b = 10 см

h = 7 см

Формула нахождения объема параллелепипеда:

V = a × b × h

Подставляем наши числа:

V = 18 × 10 × 7 = 1260 см3.

Ответ: объём параллелепипеда равен 1260 см

3.

Задачка 2. Найдите площадь основания параллелепипеда, если его объём равен 120 см3, а высота — 15 см.


Как решаем:

V = 120 см

h = 15 см

V = Sосн × h

Sосн = V : h

Sосн = 120 см3: 15 см = 8 см2.

Ответ: площадь основания параллелепипеда равна 8 см2.

Задачка 3. Найдите площадь полной поверхности прямоугольного параллелепипеда, если длина основания равна 30 сантиметров, ширина равна 12 см, а высота равна 5 см.

Как решаем:

Sп. п. = 2 (ab + ac + bc)

Sп. п. = 2 (30 × 12 + 30 × 5 + 12 × 5) = 2 × (360 + 150 + 60) = 2 × 570 = 1140 см2.

Ответ: площадь полной поверхности параллелепипеда равна 1140 см2.

Пусть все необходимые формулы будут под рукой в нужный момент. Сохраняйте табличку-шпаргалку на гаджет или распечатайте ее и храните в учебнике.

V параллелепипеда

V = a × b × h

 

V = Sосн × h

S боковой поверхности

Sб.

п. = 2 (ac + bc)

S полной поверхности

Sп. п. = 2 (ab + ac + bc)

Объем, Площадь поверхности, формулы объема

Стандартное обозначение объема есть V. Этим мы измеряем количество (наример, воды), которая может заполнить фигуру.
Только пространственные фигуры имеют объем. Например, треугольники, квадраты не имеют объема, но шар имеет объем (потому что он может быть заполнен чем-то, например водой).

Прямоугольный параллелепипед

Прямоугольный параллелепипед это фигура, все стороны которой — прямоугольники.

Если длины стороны прямоугольника в основе есть a и b и третье ребро c
тогда формула объема есть:

$V = a \cdot b \cdot c$

Площадь поверхности:

S = $2(a \cdot b + a \cdot c + b \cdot c)$

Куб

Куб есть параллелепипедом, все ребра (стороны) которого равны.

Если длина стороны куба равна a, тогда формула объема:

$V = a. 2 \cdot h$

Площадь боковой поверхности:

$S = 2\cdot\pi\cdot r \cdot h$

Площадь полной поверхности:

$S = 2\cdot\pi\cdot r(h + r)$


Тест: объём и площадь поверхности

Формулы объема и программы для расчета объема

Содержание:

Объём геометрической фигуры — количественная характеристика пространства, занимаемого телом или веществом. В простейших случаях объём измеряется числом умещающихся в теле единичных кубов, т. е. кубов с ребром, равным единице длины. Объём тела или вместимость сосуда определяется его формой и линейными размерами.


Формула объема куба

1) Объем куба равен кубу его ребра.

V — объем куба

H — высота ребра куба

См. также: Программа для расчета объема куба.


Формула объема пирамиды

1) Объем пирамиды равен одной трети произведения площади основания S (ABCD) на высоту h (OS).

V — объем пирамиды

S — площадь основания пирамиды

h — высота пирамиды

См. также: Программа для расчета объема пирамиды.

Формулы объема конуса

1) Объем конуса равен одной трети произведения площади основания на высоту.

2) Объем конуса равен одной трети произведения числа пи (3.1415) на квадрат радиуса основания на высоту.

V — объем конуса

S — площадь основания конуса

h — высота конуса

π — число пи (3.1415)

r — радиус конуса

См. также: Программа для расчета объема конуса.


Формулы объема цилиндра

1) Объем цилиндра равен произведению площади основания на высоту.

2) Объем цилиндра равен произведению числа пи (3.1415) на квадрат радиуса основания на высоту.

V — объем цилиндра

S — площадь основания цилиндра

h — высота цилиндра

π — число пи (3.1415)

r — радиус цилиндра

См. также: Программа для расчета объема цилиндра.

Формула объема шара

1) Объем шара вычисляется по приведенной ниже формуле.

V — объем шара

π — число пи (3.1415)

R — радиус шара

См. также: Программа для расчета объема шара.


Формула объема тетраэдра

1) Объем тетраэдра равен дроби в числителе которой корень квадратный из двух помноженный на куб длины ребра тетраэдра, а в знаменателе двенадцать.

V — объем тетраэдра

a — длина ребра тетраэдра

См. также: Программа для расчета объема тетраэдра.

Мы помогли уже 4 372 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Рассчитать объем коробки в м3 и литрах онлайн

07.10.2019

Сколько будет стоить отправка вашего груза до места назначения? Чтобы ответить на это вопрос, нужно знать его объем в кубических метрах, т. к. транспортные компании чаще всего в прайсе указывают стоимость услуг именно в таких единицах измерения.

Картонные коробки — наиболее выгодный и удобный вид упаковки для большинства товаров. Выбирая гофроупаковку для своей продукции, вам нужно, в первую очередь, рассчитать объем коробок и заказать нужное количество коробок, чтобы не перевозить воздух и не переплачивать за транспортные услуги.

Если в результате расчета оказалось, что вам требуется гофротара индивидуальных размеров, наша компания «МС-ПАК» изготовит нужный тираж на заказ. Рассмотрим, как правильно рассчитать объем картонной коробки.

Поэтапный расчет объема картонной коробки

Для расчета нужно: