Двигатель асинхронный подключение: Подключение трехфазного асинхронного двигателя

Подключение трехфазного асинхронного двигателя

У трёхфазного асинхронного двигателя существует 6 выводов обмотки статора – три начала и три конца. Выводы могут соединяться звездой или треугольником, в зависимости от напряжения питающей сети (380В или 220В). Для этого на корпусе двигателя имеется коробка, в которую выведены начала фаз С1, С2, С3 и концы фаз С4, С5, С6.

Большинство двигателей в настоящее время работают при фазном напряжении 220 В.

Виды соединения обмоток

Соединение звездой – это соединение, при котором концы обмоток имеют одну общую точку (ноль). При таком соединении, линейной напряжение больше чем напряжение в фазе в 1,73 раз. Это значит что если линейное напряжение 380 В, то в фазе будет в 1,73 раза меньше, то есть 220 В. Большой плюс такого соединения в том что пусковые токи невелики в отличие от соединения треугольником. Но при соединении звездой двигатель испытывает значительные потери в мощности.

Соединение треугольником – это соединение, при котором обмотки соединены так, чтобы начало одной обмотки входило в конец другой обмотки. При соединении треугольником фазное напряжение равно линейному, а значит если мы имеем линейное напряжение в сети 220 В, то для правильного подключения двигателя нужно подключать выводы треугольником. Плюс такого соединения в большой мощности, минус в значительных пусковых токах.

 

Подключение асинхронного двигателя к однофазной сети

Иногда обстоятельства складываются так, что источником питания является однофазная сеть. Для подключения трехфазного двигателя в этом случае следует воспользоваться конденсатором. Конденсатора может быть два – пусковой и рабочий. Два потому что необходимо в процессе запуска и работы изменять емкость, этого добиваются включением-отключением одного из конденсаторов (пускового). Обычно используют бумажные конденсаторы, потому что они неполярные, а в цепи переменного тока это важно учитывать.

Емкость рабочего конденсатора можно рассчитать по формуле:

Емкость пускового конденсатора нужно выбирать в 2-2,5 раза больше емкости рабочего конденсатора, а его рабочее напряжение должно быть выше питающего в 1,5 раза.

В момент подачи напряжения ключ SA замыкают, а затем размыкают, тем самым кратковременно увеличивая ток необходимый для запуска двигателя.

Нужно учитывать, что далеко не все двигатели можно подключать к однофазной цепи. Также нужно знать, что максимальная мощность при таком подключении составит не более 50-60% от мощности при подключении к трехфазной цепи.

  • Просмотров: 7591
  • 1. Подключение асинхронного двигателя в однофазную сеть

    Применение конденсаторов в асинхронных двигателях
     

     

    рабочий

    пусковой

    применение

    В схемах асинхронных электродвигателей

    В схемах асинхронных электродвигателей

    тип подключения

    Последовательно со вспомогательной обмоткой электродвигателя

    Параллельно рабочему конденсатору

    в качестве

    Является фазосмещающим элементом

    Является фазосмещающим элементом

    назначение

    Позволяет получить круговое вращающееся магнитное поле, необходимое для работы электродвигателя

    Позволяет получить магнитное поле, необходимое для повышения пускового момента электродвигателя

    время включения

    В процессе работы электродвигателя

    В момент пуска электродвигателя

    Существуют две основные области применения конденсаторов для асинхронных электродвигателей.
     

    1) Трёхфазный асинхронный электродвигатель, включаемый через конденсатор в однофазную сеть

    В случае,  когда трехфазный электродвигатель необходимо подключить к однофазной сети, существует два возможных варианта подключения:

    «звезда» или «треугольник», причем наиболее предпочтительным во многих случаях является вариант «треугольник».

    Приблизительный расчет для данного типа соединения производится по следующей формуле:

     

     

                                 Сраб.=k*Iф/Uсети

    где:

    k – коэффициент, зависящий от соединения обмоток.

     

    Для схемы соединения «Звезда» — k=2800

    Для схемы соединения «Треугольник» — k=4800

    – номинальный фазный ток электродвигателя, А.

    Uсети – напряжение однофазной сети, В.

     

    Для определения пусковой емкости Сп.  исходят из пускового момента. В случае если пуск двигателя происходит без нагрузки, пусковая емкость не требуется.

    Для получения пускового момента, близкого к номинальному, достаточно иметь пусковую емкость, определяемую соотношением Сп.=(2.5-3) Ср.

    Рабочее напряжение конденсаторов должно быть в 1,5 раза выше напряжения сети.

     

    Схема подключения
     

     

    Рис 1.   Схема включения в однофазную сеть     трехфазного асинхронного двигателя с  обмотками статора, соединенными по схеме «звезда» (а) или «треугольник» (б):

    • B1 Переключатель направления
    • вращения  (реверс)
    • В2 — Выключатель пусковой емкости;
    • Ср — рабочий конденсатор;
    • Cп — пусковой конденсатор;
    • АД — асинхронный электродвигатель.

     

    2) Асинхронный электродвигатель, питаемый от однофазной сети и имеющий на статоре две обмотки, одна из которых включается в сеть непосредственно, а другая — последовательно с электрическим конденсатором для образования вращающегося магнитного поля. Конденсаторы создают сдвиг фаз между токами обмоток, оси которых сдвинуты в пространстве. Наибольший вращающий момент развивается, когда сдвиг фаз токов составляет 90°, а их амплитуды подобраны так, что вращающееся поле становится круговым. При пуске конденсаторного асинхронного двигателя оба конденсатора включены, а после его разгона один из конденсаторов отключают. Это обусловлено тем, что при номинальной частоте вращения требуется значительно меньшая емкость, чем при пуске.


    Схема подключения
     

     

    Рис 2. Схема (а) и векторная диаграмма  конденсаторного асинхронного двигателя:

    • U, UБ, UC — напряжения;
    • IA, IБ — токи;
    • А и Б — обмотки статора;
    • В — центробежный выключатель
    • для отключения С1 после разгона двигателя;
    • C1 и C2 — конденсаторы.

     

     

    Конденсаторный асинхронный электродвигатель по пусковым и рабочим характеристикам близок к трехфазному асинхронному двигателю. 

     

    5 шагов подключения неизвестного электродвигателя

    Иногда возникает такая проблема — необходимо подключить электродвигатель в стандартную сеть 380В 50 Гц, но характеристики двигателя неизвестны, поскольку документации к нему нет, а шильдик отсутствует.

    Существуют 5 простых шагов, последовательно выполнив которые, можно обеспечить двигатель нужным напряжением питания, защитой и схемой включения.

    1. Оцениваем номинальную мощность и ток двигателя

    Прежде всего нужно ориентировочно определить мощность электродвигателя. Для этого находим похожий двигатель с известными параметрами, воспользовавшись каталогами производителей. Агрегаты должны совпадать по габаритам и диаметру вала.

    На данном этапе мы сможем определить основные параметры для подключения и использования привода – мощность, ток, частоту вращения вала.

    2. Определяем напряжение по схеме включения

    Следующий шаг — определяем, по какой схеме подключить обмотки и какое напряжение подать. Есть несколько критериев, позволяющих с некоторой вероятностью оценить эти параметры.

    Напомним, что промышленные низковольтные двигатели выпускаются с двумя видами напряжений питания: 220/380 В и 380/660 В для схем подключения «Треугольник» и «Звезда», соответственно. На двигатели первого вида можно подавать 380 В, собрав обмотки в схему «Звезда», на приводы второго вида – в «Треугольник».

    Если электродвигатель новый, то, скорее всего, он собран по схеме, требующей питания 380 В. Именно такую схему обычно используют производители.

    Если из двигателя выходит 3 провода, можно сделать вывод, что он имеет стандартное питание 380 В. При этом неважно, по какой схеме агрегат собран внутри. Однако, если в коробке присутствует конденсатор, можно утверждать, что двигатель рассчитан на напряжение 220 В и собран в «Треугольник». Кроме того, мощность в таком случае будет невысокой – не более 2,2 кВт. Для включения такого привода в трехфазную сеть 380 В нужно собрать его по схеме «Звезда».

    Если асинхронный двигатель имеет шесть никак не подключенных выводов, определить напряжение питания по схеме включения не получится. В этом случае нужно сначала найти выводы обмоток, затем начало и конец каждой обмотки, чтобы собрать их в одну из схем. Обычно названия обмоток и их начало/конец обозначены.

    Электродвигатели мощностью более 5 кВт, как правило, не включают напрямую. Для этого используют преобразователь частоты, устройство плавного пуска, либо схему «Звезда»/«Треугольник».

    3. Подаем питание на двигатель

    После того, как проведена оценка мощности и выбрана схема включения, можно подавать питание. Первоначально двигатель должен работать в холостом режиме. Питание подается через мотор-автомат и автоматический выключатель. Для включения желательно использовать контактор.

    Ориентировочный рабочий ток асинхронного двигателя можно посчитать по эмпирической формуле: I (А) = 2 х P (кВт). То есть, если определено, что мощность двигателя составляет 3 кВт, его номинальный ток будет около 6 А в любой из схем включения.

    Номинал мотор-автомата выбирается исходя из определенной ранее мощности. Для холостого хода уставку автомата можно установить в 2 раза меньше номинала, в нашем примере – около 3А. Если автомат выбивает, его уставку увеличивают вплоть до номинала (6 А).

    На данном этапе необходимо следить за исправностью двигателя и его температурой, контролировать ток холостого хода токоизмерительными клещами. В холостом режиме двигатель не должен греться при нормальной работе крыльчатки вентилятора. Если нагрев происходит, это может означать, что агрегат неисправен либо нужно изменить схему его включения.

    4. Определяем необходимой ток защиты

    Номинальный ток и номинальная мощность электродвигателя ограничены его нагревом. Предел рабочей температуры определяется классом изоляции. Максимальная температура обмоток двигателей с низшим классом изоляции (Y) составляет 90°С. На это значение и нужно ориентироваться.

    Для определения тока защиты включаем двигатель с номинальной нагрузкой на валу через мотор-автомат с током уставки, определенном на предыдущем шаге. После подачи питания автомат должен отработать по перегрузке. Далее увеличиваем его уставку, при необходимости подключаем автомат с другим диапазоном уставки.

    В итоге опытным путем определяем номинал мотор-автомата, уставка которого обеспечивает продолжительную работу двигателя на номинальной нагрузке.

    5. Контролируем нагрев обмоток

    При работе любого двигателя необходимо периодически контролировать его температуру. В данном случае это особенно важно. Как показывает опыт, болевой порог человеческой руки равен 60°С. Такой способ контроля температуры – самый простой, однако лучшим способом будет использование встроенного термочувствительного элемента.

    Заключение

    Любой двигатель с неизвестными характеристиками имеет свою историю. Поэтому, прежде чем следовать советам, изложенным в статье, нужно обследовать оборудование либо расспросить персонал о том, где ранее был установлен привод.

    Другие полезные материалы:
    Трехфазный двигатель в однофазной сети
    Эксплуатация электрооборудования вне помещений
    Как прозвонить электродвигатель мультиметром
    Как рассчитать потребляемую мощность двигателя

    звезда, треугольник, трехфазная сеть 380В, однофазная сеть 220В

    Практически ежедневно мы сталкиваемся с одним и тем же вопросом от наших клиентов: «как подключить электродвигатель к сети питания?»

    Самый простой и надежный способ – обратиться к нормальному электрику и не экономить на этом, т.к. зачастую, пытаясь сэкономить, приглашают «дядю Васю», или других отзывчивых «специалистов», которые рядом, но на самом деле слабо понимают, что происходит.
    В лучшем случае, эти «профи» звонят и спрашивают – правильно ли я подключаю. Тут ещё есть шанс не спалить двигатель. Сразу становится понятна квалификация «электрика», когда задают такие вопросы, от которых можно просто впасть в ступор (так как именно этому и учат электриков).

    Например:
    — зачем шесть контактов в двигателе?
    — а почему контактов всего три?
    — что такое «звезда» и «треугольник»?
    — а почему, когда я подключаю трехфазный насос и ставлю поплавковый выключатель, который рвёт одну фазу, двигатель не останавливается?
    — а как измерить ток в обмотках?
    — что такое пускатель?
    и т.п.

    Если ваш электрик задаёт такие вопросы, то нужно его отправить туда, откуда он пришёл. Иначе всё закончится сгоревшим электродвигателем, потерей денег, времени, дорогостоящим ремонтом. Давайте попробуем разобраться в схемах подключения электродвигателя к электропитанию.
    Для начала нужно понимать, что существуют несколько популярных типов сетей переменного тока:

    1. Однофазная сеть 220 В,
    2. Трехфазная сеть 220 В (обычно используется на кораблях),
    3. Трехфазная сеть 220В/380В,
    4. Трехфазная сеть 380В/660В.
    Есть ещё на напряжение 6000В и некоторые другие редкие, но их рассматривать не будем.

    В трёхфазной сети обычно есть 4 провода (3 фазы и ноль). Может быть ещё отдельный провод «земля». Но бывают и без нулевого провода.

    Как определить напряжение в вашей сети?
    Очень просто. Для этого нужно измерить напряжение между фазами и между нулём и фазой.

    В сетях 220/380 В напряжение между фазами (U1, U2 и U3) будет равно 380 В, а напряжение между нолём и фазой (U4, U5 и U6) будет равно 220 В.
    В сетях 380/660В напряжение между любыми фазами (U1, U2 и U3) будет равно 660В, а напряжение между нулем и фазой (U4, U5 и U6) будет равно 380 В.


    Возможные схемы подключения обмоток электродвигателей

    Асинхронные электродвигатели имеют три обмотки, каждая из которых имеет начало и конец и соответствует своей фазе. Системы обозначения обмоток могут быть разными. В современных электродвигателях принята система обозначения обмоток U, V и W, а их выводы обозначают цифрой 1 начало обмотки и цифрой 2 – её конец, то есть обмотка U имеет два вывода: U1 и U2, обмотка V – V1 и V2, а обмотка W – W1 и W2.

    Однако до сих пор ещё в эксплуатации находятся старые асинхронные двигатели, сделанные во времена СССР и имеющие старую советскую систему маркировки. В них начала обмоток обозначаются C1, C2, C3, а концы — C4, C5, C6. Значит, первая обмотка имеет выводы C1 и C4, вторая — C2 и C5, а третья — C3 и C6.

    Обмотки трёхфазных электродвигателей можно подключать по двум различным схемам: звездой (Y) или треугольником (Δ).

    Подключение электродвигателя по схеме звезда

    Название схемы подключения обусловлено тем, что при соединении обмоток по данной схеме (см. рисунок справа), визуально это напоминает трёхлучевую звезду.


    Как видно из схемы подключения электродвигателя, все три обмотки своим одним концом соединены вместе. При таком подключении (сеть 220/380 В), к каждой обмотке отдельно подходит напряжение 220 В, а к двум обмоткам, соединённым последовательно, – напряжение 380 В.

    Основным преимуществом подключения электродвигателя по схеме звезда являются небольшие пусковые токи, так как напряжение питания 380 В (межфазное) потребляют сразу 2 обмотки, в отличие от схемы «треугольник». Но при таком подключении мощность питаемого электродвигателя ограничена (главным образом из экономических соображений): обычно по звезде включают относительно слабые электродвигатели.


    Подключение электродвигателя по схеме треугольник

    Название этой схемы также идёт от графического изображения (см. правый рисунок):


    Как видно из схемы подключения электродвигателя – «треугольник», обмотки подключаются последовательно друг к другу: конец первой обмотки соединяется с началом второй и так далее.

    То есть к каждой обмотке будет приложено напряжение 380 В (при использовании сети 220/380 В). В этом случае по обмоткам течёт больший ток, по треугольнику обычно включают двигатели большей мощности, чем при соединении по звезде (от 7,5 кВт и выше).


    Подключение электродвигателя к трёхфазной сети на 380 В

    Последовательность действий такова:

    1. Для начала выясняем, на какое напряжение рассчитана наша сеть.
    2. Далее смотрим на табличку, которая есть на электродвигателе, она может выглядеть так (звезда Y /треугольник Δ):



    Двигатель для однофазной сети 220В
    (~ 1, 220В)

    Двигатель для трехфазной сети
    220В/380В (220/380, Δ / Y)

    Двигатель для трехфазной сети 380В
    (~ 3, Y, 380В)

    Двигатель для трехфазной сети
    (380В / 660В (Δ / Y, 380В / 660В)


    3. После идентификации параметров сети и параметров электрического подключения электродвигателя (звезда Y /треугольник Δ), переходим к физическому электрическому подключению электродвигателя.
    4. Чтобы включить трёхфазный электродвигатель, нужно одновременно подать напряжение на все 3 фазы.
    Достаточно частая причина выхода из строя электродвигателя – работа на двух фазах. Это может произойти из-за неисправного пускателя, или при перекосе фаз (когда напряжение в одной из фаз сильно меньше, чем в двух других).
    Есть 2 способа подключения электродвигателя:
    — использование автоматического выключателя или автомата защиты электродвигателя

    Эти устройства при включении подают напряжение сразу на все 3 фазы. Мы рекомендуем ставить именно автомат защиты электродвигателя серии MS, так как его можно настроить в точности на рабочий ток электродвигателя, и он будет чутко отслеживать его повышение в случае перегрузки. Это устройство в момент пуска даёт возможность некоторое время работать на повышенном (пусковом) токе, не отключая двигатель.
    Обычный же автомат защиты требуется ставить с превышением номинального тока электродвигателя, с учётом пускового тока (в 2-3 раза выше номинала).
    Такой автомат может отключить двигатель только в случае КЗ или его заклинивания, что часто не обеспечивает нужной защиты.

    — использование пускателя

    Пускатель представляет собой электромеханический контактор, который замыкает каждую фазу с соответствующей обмоткой электродвигателя.
    Привод механизма контактора осуществляется с помощью электромагнита (соленоида).

    Устройство электромагнитного пускателя:

    Магнитный пускатель устроен достаточно просто и состоит из следующих частей:

    (1) Катушка электромагнита
    (2) Пружина
    (3) Подвижная рама с контактами (4) для подключения питания сети (или обмоток)
    (5) Контакты неподвижные для подключения обмоток электродвигателя (сети питания).

    При подаче питания на катушку, рама (3) с контактами (4) опускается и замыкает свои контакты на соответствующие неподвижные контакты (5).

    Типовая схема подключения электродвигателя с использованием пускателя:


    При выборе пускателя следует обращать внимание на напряжение питания катушки магнитного пускателя и покупать его в соответствии с возможностью подключения к конкретной сети (например, если у вас есть только 3 провода и сеть на 380 В, то катушку нужно брать на 380 В, если у вас сеть 220/380 В, то катушка может быть и на 220 В).

    5. Проконтролировать, в правильную ли сторону крутится вал.
    Если требуется изменить направление вращения вала электродвигателя, то нужно просто поменять местами любые 2 фазы. Это особенно важно при запитывании центробежных электронасосов, имеющих строго определённое направление вращения рабочего колеса


    Как подключить поплавковый выключатель к трёхфазному насосу

    Из всего вышеописанного становится понятно, что для управления трёхфазным электродвигателем насоса в автоматическом режиме с использованием поплавкового выключателя НЕЛЬЗЯ просто разрывать одну фазу, как это делается с монофазными двигателями в однофазной сети.

    Самый простой способ – использовать для автоматизации магнитный пускатель.
    В этом случае достаточно поплавковый выключатель встроить последовательно в цепь питания катушки пускателя. При замыкании цепи поплавком будет замыкаться цепь катушки пускателя, и включаться электродвигатель, при размыкании – будет отключаться питание электродвигателя.

    Подключение электродвигателя к однофазной сети 220 В

    Обычно для подключения к однофазной сети 220В используются специальные двигатели, предназначенные для подключения именно к такой сети, и вопросов с их питанием не возникает, т.к. для этого просто требуется вставить вилку (большинство бытовых насосов оснащены стандартной вилкой Шуко) в розетку

    Иногда требуется подключение трехфазного электродвигателя к сети 220 В (если, например, нет возможности провести трехфазную сеть).

    Максимально возможная мощность электродвигателя, который можно включить в однофазную сеть 220 В, составляет 2,2 кВт.

    Самый простой способ – подключить электродвигатель через частотный преобразователь, рассчитанный на питание от сети 220 В.

    Следует помнить, что частотный преобразователь на 220 В, выдает на выходе 3 фазы по 220 В. То есть подключить к нему можно только электродвигатель, который имеет напряжение питания на 220 В трёхфазной сети (обычно это двигатели с шестью контактами в распаячной коробке, обмотки которых можно подключить как по звезде, так и по треугольнику). В данном случае требуется подключение обмоток по треугольнику.

    Возможно ещё более простое подключение трехфазного электродвигателя в сеть 220 В с использованием конденсатора, но такое подключение приведёт к потере мощности электродвигателя приблизительно на 30%. Третья обмотка запитывается через конденсатор от любой другой.

    Данный тип подключения мы рассматривать не будем, так как нормально с насосами такой способ не работает (либо при старте двигатель не запускается, либо электродвигатель перегревается из-за снижения мощности).


    Использование частотного преобразователя

    В настоящее время достаточно активно все стали применять частотные преобразователи для управления частотой вращения (оборотами) электродвигателя.

    Это позволяет не только экономить электроэнергию (например, при использовании частотного регулирования насосов для подачи воды), но и управлять подачей насосов объёмного типа, превращая их в дозировочные (любые насосы объёмного принципа действия).

    Но очень часто при использовании частотных преобразователей не обращают внимания на некоторые нюансы их применения:

    — регулировка частоты, без доработки электродвигателя, возможна в пределах регулировки частоты +/- 30% от рабочей (50 Гц),
    — при увеличении частоты вращения более 65 Гц требуется замена подшипников на усиленные (сейчас с помощью ЧП возможно поднять частоту тока до 400 Гц, обычные подшипники просто разваливаются на таких скоростях),
    — при уменьшении частоты вращения встроенный вентилятор электродвигателя начинает работать неэффективно, что приводит к перегреву обмоток.

    Из-за того, что не обращают внимания при проектировании установок на такие «мелочи», очень часто электродвигатели выходят из строя.

    Для работы на низкой частоте ОБЯЗАТЕЛЬНО требуется установка дополнительного вентилятора принудительного охлаждения электродвигателя.

    Вместо крышки вентилятора устанавливается вентилятор принудительного охлаждения (см. фото). В этом случае, даже при снижении оборотов вала основного двигателя,
    дополнительный вентилятор обеспечит надёжное охлаждение электродвигателя.

    Мы имеем большой опыт модернизации электродвигателей для работы на низкой частоте.
    На фото можно видеть винтовые насосы с дополнительными вентиляторами на электродвигателях.

    Данные насосы используются в качестве дозирующих насосов на пищевом производстве.


    Надеемся, что данная статья поможет вам правильно подключить электродвигатель к сети самостоятельно (ну или хотя бы понять, что перед вами не электрик, а «специалист широкого профиля»).


    Технический директор
    ООО «Насосы Ампика»
    Моисеев Юрий.


    Схемы подключения трехфазного двигателя. К 3-х и 1-о фазной сети

    Схемы подключения трехфазного двигателя — двигатели, рассчитанные на работу от трехфазной сети, имеют производительность гораздо выше, чем однофазные моторы на 220 вольт. Поэтому, если в рабочем помещении проведены три фазы переменного тока, то оборудование необходимо монтировать с учетом подключения к трем фазам. В итоге, трехфазный двигатель, подключенный к сети, дает экономию энергии, стабильную эксплуатацию устройства. Не нужно подключать дополнительные элементы для запуска. Единственным условием хорошей работы устройства является безошибочное подключение и монтаж схемы, с соблюдением правил.

    Схемы подключения трехфазного двигателя

    Из множества созданных схем специалистами для монтажа асинхронного двигателя практически используют два метода:

    • Схема звезды.
    • Схема треугольника.

    Названия схем даны по методу подключения обмоток в питающую сеть. Чтобы на электродвигателе определить, по какой схеме он подключен, необходимо посмотреть указанные данные на металлической табличке, которая установлена на корпусе двигателя.

    Даже на старых образцах моторов можно определить метод соединения статорных обмоток, а также напряжение сети. Эта информация будет верна, если двигатель уже был в эксплуатации, и никаких проблем в работе нет. Но иногда нужно произвести электрические измерения.

    Схемы подключения трехфазного двигателя звездой дают возможность плавного запуска мотора, но мощность оказывается меньше номинального значения на 30%. Поэтому по мощности схема треугольника остается в выигрыше. Существует особенность по нагрузке тока. Сила тока резко увеличивается при запуске, это отрицательно сказывается на обмотке статора. Возрастает выделяемое тепло, которое губительно воздействует на изоляцию обмотки. Это приводит к нарушению изоляции, и поломке электродвигателя.

    Много европейских устройств, поставленных на отечественный рынок, имеют в комплекте европейские электродвигатели, действующие с напряжением от 400 до 690 В. Такие 3-фазные моторы необходимо монтировать в сеть 380 вольт отечественного напряжения только по треугольной схеме обмоток статора. В противном случае моторы сразу будут выходить из строя. Российские моторы на три фазы подключаются по звезде. Изредка производится монтаж схемы треугольника для получения от двигателя наибольшей мощности, применяемой в специальных видах промышленного оборудования.

    Изготовители сегодня дают возможность подключать трехфазные электромоторы по любой схеме. Если в монтажной коробке три конца, то произведена заводская схема звезды. А если есть шесть выводов, то мотор можно подключать по любой схеме. При монтаже по звезде нужно три вывода начал обмоток объединить в один узел. Остальные три вывода подать на фазное питание напряжением 380 вольт. В схеме треугольника концы обмоток соединяют последовательно по порядку между собой. Фазное питание подсоединяется к точкам узлов концов обмоток.

    Проверка схемы подключения мотора

    Представим худший вариант выполненного подключения обмоток, когда на заводе не обозначены выводы проводов, сборка схемы проведена во внутренней части корпуса мотора, и наружу выведен один кабель. В этом случае необходимо разобрать электродвигатель, снять крышки, разобрать внутреннюю часть, разобраться с проводами.

    Метод определения фаз статора

    После разъединения выводных концов проводов применяют мультиметр для измерения сопротивления. Один щуп подключают к любому проводу, другой подносят по очереди ко всем выводам проводов, пока не найдется вывод, принадлежащий к обмотке первого провода. Аналогично поступают на остальных выводах.  Нужно помнить, что обязательна маркировка проводов, любым способом.

    Если в наличии нет мультиметра или другого прибора, то используют самодельные пробники, сделанные из лампочки, проводов и батарейки.

    Полярность обмоток
    Чтобы найти и определить полярность обмоток, необходимо применить некоторые приемы:
    • Подключить импульсный постоянный ток.
    • Подключить переменный источник тока.

    Оба способа действуют по принципу подачи напряжения на одну катушку и его трансформации по магнитопроводу сердечника.

    Как проверить полярность обмоток батарейкой и тестером

    На контакты одной обмотки подключают вольтметр с повышенной чувствительностью, который может отреагировать на импульс. К другой катушке быстро присоединяют напряжение одним полюсом. В момент подключения контролируют отклонение стрелки вольтметра. Если стрелка двигается к плюсу, то полярность совпала с другой обмоткой. При размыкании контакта стрелка пойдет к минусу. Для 3-й обмотки опыт повторяют.

    Путем изменения выводов на другую обмотку при включении батарейки определяют, насколько правильно сделана маркировка концов обмоток статора.

    Проверка переменным током

    Две любые обмотки включают параллельно концами к мультиметру. На третью обмотку включают напряжение. Смотрят, что показывает вольтметр: если полярность обеих обмоток совпадает, то вольтметр покажет величину напряжения, если полярности разные, то покажет ноль.

    Полярность 3-й фазы определяют путем переключения вольтметра, изменения положения трансформатора на другую обмотку. Далее, производят контрольные измерения.

    Схема звезды

    Этот тип схемы подключения трехфазного двигателя образуется путем соединения обмоток в разные цепи, объединенные нейтралью и общей точкой фазы.

    Такую схему создают после того, как проверена полярность обмоток статора в электромоторе. Однофазное напряжение на 220В через автомат подают фазу на начала 2-х обмоток. К одной врезают в разрыв конденсаторы: рабочие и пусковые. На третий конец звезды подводят нулевой провод питания.

    Величину емкости конденсаторов (рабочих) определяют по эмпирической формуле:

    С = (2800 · I) / U

    Для схемы запуска емкость повышают в 3 раза. В работе мотора при нагрузке нужно контролировать величину токов обмоток измерениями, корректировать емкость конденсаторов по средней нагрузке привода механизма. В противном случае произойдет, перегрев устройства, пробой изоляции.

    Подключение мотора в работу хорошо делать через выключатель ПНВС, как показано на рисунке.

    В нем уже сделана пара контактов замыкания, которые вместе подают напряжение на 2 схемы путем кнопки «Пуск». Во время отпускания кнопки цепь разрывается. Такой контакт применяют для запуска цепи. Полное отключение питания делают, нажав на «Стоп».

    Схема треугольника

    Схемы подключения трехфазного двигателя треугольником является повтором прошлого варианта в запуске, но имеет отличие методом включения обмоток статора.

    Токи, проходящие в них, больше значений цепи звезды. Рабочие емкости конденсаторов нуждаются в повышенных номинальных емкостях. Они рассчитываются по формуле:

    С = (4800 · I) / U

    Правильность выбора емкостей также вычисляют по отношению токов в катушках статора путем измерения с нагрузкой.

    Двигатель с магнитным пускателем

    Трехфазный электродвигатель работает через магнитный пускатель по аналогичной схеме с автоматическим выключателем. Такая схема имеет дополнительно блок включения и выключения, с кнопками Пуск и Стоп.

    Одна фаза, нормально замкнутая, соединенная с мотором, подключается к кнопке Пуск. При ее нажатии контакты замыкаются, ток идет к электромотору. Необходимо учитывать, что при отпускании кнопки Пуск, клеммы разомкнутся, питание отключится. Чтобы такой ситуации не произошло, магнитный пускатель дополнительно оборудуют вспомогательными контактами, которые называют самоподхватом. Они блокируют цепь, не дают ей разорваться при отпущенной кнопке Пуск. Выключить питание можно кнопкой Стоп.

    В результате, 3-фазный электромотор можно подключать к сети трехфазного напряжения совершенно разными методами, которые выбираются по модели и типу устройства, условиям эксплуатации.

    Подключение мотора от автомата
    Общий вариант такой схемы подключения выглядит как на рисунке:

    Здесь показан автомат защиты, который выключает напряжение питания электромотора при чрезмерной нагрузке по току, и по короткому замыканию. Автоматический защитный выключатель – это простой 3-полюсный выключатель с тепловой автоматической характеристикой нагруженности.

    Для примерного расчета и оценки нужного тока тепловой защиты, необходимо мощность по номиналу двигателя, рассчитанного на работу от трех фаз, увеличить в два раза. Номинальная мощность указывается на металлической табличке на корпусе мотора.

    Такие схемы подключения трехфазного двигателя вполне могут работать, если нет других вариантов подключения. Длительность работы нельзя прогнозировать. Это тоже самое, если скрутить алюминиевый провод с медным. Никогда не знаешь, через какое время скрутка сгорит.

    При применении схемы подключения трехфазного двигателя нужно аккуратно выбрать ток для автомата, который должен быть на 20% больше тока работы мотора. Свойства тепловой защиты выбрать с запасом, чтобы при запуске не сработала блокировка.

    Если для примера, двигатель на 1,5 киловатта, наибольший ток 3 ампера, то автомат нужен минимум на 4 ампера. Преимуществом этой схемы соединения мотора является низкая стоимость, простое исполнение и техобслуживание.

    Если электродвигатель в одном числе, и работает полную смену, то есть следующие недостатки:
    • Нельзя отрегулировать тепловой ток сработки автоматического выключателя. Чтобы защитить электромотор, ток защитного отключения автомата устанавливают на 20% больше рабочего тока по номиналу мотора. Ток электродвигателя нужно через определенное время замерять клещами, настраивать ток тепловой защиты. Но у простого автоматического выключателя нет возможности настроить ток.
    • Нельзя дистанционно выключить и включить электродвигатель.
    Похожие темы:

    Как подключить электродвигатель с 380 на 220: способы и схемы

    Многими практиками доказана эффективность трехфазных асинхронных электродвигателей. Однако для ее использования необходимо подключение трехфазного питания, которое, увы, присутствует далеко не у каждого в доме. Но если вы задаетесь вопросом, как подключить электродвигатель с 380 на 220 В, мы рассмотрим возможные варианты включения трехфазных электрических машин в домашних условиях.

    Общие правила

    Перед началом включения обязательно проверяется величина напряжения, на которое рассчитан электродвигатель – если подключить разность потенциалов больше указанной, обмотки перегреются, если низкое, он не запустится.

    Как правило, на асинхронных машинах указывается сразу два параметра, реже только один:

    1. 660/380 В;
    2. 380/220 В;
    3. 220/127 В.

    Номинал определяется совместно со схемой соединения обмоток – звезда или треугольник. В первом случае обмотки имеют общую точку, а фазные провода соединяются с остальными тремя выводами катушек. Во втором, конец одной обмотки присоединяется к началу следующей таким образом, что образуется замкнутый контур. Одни агрегаты включаются только звездой, другие, треугольником, а некоторые можно самостоятельно подключать любым из способов, обе характеристики указаны на шильде электродвигателя.

    Для треугольника используется меньшее напряжение, а для звезды большее из двух указанных. Отличие в том, что трехфазные двигатели, соединенные звездой,  будут иметь плавный пуск, а треугольник сможет выдать большую мощность.

    Физически подключение трехфазного электродвигателя в однофазную сеть не принесет никакого результата – вращение вала так и не произойдет. Причина этого в отсутствии переменного электрического поля, обеспечивающего попеременное воздействие на ротор. Поэтому проблему можно решить, обеспечив смещение электрического напряжения и тока в фазных обмотках. Чтобы получить желаемый результат от одной фазы, можно дополнительно включить в цепь конденсатор, который обеспечит отставание напряжения до -90º.

    Однако полноценного смещения напряжения в обмотках статора добиться не получится. Хоть на электродвигатель подается и номинальное напряжение, КПД составит всего 30 – 50%, что будет определяться схемой соединения обмоток асинхронного электродвигателя.

    Не включайте электродвигатель без нагрузки. Так как он не предназначен для такого режима, электрическая машина быстро выйдет со строя. Минимизируйте холостой ход насколько это возможно.

    Способы и схемы подключения

    В зависимости от типа используемой нагрузки для электродвигателя, его конструктивных особенностей и характеристик, желаемого результата могут использоваться различные схемы подключения. Чаще всего, чтобы подключить трехфазный агрегат в качестве бытовой однофазной нагрузки используются конденсаторы, но их количество и способ введения в работу зависят от многих параметров. Поэтому далее мы рассмотрим различные варианты схем подключения электродвигателей.

    Без конденсаторов

    Чтобы подключить асинхронный электродвигатель к сети 220В вовсе не обязательно использовать емкостной элемент. Благодаря развитию полупроводниковых ключей и схем с их использованием вы можете  избежать ненужных потерь мощности. Для этого применяется транзисторный или динисторный ключ.

    Схема бесконденсаторного пуска треугольник

    Приведенная выше схема предназначена для пуска электродвигателей с малыми оборотами до 1500 об/мин и относительно небольшой мощностью.

    Работа схемы производится следующим образом:

    • при подаче напряжения на ввод провода подключаются к двум точкам мотора;
    •  напряжение на третью точку треугольника подается через времязадающую R-C  цепочку;
    • магазин сопротивлений R1 и R2 регулирует интервал сдвига за счет перемещения бегунка;
    • после насыщения конденсатора в цепочке динистор VS1 пропускает сигнал на открытие симистора VS2.

    Если же подключение электрического агрегата предусматривает большую пусковую нагрузку и требует работы на высоких оборотах – до 3000об/мин, то необходимо применять аналогичную схему электронного ключа с двумя симисторами и отдельными времязадающими элементами для каждого из них. Но обмотки электрической машины будут подключаться по схеме разомкнутой звезды. Работа схемы аналогична предыдущей:

    Схема бесконденсаторного пуска звезда

    С конденсаторами

    Использование емкостных элементов, чтобы подключить электродвигатель, является наиболее распространенным способом. Для этого используются два конденсатора, один из которых пусковой, а второй рабочий.  Пусковой вводится кратковременно, дополнительная емкость позволяет увеличить сдвиг напряжения в соответствующей обмотке и создать большее усилие.

    Схема включения с конденсаторами

    Как видите из рисунка выше, на электродвигатель подается однофазное напряжение между точками L и N. Асинхронный двигатель АД подключается к ним двумя обмотками,  а к третей та же фаза подключается через  контакты кнопочного переключателя SA1 и SA2, коммутирующие параллельно включенные конденсаторы C1 и C2.

    Включение асинхронного электродвигателя происходит по такому принципу:

    • Нажатием кнопки Пуск приводятся в движение две пары контактов — SA1 и SA2, после чего в обмотках начинает протекать электроток;
    • После отпускания кнопки контакт SA2 остается замкнутым, подавая фазу со смещением через конденсатор  C1, а SA1 размыкается, выводя из цепи пусковой конденсатор C2;
    • Пусковые характеристики возвращаются к номинальным и двигатель работает в штатном режиме.

    Но при таком подключении асинхронного двигателя в сеть 220В будет обеспечиваться вращение ротора лишь в одну сторону. Поэтому для выполнения реверсивных движений понадобится полностью перебирать точки подключения или использовать другой способ.

    С реверсом

    Для некоторых технологических операций требуется осуществлять прямое и обратное вращение вала электродвигателя, поэтому подключение должно менять последовательность чередования напряжения на обмотках. Разумеется, что вручную выполнять подобные операции нецелесообразно, особенно, когда смена направления производится по нескольку раз в час.

    Поэтому осуществление реверса электродвигателя, гораздо эффективнее сделать через коммутатор с двумя парами контактов, имеющих противоположную логику. Это может быть тумблер или поворотный переключатель, включаемый в схему вместо обычной кнопки:

    Включение трехфазного двигателя с реверсом

    Как видите на рисунке, принцип подключения ничем не отличается от рассмотренной схемы с конденсатором с той лишь разницей, что переключатель SA имеет два устойчивых положения. В одном случае он подает напряжение на конденсаторы с фазы, во втором с нулевого проводника. Поэтому чередование обмоток меняется на противоположное простым переключением тумблера.

    Используя пускатель

    Если в работе электродвигатель создает большую пусковую и рабочую нагрузку, то лучше подключить его через магнитный пускатель или контактор. Который обеспечит надежную коммутацию и последующую защиту электрической машины от аварийных ситуаций.

    Схема включения через магнитный пускатель

    Как видите на схеме, включение осуществляется за счет нажатия кнопки Пуск, которая замыкает цепь управления катушкой пускателя и подает напряжение на пусковой конденсатор Спуск.  При протекании тока по катушке пускателя К1 происходит замыкание ее контактов К1.1 и К1.2. Первые предназначены для замыкания питающей линии электродвигателя. Вторые шунтируют кнопку Пуск, которая возвращается в отключенное состояние и размыкает цепь питания пускового конденсатора.

    Как подбирать конденсаторы?

    Если вы собрались подключить электродвигатель, то выбор  конденсатора осуществляется по таким принципам:

    • Номинальное напряжение выбирается из соотношения 1,15 от подаваемого на мотор. Если брат больше, это увеличит стоимость установки и ее габариты. Если емкость рассчитать впритык, конденсатор перегреется и перегорит.
    • Тип конденсатора – наиболее распространенные модели – бумажные, но они обладают большими габаритами. Поэтому выгоднее приобретать полипропиленовые. От электролитических лучше отказаться.
    • Чтобы выбрать емкость пускового и рабочего конденсатора, необходимо воспользоваться таблицей соответствия по мощности электродвигателя:

    Таблица: определение емкости конденсаторов

    Мощность трехфазного электродвигателя, кВт0,40,60,81,11,52,2
    Минимальная емкость конденсатора Ср , мкф406080100150230
    Емкость пускового конденсатора (Сп), мкф80120160200250300

    Если нужной вам мощности в таблице нет, можно воспользоваться расчетными формулами:

    Сраб = (2800*I)/U — для включения трехфазного двигателя звездой

    Cраб = (4800*I)/U — для включения трехфазного двигателя треугольником

    где I – величина ток, протекающего через обмотки электродвигателя, а U – напряжение сети. Чтобы узнать емкость пускового конденсатора для подключения трехфазного агрегата, необходимо полученную величину рабочего умножить на два.

    Видео в помощь

    Подключение электродвигателя

    Подключение асинхронного двигателя

    Трехфазный переменный ток

    Электрическая сеть трехфазного переменного тока получила наиболее широкое распространение среди электрических систем передачи энергии. Главным преимуществом трехфазной системы по сравнению с однофазной и двухфазной системами является ее экономичность. В трехфазной цепи энергия передается по трем проводам, а токи текущие в разных проводах сдвинуты относительно друг друга по фазе на 120°, при этом синусоидальные ЭДС на разных фазах имеют одинаковую частоту и амплитуду.

    Трехфазный ток (разница фаз 120°)

    Звезда и треугольник

    Трехфазная обмотка статора электродвигателя соединяется по схеме «звезда» или «треугольник» в зависимости от напряжения питания сети. Концы трехфазной обмотки могут быть: соединены внутри электродвигателя (из двигателя выходит три провода), выведены наружу (выходит шесть проводов), выведены в распределительную коробку (в коробку выходит шесть проводов, из коробки три).

    Фазное напряжение — разница потенциалов между началом и концом одной фазы. Другое определение: фазное напряжение это разница потенциалов между линейным проводом и нейтралью.

    Линейное напряжение — разность потенциалов между двумя линейными проводами (между фазами).

    Внимание: Несмотря на то, что мощность для соединений в звезду и треугольник вычисляется по одной формуле, подключение одного и того же электродвигателя разным способом в одну и туже электрическую сеть приведет к потреблению разной мощности. При этом не правильное подключение электродвигателя, может привести к расплавлению обмоток статора.

    Пример: Допустим электродвигатель был подключен по схеме «звезда» к трехфазной сети переменного тока Uл=380 В (соответственно Uф=220 В) и потреблял ток Iл=1 А. Полная потребляемая мощность:

    S = 1,73∙380∙1 = 658 Вт.

    Теперь изменим схему соединения на «треугольник», линейное напряжение останется таким же Uл=380 В, а фазовое напряжение увеличится в корень из 3 раз Uф=Uл=380 В. Увеличение фазового напряжения приведет к увеличению фазового тока в корень из 3 раз. Таким образом линейный ток схемы «треугольник» будет в три раза больше линейного тока схемы «звезда». А следовательно и потребляемая мощность будет в 3 раза больше:

    S = 1,73∙380∙3 = 1975 Вт.

    Таким образом, если двигатель рассчитан на подключение к трехфазной сети переменного тока по схеме «звезда», подключение данного электродвигателя по схеме «треугольник» может привести к его поломке.

    Если в нормальном режиме электродвигатель подключен по схеме «треугольник», то для уменьшения пусковых токов на время пуска его можно соединить по схеме звезда. При этом вместе с пусковым током уменьшится также пусковой момент.

    Подключение электродвигателя по схеме звезда и треугольник

    Обозначение выводов статора трехфазного электродвигателя

    Обозначение выводов обмоток статора вновь разрабатываемых трехфазных машин согласно ГОСТ 26772-85

    Схема соединения обмоток, наименование фазы и выводаОбозначение вывода
    НачалоКонец
    Открытая схема (число выводов 6)
    первая фазаU1U2
    вторая фазаV1V2
    третья фазаW1W2
    Соединение в звезду (число выводов 3 или 4)
    первая фазаU
    вторая фазаV
    третья фазаW
    точка звезды (нулевая точка)N
    Соединение в треугольник (число выводов 3)
    первый выводU
    второй выводV
    третий выводW

    Обозначение выводов обмоток статора ранее разработанных и модернизируемых трехфазных машин согласно ГОСТ 26772-85

    Схема соединения обмоток, наименование фазы и выводаОбозначение вывода
    НачалоКонец
    Открытая схема (число выводов 6)
    первая фазаC1C4
    вторая фазаC2C5
    третья фазаC3C6
    Соединение звездой (число выводов 3 или 4)
    первая фазаC1
    вторая фазаC2
    третья фазаC3
    нулевая точка0
    Соединение треугольником (число выводов 3)
    первый выводC1
    второй выводC2
    третий выводC3

    Подключение трехфазного асинхронного двигателя к однофазной сети с помощью фазосдвигающего элемента

    Трехфазные асинхронные электродвигатели могут быть подключены к однофазной сети с помощью фазосдвигаюших элементов. При этом электродвигатель будет работать либо в режиме однофазного двигателя с пусковой обмоткой (рисунок а, б, г) либо в режиме конденсаторного двигателя с постоянно включенным рабочим конденсатором (рисунок в, д, е).

    Схемы подключения трехфазного асинхронного электродвигателя к однофазной сети

    Схемы приведенные на рисунке «а», «б», «д» применяются, когда выведены все шесть концов обмотки. Электродвигатели с соединением обмоток согласно схемам «а», «б», «г» практически равноценны двигателям, которые спроектированы как однофазные электродвигатели с пусковой обмоткой. Номинальная мощность при этом состовляет 40-50% от мощности в трехфазном режиме, а при работе с рабочим конденсатором 75-80%.

    Емкость рабочего конденсатора при частоте тока 50 Гц для схем «в», «д», «е» примерно рассчитывается соответственно по формулам:

    • ,где Cраб — емкость рабочего конденсатора, мкФ,
    • Iном – номинальный (фазный) ток статора трехфазного двигателя, А,
    • U1 – напряжение однофазной сети, В.

    Управление асинхронным двигателем

    Прямое подключение к сети питания

    Использование магнитных пускателей позволяет управлять асинхронными электродвигателями путем непосредственного подключения двигателя к сети переменного тока.

    С помощью магнитных пускателей можно реализовать схему:

    • нереверсивного пуска: пуск и остановка;
    • реверсивного пуска: пуск, остановка и реверс.

    Использование теплового реле позволяет осуществить защиту электродвигателя от величин тока намного превышающих номинальное значение.

    Нереверсивная схема

    Нереверсивная схема подключения трехфазного асинхронного электродвигателя к трехфазной сети переменного электрического тока через магнитный пускатель
    L1, L2, L3 — контакты для подключения к сети трехфазного переменного тока, QF1 — автоматический выключатель, SB1 — кнопка остановки, SB2 — кнопка пуска, KM1 — магнитный пускатель, KK1 — тепловое реле, HL1 — сигнальная лампа, M — трехфазный асинхронный двигатель

    Реверсивная схема

    Реверсивная схема подключения трехфазного асинхронного электродвигателя к трехфазной сети переменного электрического тока через магнитные пускатели
    L1, L2, L3 — контакты для подключения к сети трехфазного переменного тока, QF1 — автоматический выключатель, KM1, KM2 — магнитные пускатели, KK1 — тепловое реле, Mм — трехфазный асинхронный двигатель, SB1 — кнопка остановки, SB2 — кнопка пуска «вперед», SB3 — кнопка пуска «назад» (реверс), HL1, HL2 — сигнальные лампы

    Частотное управление асинхронным электродвигателем

    Для регулирования скорости вращения и момента асинхронного двигателя используют частотный преобразователь. Принцип действия частотного преобразователя основан на изменении частоты и напряжения переменного тока.

    Функциональная схема частотно-регулируемого привода

      В зависимости от функционала частотные преобразователи реализуют следующие методы регулирования асинхронным электродвигателем:
    • скалярное управление;
    • векторное управление.

    Скалярное управление является простым и дешевым в реализации, но имеет следующие недостатки — медленный отклик на изменение нагрузки и небольшой диапазон регулирования. Поэтому скалярное управление обычно используется в задачах, где нагрузка либо постоянна, либо изменяется по известному закону (например, управление вентиляторами).

    Скалярное управление асинхронным двигателем с датчиком скорости

    Векторное управление используется в задачах, где требуется независимо управлять скоростью и моментом электродвигателя (например, лифт), что, в частности, позволяет поддерживать постоянную скорость вращения при изменяющемся моменте нагрузки. При этом векторное управление является самым эффективным управлением с точки зрения КПД и увеличения времени работы электродвигателя.

    Среди векторных методов управления асинхронными электродвигателями наиболее широкое применение получили: полеориентированное управление и прямое управление моментом.

    Полеориентированное управления асинхронным электродвигателем по датчику положения ротора

    Полеориентированное управление позволяет плавно и точно управлять параметрами движения (скоростью и моментом), но при этом для его реализации требуется информация о направлениии вектора потокосцепления ротора двигателя.

      По способу получения информации о положении потокосцепления ротора электродвигателя выделяют:
    • полеориентированное управление по датчику;
    • полеориентированное управление без датчика: положение потокосцепления ротора вычисляется математически на основе той информации, которая имеется в частотном преобразователе (напряжение питания, напряжения и токи статора, сопротивление и индуктивность обмоток статора и ротора, количество пар полюсов двигателя).

    Полеориентированное управления асинхронным электродвигателем без датчика положения ротора

    Прямое управление моментом имеет простую схему и высокую динамику работы, но при этом высокие пульсации момента и тока.

    Show & Tell: асинхронные двигатели переменного тока

    Двигатели переменного тока просты в управлении, надежны и экономичны для общего применения. По этим причинам они являются наиболее популярным типом электродвигателей в различных отраслях промышленности. В этом посте мы кратко представим асинхронные двигатели и продемонстрируем, как ими управлять.

    Немного истории

    Термин «индукция» в асинхронных двигателях (также известных как асинхронные двигатели) относится к электромагнитной индукции, которая является основной теорией работы асинхронных двигателей.Я объясню это в следующем разделе. Согласно Википедии, с изобретением асинхронного двигателя переменного тока связано несколько имен. В 1824 году французский физик Франсуа Араго открыл вращающиеся магнитные поля и ввел термин «Вращения Араго» (или «Диск Араго»). В 1831 году Майкл Фарадей смог объяснить эффекты, представив теорию электромагнитной индукции. В 1879 году Уолтер Бейли продемонстрировал первый примитивный асинхронный двигатель, включив и выключив его вручную.Первые трехфазные асинхронные двигатели без коммутатора переменного тока были независимо изобретены Галилео Феррарисом в 1885 году и Николой Тесла в 1887 году. Оба опубликовали статьи в 1888 году, чтобы объяснить эти технологии. Тесла подал заявку на патенты США в 1887 году и получил некоторые из этих патентов в 1888 году. Джордж Вестингауз, который в то время разрабатывал систему переменного тока, лицензировал патенты Теслы в 1888 году и приобрел опцион на патент США на концепцию асинхронного двигателя Феррариса, чтобы развивать технологию дальше.General Electric (GE) начала разрабатывать трехфазные асинхронные двигатели в 1891 году. К 1896 году General Electric и Westinghouse подписали соглашение о перекрестном лицензировании на конструкцию ротора со стержневой обмоткой, позже названного ротором с короткозамкнутым ротором. Та же концепция используется и сегодня.

    Асинхронные двигатели

    идеальны для приложений, требующих непрерывной работы в одном направлении , таких как конвейеры, миксеры и вращающиеся знаки. Они рассчитаны на продолжительный режим работы и обычно служат долгое время из-за своей простой конструкции.

    Конструкция и теория эксплуатации

    На этом изображении показана структура асинхронного двигателя переменного тока, который является основным типом двигателей переменного тока с постоянными разделенными конденсаторами. Вращающийся элемент, ротор, поддерживается в корпусе двигателя двумя шарикоподшипниками для длительного срока службы. Статор расположен вокруг ротора с тонким воздушным зазором. Выходной вал соединен с ротором. Подводящие провода подключаются к обмоткам статора.Фланцевый кронштейн запрессован в корпус двигателя для обеспечения качества.

    Поскольку переменный ток подается на медные обмотки статора, вокруг ротора создается вращающееся магнитное поле со скоростью колебаний переменного тока. Согласно правилу левой руки Флеминга, движущееся магнитное поле индуцирует ток на алюминиевых стержнях (проводнике) в стальном роторе, который генерирует свои собственные противоположные магнитные поля (закон Ленца). Магнитные поля от ротора затем взаимодействуют с вращающимся магнитным полем от статора, и ротор начинает вращаться.

    Теория работы асинхронного двигателя переменного тока может быть объяснена с помощью диска Arago , который представляет собой наблюдаемое явление, включающее правило правой руки Флеминга и правило левой руки Флеминга.

    Хотите узнать больше о теории работы двигателей переменного тока?

    Однофазные асинхронные двигатели

    Однофазные асинхронные двигатели предлагаются с разным напряжением и частотой для разных регионов мира.Для США однофазные двигатели обычно предлагаются на 110/115 вольт или 220/230 вольт, которые легко доступны. 60 Гц — типичная частота источника питания.

    Вот действующие схемы подключения этих стандартных 3-проводных двигателей. FYI направление вращения двигателя указано, если смотреть со стороны выходного вала двигателя.

    Хотя принцип работы должен быть одинаковым для всех однофазных двигателей переменного тока с постоянным разделенным конденсатором, представленных на рынке, цвета выводных проводов могут быть разными для разных производителей.

    Для стандартного 3-проводного двигателя цвета проводов обычно белый, красный и черный. Черный всегда связан с нейтралью (N). И белый, и черный подключены к 2 клеммам специального конденсатора. Когда ток (L) подключен к черному или красному через клемму конденсатора, двигатель начнет вращаться в заданном направлении. Для двигателей с клеммной коробкой принцип работы такой же. Однако клеммы обозначены Z2, U2 и U1.

    Подключение конденсатора

    Для однофазных двигателей конденсатор важен для запуска.Без пускового момента, обеспечиваемого конденсатором, вам пришлось бы помогать запускать двигатель, вручную вращая вал. Это как старые пропеллеры старинного самолета. Убедитесь, что вы не забыли правильно подключить конденсатор. Это был очень распространенный случай устранения неполадок, когда я работал инженером службы поддержки.

    Вот пример подключения 4-контактного конденсатора и однофазного двигателя.

    Пусть вас не смущает количество выводов на конденсаторе.На схеме внутренней проводки ниже показано, что две ближайшие клеммы имеют внутреннее соединение. В электрическом отношении это то же самое, что и у традиционных конденсаторов с двумя выводами, которые имеют только по одному выводу с каждой стороны.

    Мы также сняли видео, чтобы продемонстрировать правильный способ подключения этих двигателей, включая автоматические выключатели, переключатели и конденсатор.

    Трехфазные асинхронные двигатели

    Трехфазные асинхронные двигатели обычно предлагаются в США на 220/230 В и 50/60 Гц.В некоторых случаях предлагается 460 вольт. Трехфазные двигатели могут работать либо с постоянной скоростью, либо с инвертором / частотно-регулируемым приводом для приложений с регулируемой скоростью.

    Вот действующие схемы подключения этих стандартных 3-проводных двигателей. FYI направление вращения двигателя указано, если смотреть со стороны выходного вала двигателя.

    Для трехпроводного трехфазного двигателя у нас такие же цвета проводов. Три фазы от источника питания обозначены L1 (R), L2 (S) и L3 (T).Подключите красный к L1 (R), белый к L2 (S) и черный к L3 (T). Для двигателей с клеммной коробкой клеммы имеют маркировку U, V и W. Принцип работы такой же. Чтобы переключить направление вращения, переключите любое из 2 соединений между R, S и T.

    При перегрузке или блокировке вала рекомендуется использовать либо электромагнитный переключатель, либо электронную тепловую функцию инвертора, чтобы предотвратить перегорание двигателя.

    Вы наверное обратили внимание, что на схеме подключения нет конденсатора .Для однофазных двигателей требуется конденсатор для создания многофазного источника питания. Для трехфазных двигателей конденсатор не требуется. Мы также сняли видео, чтобы продемонстрировать правильную проводку.

    И последнее, но не менее важное. Не забудьте электрически заземлить двигатели с помощью специальной клеммы защитного заземления (PE), чтобы избежать удара или травм со стороны персонала.

    Вот и все, что касается подключения однофазных и трехфазных асинхронных двигателей.Следите за новостями в следующем посте, где я расскажу о подключении других типов двигателей переменного тока, таких как реверсивные двигатели и двигатели с электромагнитным тормозом.

    Не забудьте подписаться!

    Еще немного истории …

    Вот видео, в котором кратко объясняется история разработки двигателей переменного тока Oriental Motor с 1966 года, когда серия K считалась фактическим стандартом для всех двигателей переменного тока, до появления серий KII и KIIS.

    Что такое трехфазный двигатель и как он работает?

    Трехфазные двигатели (также численно обозначаемые как трехфазные двигатели) широко используются в промышленности и стали рабочей лошадкой многих механических и электромеханических систем из-за их относительной простоты, проверенной надежности и длительного срока службы. Трехфазные двигатели являются одним из примеров типа асинхронного двигателя, также известного как асинхронный двигатель, который работает на принципах электромагнитной индукции.Хотя существуют также однофазные асинхронные двигатели, эти типы асинхронных двигателей реже используются в промышленных приложениях, но широко используются в бытовых приложениях, таких как пылесосы, компрессоры холодильников и кондиционеры, из-за использования однофазных двигателей. фаза переменного тока в домах и офисах. В этой статье мы обсудим, что такое трехфазный двигатель, и опишем, как он работает. Чтобы получить доступ к другим ресурсам о двигателях, обратитесь к одному из наших других руководств по двигателям, охватывающим двигатели переменного тока, двигатели постоянного тока, асинхронные двигатели, или к более общей статье о типах двигателей.Полный список статей о моторах можно найти в разделе статей по теме.

    Что такое трехфазное питание?

    Чтобы понять трехфазные двигатели, полезно сначала понять трехфазную мощность.

    При производстве электроэнергии переменный ток (AC), создаваемый генератором, имеет характеристику, заключающуюся в том, что его амплитуда и направление меняются со временем. Если показано графически с амплитудой по оси Y и временем по оси X, соотношение между напряжением или током в зависимости отвремя будет напоминать синусоидальную волну, как показано ниже:

    Рисунок 1 — Однофазный переменный ток

    Изображение предоставлено: Фуад А. Саад / Shutterstock.com

    Электроэнергия, подаваемая в дома, является однофазной, это означает, что имеется один токоведущий провод плюс нейтраль и заземление. В трехфазном питании, которое используется в промышленных и коммерческих условиях для работы более крупного оборудования, которое требует большей мощности, есть три проводника электрического тока, каждый из которых работает с разностью фаз 120 o из 2π / 3. радианы друг от друга.Если рассматривать графически, каждая фаза будет выглядеть как отдельная синусоида, которая затем объединяется, как показано на изображении ниже:

    Рисунок 2 — Трехфазное электрическое питание со сдвигом фаз 120
    o между каждой фазой

    Изображение предоставлено: teerawat chitprung / Shutterstock.com

    Трехфазные двигатели питаются от электрического напряжения и тока, которые генерируются как трехфазная входная мощность и затем используются для выработки механической энергии в виде вращающегося вала двигателя.

    Что такое трехфазный двигатель?

    Трехфазные двигатели — это тип двигателя переменного тока, который является конкретным примером многофазного двигателя. Эти двигатели могут быть асинхронными двигателями (также называемыми асинхронными двигателями) или синхронными двигателями. Двигатели состоят из трех основных компонентов — статора, ротора и корпуса.

    Статор состоит из ряда пластин из легированной стали, вокруг которых намотана проволока, образуя индукционные катушки, по одной катушке на каждую фазу источника электроэнергии.Катушки статора питаются от трехфазного источника питания.

    Ротор также содержит индукционные катушки и металлические стержни, соединенные в цепь. Ротор окружает вал двигателя и представляет собой компонент двигателя, который вращается для выработки механической энергии на выходе двигателя.

    Корпус двигателя удерживает ротор с валом двигателя на комплекте подшипников для уменьшения трения вращающегося вала. Корпус имеет торцевые крышки, которые удерживают подшипниковые опоры и вентилятор, прикрепленный к валу двигателя, который вращается при вращении вала двигателя.Вращающийся вентилятор втягивает окружающий воздух снаружи корпуса и заставляет воздух проходить через статор и ротор для охлаждения компонентов двигателя и рассеивания тепла, которое генерируется в различных катушках от сопротивления катушки. Кожух также обычно имеет выступающие механические ребра снаружи, которые служат для дальнейшего отвода тепла в наружный воздух. Торцевая крышка также обеспечит место для электрических соединений для трехфазного питания двигателя.

    Как работает трехфазный двигатель?

    Трехфазные двигатели работают по принципу электромагнитной индукции, который был открыт английским физиком Майклом Фарадеем еще в 1830 году.Фарадей заметил, что когда проводник, такой как катушка или проволочная петля, помещается в изменяющееся магнитное поле, в проводнике возникает наведенная электродвижущая сила или ЭДС. Он также заметил, что ток, протекающий в проводнике, таком как провод, будет генерировать магнитное поле и что магнитное поле будет изменяться, когда ток в проводе изменяется по величине или направлению. Это выражается в математической форме, связывая ротор электрического поля со скоростью изменения магнитного потока во времени:

    Эти принципы составляют основу для понимания того, как работает трехфазный двигатель.

    На рисунке 3 ниже показан закон индукции Фарадея. Обратите внимание, что наличие ЭДС зависит от движения магнита, которое приводит к изменению магнитного поля.

    Рисунок 3 — Принцип электромагнитной индукции

    Изображение предоставлено: Фуад А. Саад / Shutterstock.com

    Для асинхронных двигателей, когда статор питается от трехфазного источника электроэнергии, каждая катушка генерирует магнитное поле, полюса которого (северный или южный) меняют положение, когда переменный ток колеблется в течение полного цикла.Поскольку каждая из трех фаз переменного тока сдвинута по фазе на 120, или , магнитная полярность трех катушек не одинакова в один и тот же момент времени. Это условие приводит к тому, что статор производит так называемое RMF или вращающееся магнитное поле. Поскольку ротор находится в центре катушек статора, изменяющееся магнитное поле статора индуцирует ток в катушках ротора, что, в свою очередь, приводит к возникновению противоположного магнитного поля, создаваемого ротором. Поле ротора стремится выровнять свою полярность относительно поля статора, в результате к валу двигателя прикладывается чистый крутящий момент, и он начинает вращаться, пытаясь выровнять свое поле.Обратите внимание, что в трехфазном асинхронном двигателе нет прямого электрического соединения с ротором; магнитная индукция вызывает вращение двигателя.

    В трехфазных асинхронных двигателях ротор стремится поддерживать соосность с RMF статора, но никогда не достигает этого, поэтому асинхронные двигатели также называют асинхронными. Явление, которое заставляет скорость ротора отставать от скорости RMF, известно как скольжение, что выражается как:

    , где N r — скорость ротора, а N s — синхронная скорость вращающегося поля (RMF) статора.

    Синхронные двигатели работают аналогично асинхронным двигателям, за исключением того, что в случае синхронного двигателя поля статора и ротора синхронизированы, так что RMF статора заставляет ротор вращаться с точно такой же скоростью вращения (в синхронизация — следовательно, скольжение равно 0). Для получения дополнительной информации о том, как это сделать, обратитесь к статьям о реактивных двигателях и бесщеточных двигателях постоянного тока. Обратите внимание, что синхронные двигатели, в отличие от асинхронных, не нуждаются в питании от сети переменного тока.

    Контроллеры двигателей для трехфазных двигателей

    Скорость, создаваемая трехфазным двигателем переменного тока, является функцией частоты сети переменного тока, поскольку она является источником RMF в обмотках статора. Поэтому некоторые контроллеры двигателей переменного тока работают, используя вход переменного тока для генерации модулированной или управляемой частоты на входе двигателя, тем самым управляя скоростью двигателя. Другой подход, который можно использовать для управления скоростью двигателя, — это изменение скольжения (описанное ранее).Если скольжение увеличивается, скорость двигателя (то есть скорость ротора) уменьшается.

    Чтобы узнать больше о подходах к управлению двигателями, просмотрите нашу статью о контроллерах двигателей переменного тока.

    Сводка

    В этой статье представлено краткое обсуждение того, что такое трехфазные двигатели и как они работают. Чтобы узнать больше о двигателях, ознакомьтесь с нашими соответствующими статьями, перечисленными ниже. Для получения информации о других продуктах обратитесь к нашим дополнительным руководствам или посетите платформу Thomas Supplier Discovery Platform, чтобы найти потенциальные источники поставок или просмотреть подробную информацию о конкретных продуктах.

    Источники:
    1. https://kebblog.com/how-a-3-phase-ac-induction-motor-works/
    2. https://www.engineering.com/ElectronicsDesign/ElectronicsDesignArticles/ArticleID/15848/Three-Phase-Electric-Power-Explained.aspx
    3. http://www.oddparts.com/oddparts/acsi/defines/poles.htm
    4. http://www.gohz.com/how-to-determine-the-pole-number-of-an-induction-motor
    5. https://www.elprocus.com/induction-motor-types-advantages/
    6. https: // www.intechopen.com/books/electric-machines-for-smart-grids-applications-design-simulation-and-control/single-phase-motors-for-household-applications
    7. https://www.worldwideelectric.net/resource/construction-ac-motors/

    Прочие изделия для двигателей

    Больше от Machinery, Tools & Supplies

    типов однофазных асинхронных двигателей | Схема электрических соединений однофазного асинхронного двигателя

    Однофазные асинхронные двигатели традиционно используются в жилых помещениях, таких как потолочные вентиляторы, кондиционеры, стиральные машины и холодильники.Эти двигатели состоят из двигателей с расщепленной фазой, экранированных полюсов и конденсаторных двигателей.

    Двигатель переменного тока (переменного тока) — это электромеханическое устройство, которое преобразует электрическую энергию в механическое движение за счет использования электромагнетизма и изменения частоты и напряжения, производимых коммунальной компанией или контроллером двигателя.

    Электродвигатели переменного тока составляют основу потребления электроэнергии в мире, потому что они делают так много и с минимальным вмешательством человека.Электродвигатель переменного тока на сегодняшний день является самым простым и дешевым двигателем, используемым в промышленности.

    Рис.1: Статор и ротор двигателя

    Электродвигатель переменного тока состоит из очень небольшого числа частей, и пока они не выходят за рамки своих рабочих характеристик, они могут проработать до 100 лет с минимальным техобслуживанием. Основными частями двигателя переменного тока являются ротор и статор, как показано на рисунке 1. .

    Ротор — это вращающаяся часть двигателя переменного тока, которая поддерживается набором подшипников, обеспечивающих безупречное вращение внутри концевых колец.Подшипники запрессованы в набор концевых раструбов, заполненных смазкой для обеспечения плавного движения.

    Статор — это неподвижная или стационарная часть двигателя, к которой прикреплены концевые раструбы, а обмотки намотаны вокруг многослойных листов железа, которые создают электромагнитное вращающееся поле, когда катушка находится под напряжением.

    Двигатели — это очень универсальные электромеханические компоненты, поскольку они могут иметь размер, конфигурацию и конструкцию, подходящую для любой ситуации или для выполнения любых задач.Большой процент двигателей, используемых в промышленности, составляют однофазные и трехфазные двигатели, как показано на рисунке 2.

    Рис.2: Трехфазный асинхронный двигатель (Изображение предоставлено Википедией)

    Однофазные асинхронные двигатели

    Однофазный асинхронный двигатель — это электродвигатель, работающий от одной формы волны переменного тока. Однофазные асинхронные двигатели используются в жилых помещениях для электроприборов переменного тока в одиночных или многоквартирных домах. Существует три типа однофазных асинхронных двигателей: двигатели с экранированными полюсами, двигатели с разделением фаз и конденсаторные двигатели.

    Двигатель с экранированными полюсами

    Двигатели с экранированными полюсами , , как показано на рисунке 3, представляют собой однофазные асинхронные двигатели, которые используются для работы небольших охлаждающих вентиляторов внутри холодильников компьютеров. Они принадлежат к семейству асинхронных двигателей с короткозамкнутым ротором, которые используются в ограниченном количестве приложений, требующих менее 3/4 лошадиных сил, обычно в диапазоне от 1/20 до 1/6 лошадиных сил.

    Самая большая нагрузка: двигатель с экранированным полюсом может повернуть очень легкий компонент, способный вращаться с низкой плотностью вращения. . Обычно, когда двигатели с экранированными полюсами выходят из строя, их выбрасывают в мусорную корзину и покупают новый.

    Рис.3: Двигатель с экранированными полюсами

    Рис.4: Схема электрических соединений двигателя с экранированными полюсами

    Полюса статора снабжены дополнительной обмоткой в ​​каждом углу, называемой обмоткой оттенка , как показано на рис.4 . Эти обмотки не имеют электрического соединения для запуска, но используют индуцированный ток для создания вращающегося магнитного поля.

    Полюсная конструкция двигателя с экранированными полюсами позволяет создавать вращающееся магнитное поле, задерживая нарастание магнитного потока. Медный проводник изолирует заштрихованную часть полюса, образуя полный виток вокруг него. В заштрихованной части магнитный поток увеличивается, но задерживается током, индуцированным в медном экране. Магнитный поток в незатененной части увеличивается с током обмотки, формирующим вращающееся поле.

    Электродвигатель с разделенной фазой

    Асинхронный двигатель с разделенной фазой — это однофазный асинхронный двигатель с двумя обмотками, называемыми рабочей обмоткой, вторичной пусковой обмоткой и центробежным переключателем, как показано на рисунке 6. Двигатели с разделенной фазой обычно работают при 1/20 л.с. TO 1 / 3 л.с.

    Эти двигатели с короткозамкнутым ротором являются ступенью выше двигателей с экранированными полюсами, потому что они могут немного больше работать с более тяжелой нагрузкой, приложенной к валу ротора.

    Рис.5: Двигатель с расщепленной фазой

    Рис.6: Схема электрических соединений двигателя с расщепленной фазой

    Электродвигатель с расщепленной фазой используется в приложениях, требующих от 1/20 л.с. до 1/3 л.с., что означает, что он может вращать что угодно, от лопастей потолочного вентилятора, ванн стиральных машин, электродвигателей нагнетателей для нефтяных печей и небольших насосов.

    Центробежный выключатель — это нормально замкнутое управляющее устройство, подключенное к пусковой обмотке. Цель этой конфигурации состоит в том, что пусковая обмотка двигателя будет отключена от цепи, когда двигатель достигнет 75-80% своей номинальной скорости.Несмотря на то, что он считается надежным двигателем, этот центробежный переключатель является подвижной частью, которая иногда не включается, когда двигатель перестает вращаться.

    Принцип работы электродвигателей с разделенной фазой
    • Для пуска двигателя с расщепленной фазой пусковая и пусковая обмотки должны быть соединены параллельно
    • При 75% полной скорости центробежный выключатель размыкается, отключая пусковую обмотку.
    • Поскольку пусковая обмотка отключена от цепи, двигатель работает через пусковую обмотку.
    • Для отключения питания двигателя с расщепленной фазой при скорости 40% полной нагрузки центробежный переключатель замыкается. Выключение мотора.

    Конденсаторные двигатели

    Однофазные конденсаторные двигатели — это следующий шаг в семействе однофазных асинхронных двигателей. Конденсаторные двигатели содержат такую ​​же пусковую и рабочую обмотку, что и двигатель с расщепленной фазой, за исключением конденсатора, который дает двигателю больший крутящий момент при запуске или во время работы. Конденсатор предназначен для возврата напряжения в систему при отсутствии напряжения и синусоидального сигнала ЦАП в однофазной системе.

    В однофазной системе переменного тока имеется только одна форма волны напряжения, и в течение одного цикла из 60 гц, необходимых для выработки напряжения, напряжение не создается в двух точках. Задача конденсатора — заполнить эту пустоту, чтобы двигатель всегда находился под напряжением, что означает, что во время работы двигателя создается большой крутящий момент.

    Конденсаторные двигатели трех типов: конденсаторный пуск, конденсаторный двигатель и конденсаторный пуск и пуск.

    Асинхронный двигатель с конденсаторным пуском

    Конденсаторный пуск асинхронные двигатели, как показано на рисунке 7, представляют собой однофазный асинхронный двигатель, в котором конденсатор включен последовательно с пусковой обмоткой и центробежным переключателем двигателя.Эта конфигурация дает двигателю более высокую пусковую мощность, но приложение не требует большой мощности во время работы. Во время работы инерция нагрузки играет большую роль в работе двигателя, когда есть проблема с двигателем, обычно это происходит из-за неисправного конденсатора. Двигатель обычно не вращается, если внешняя сила не раскручивает вал; после запуска он будет продолжать нормально работать до тех пор, пока с двигателя не будет отключено питание.

    Электродвигатели с конденсаторным пуском обычно используются в установках переменного тока, больших электродвигателях воздуходувок и вентиляторах конденсатора.Конденсатор этих двигателей иногда встроен в двигатель или расположен на удалении от двигателя, что упрощает замену.

    Рис.7: Конденсаторный пусковой двигатель

    Работа конденсаторного двигателя
    • Имеет пусковую обмотку, пусковую обмотку и центробежный переключатель, который размыкается при скорости полной нагрузки от 60 до 80%, как показано на рисунке 8.
    • Пусковая обмотка и конденсатор больше не используются после размыкания центробежного переключателя, как показано на рисунке 9.
    • Конденсатор используется только для пуска с высоким крутящим моментом.

    Рис.8: Пусковой конденсатор

    Рис.9: Центробежный переключатель

    Конденсаторный асинхронный двигатель

    Асинхронные двигатели с конденсаторным запуском , как видно на рисунках 10 и 11, очень похожи на индукционные электродвигатели с конденсаторным запуском, за исключением того, что пусковая обмотка и рабочая обмотка всегда остаются в цепи. Для этого типа двигателя требуется низкий пусковой крутящий момент, но он должен поддерживать постоянный крутящий момент во время работы.Этот тип двигателя иногда можно встретить в компрессоре кондиционера. Пусковая обмотка постоянно подключена к конденсатору последовательно.

    Рис.10: Конденсаторный двигатель

    Рис.11: Конденсаторный двигатель

    Работа конденсатора
    • Использует конденсатор более низкого номинала, потому что конденсатор всегда находится в цепи на полной скорости нагрузки.
    • Используется для более высокого крутящего момента.

    Конденсатор пусковой конденсатор Асинхронный двигатель

    Конденсаторные асинхронные двигатели с пусковым конденсатором — это однофазные асинхронные двигатели, у которых есть конденсатор в пусковой обмотке и в ходовой обмотке, как показано на рисунках 12 и 13 (электрическая схема).Этот тип двигателя разработан для обеспечения высокого пускового момента и стабильной работы в таких приложениях, как большие водяные насосы.

    Рис.12: Конденсаторный пуск и конденсаторный двигатель

    Рис.13: Схема электрических соединений электродвигателя пускового конденсатора и работающего конденсатора

    Конденсатор пуск-конденсатор Работа двигателя

    • Состоит из двух конденсаторов
    • Один конденсатор включен последовательно с пусковой обмоткой; другой конденсатор включен последовательно с обмоткой хода.
    • Оба конденсатора имеют разные номиналы.
    • Конденсаторный пуск и запуск Двигатель имеет одинаковый пусковой крутящий момент и более высокий рабочий крутящий момент из-за большей емкости.
    • Конденсатор большей емкости для запуска и конденсатор меньшей емкости для работы.
    Трехфазный асинхронный двигатель

    : типы, работа и применение

    Трехфазный асинхронный двигатель — конструкция, работа и типы трехфазных асинхронных двигателей

    Двигатель используется для преобразования электрической формы энергии в механическую.По типу питания двигатели классифицируются как двигатели переменного тока и двигатели постоянного тока. В сегодняшнем посте мы обсудим различных типов трехфазных асинхронных двигателей с рабочими и приложениями.

    Асинхронный двигатель , особенно трехфазные асинхронные двигатели , широко используются в двигателях переменного тока для выработки механической энергии в промышленных приложениях. Почти 80% двигателей — это трехфазные асинхронные двигатели среди всех двигателей, используемых в промышленности. Следовательно, асинхронный двигатель является наиболее важным двигателем среди всех других типов двигателей.

    Что такое трехфазный асинхронный двигатель?

    Трехфазный асинхронный двигатель — это тип асинхронного двигателя переменного тока, который работает от трехфазного источника питания по сравнению с однофазным асинхронным двигателем, где для его работы требуется однофазное питание. Трехфазный питающий ток создает электромагнитное поле в обмотке статора, которое приводит к созданию крутящего момента в обмотке ротора трехфазного асинхронного двигателя, имеющего магнитное поле.

    Конструкция трехфазного асинхронного двигателя

    Конструкция асинхронного двигателя очень проста и надежна.Он состоит в основном из двух частей;

    Статор

    Как следует из названия, статор является неподвижной частью двигателя. Статор асинхронного двигателя состоит из трех основных частей;

    • Рама статора
    • Сердечник статора
    • Обмотка статора
    Рама статора

    Рама статора является внешней частью двигателя. Рама статора служит опорой для сердечника статора и обмотки статора.

    Придает механическую прочность внутренним частям двигателя. Рама имеет ребра на внешней поверхности для отвода тепла и охлаждения двигателя.

    Рама отлита для малых машин и изготовлена ​​для большой машины. В зависимости от области применения рама изготавливается из литой под давлением или сборной стали, алюминия / алюминиевых сплавов или нержавеющей стали.

    Сердечник статора

    Назначение сердечника статора — переносить переменный магнитный поток, который вызывает гистерезис и потери на вихревые токи.Для минимизации этих потерь сердечник ламинирован штамповкой из высококачественной стали толщиной от 0,3 до 0,6 мм.

    Эти штамповки изолированы друг от друга лаком. Все штамповки штампуются по форме сердечника статора и фиксируются его рамой статора.

    Внутренний слой сердечника статора имеет несколько пазов.

    Обмотка статора

    Обмотка статора расположена внутри пазов статора, имеющихся внутри сердечника статора. Трехфазная обмотка размещена как обмотка статора.А на обмотку статора подается трехфазное питание.

    Число полюсов двигателя зависит от внутреннего соединения обмотки статора и определяет скорость двигателя. Если количество полюсов больше, скорость будет меньше, а если количество полюсов меньше, скорость будет высокой. Полюса всегда попарно. Поэтому общее количество полюсов всегда четное число. Соотношение между синхронной скоростью и числом полюсов показано в уравнении ниже:

    N S = 120 f / P

    Где;

    • f = Частота питания
    • P = Общее количество полюсов
    • N с = Синхронная скорость

    Как конец обмотки, подключенный к клеммной коробке.Следовательно, в клеммной коробке шесть клемм (по две каждой фазы).

    В зависимости от применения и способа запуска двигателей обмотка статора подключается по схеме звезды или треугольника, и это осуществляется путем соединения клемм в клеммной коробке.

    Ротор

    Как следует из названия, ротор — это вращающаяся часть двигателя. По типу ротора асинхронный двигатель классифицируется как;

    • Асинхронный двигатель с короткозамкнутым ротором
    • Асинхронный двигатель с фазовой обмоткой / асинхронный двигатель с контактным кольцом

    Конструкция статора одинакова в обоих типах асинхронных двигателей.Мы обсудим типы роторов, используемых в трехфазных асинхронных двигателях, в следующем разделе, посвященном типам трехфазных асинхронных двигателей.

    Типы трехфазных асинхронных двигателей

    Трехфазные двигатели классифицируются в основном по двум категориям в зависимости от обмотки ротора (обмотка катушки якоря), то есть короткозамкнутого ротора и контактного кольца (двигатель с фазным ротором).

    • Асинхронный двигатель с короткозамкнутым ротором
    • Асинхронный двигатель с скользящим кольцом или с обмоткой ротора

    Связанная публикация: Бесщеточный двигатель постоянного тока (BLDC) — конструкция, принцип работы и применение

    индукционная катушка
    Squirrel Двигатель

    По форме этот ротор напоминает клетку белки.Поэтому этот двигатель известен как асинхронный двигатель с короткозамкнутым ротором.

    Конструкция этого типа ротора очень проста и надежна. Итак, почти 80% асинхронного двигателя — это асинхронный двигатель с короткозамкнутым ротором.

    Ротор состоит из многослойного цилиндрического сердечника и имеет пазы на внешней периферии. Прорези не параллельны, но перекошены под некоторым углом. Это помогает предотвратить магнитную блокировку между статором и зубьями ротора. Это обеспечивает плавную работу и снижает гудение.Увеличивает длину проводника ротора, за счет чего увеличивается сопротивление ротора.

    Ротор с короткозамкнутым ротором состоит из стержней ротора вместо обмотки ротора. Штанги ротора изготовлены из алюминия, латуни или меди.

    Стержни ротора постоянно закорочены концевыми кольцами. Таким образом, он делает полностью закрытый путь в цепи ротора. Стержни ротора приварены или скреплены концевыми кольцами для обеспечения механической поддержки.

    Короткое замыкание стержней ротора. Следовательно, невозможно добавить внешнее сопротивление в цепь ротора.

    В роторах этого типа не используются контактные кольца и щетки. Следовательно, конструкция этого типа двигателя проще и надежнее.

    Асинхронный двигатель с контактным кольцом или с фазным ротором

    Асинхронный двигатель с контактным кольцом также известен как двигатель с фазным ротором . Ротор состоит из пластинчатого цилиндрического сердечника с прорезями на внешней периферии. Обмотка ротора размещена внутри пазов.

    В этом типе ротора обмотка ротора намотана таким образом, что число полюсов обмотки ротора совпадает с числом полюсов обмотки статора.Обмотка ротора может быть соединена звездой или треугольником.

    Концевые выводы обмоток ротора соединены с контактными кольцами. Итак, этот двигатель известен как асинхронный двигатель с контактным кольцом.

    Внешнее сопротивление может легко подключаться к цепи ротора через контактное кольцо и щетки. И это очень полезно для управления скоростью двигателя и улучшения пускового момента трехфазного асинхронного двигателя.

    Электрическая схема трехфазного асинхронного двигателя с контактным кольцом и внешним сопротивлением показана на рисунке ниже.

    Внешнее сопротивление используется только для пусковых целей. Если он остается подключенным во время работы, это приведет к увеличению потерь в меди в роторе.

    Высокое сопротивление ротора хорошо для начальных условий. Таким образом, внешнее сопротивление подключено к цепи ротора во время запуска.

    Когда двигатель работает со скоростью, близкой к фактической, контактные кольца замыкаются металлическим хомутом. Благодаря такому расположению щетки и внешнее сопротивление удаляются из цепи ротора.

    Это снижает потери меди в роторе, а также трение в щетках. Конструкция ротора немного сложна по сравнению с двигателем с короткозамкнутым ротором из-за наличия щеток и контактных колец.

    Обслуживание этого мотора больше. Таким образом, этот двигатель используется только тогда, когда требуется регулирование скорости и высокий пусковой момент. В противном случае асинхронный двигатель с короткозамкнутым ротором предпочтительнее асинхронного двигателя с контактным кольцом.

    Принцип работы трехфазного асинхронного двигателя

    Обмотки статора перекрываются под углом 120 ° (электрически) друг к другу.Когда на обмотку статора подается трехфазное питание, в цепи статора индуцируется вращающееся магнитное поле (RMF).

    Скорость вращающегося магнитного поля называется синхронной скоростью (N S ).

    Согласно закону Фарадея, ЭДС индуцируется в проводнике из-за скорости изменения магнитного потока (dΦ / dt). Схема ротора отсекает магнитное поле статора и ЭДС, индуцированную в стержне или обмотке ротора.

    Цепь ротора — закрытый путь. Значит, за счет этой ЭДС по цепи ротора будет протекать ток.

    Теперь мы знаем, что проводник с током индуцирует магнитное поле. Итак, ток ротора индуцирует второе магнитное поле.

    Относительное движение между магнитным потоком статора и магнитным потоком ротора, ротор начинает вращаться, чтобы уменьшить причину относительного движения. Ротор пытается поймать поток статора и начинает вращаться.

    Направление вращения определяется законом Ленца. И находится в направлении вращающегося магнитного поля, индуцированного статором.

    Здесь ток ротора создается за счет индуктивности.Поэтому этот двигатель известен как асинхронный двигатель.

    Скорость ротора меньше скорости синхронной скорости. Ротор пытается поймать вращающееся магнитное поле статора. Но никогда не улавливает. Следовательно, скорость ротора немного меньше скорости синхронной скорости.

    Синхронная скорость зависит от количества полюсов и частоты питания. Разница между фактической скоростью ротора и синхронной скоростью называется скольжением.

    Почему скольжение в асинхронном двигателе никогда не бывает нулевым?

    Когда фактическая скорость ротора равна синхронной скорости, скольжение равно нулю.Для асинхронного двигателя этого никогда не произойдет.

    Потому что, когда скольжение равно нулю, обе скорости равны и относительного движения нет. Следовательно, в цепи ротора не наведена ЭДС, и ток ротора равен нулю. Следовательно, двигатель не может работать.

    Асинхронный двигатель широко используется в промышленности. Потому что преимуществ больше, чем недостатков.

    Преимущества и недостатки асинхронных двигателей

    Преимущества

    Ниже перечислены преимущества асинхронного двигателя:

    • Конструкция двигателя очень проста и надежна.
    • Асинхронный двигатель работает очень просто.
    • Может работать в любых условиях окружающей среды.
    • КПД двигателя очень высокий.
    • Асинхронный двигатель требует меньше обслуживания по сравнению с другими двигателями.
    • Это двигатель с одним возбуждением. Следовательно, ему нужен только один источник. Он не требует внешнего источника постоянного тока для возбуждения, как синхронный двигатель.
    • Асинхронный двигатель — это самозапускающийся двигатель. Таким образом, для нормальной работы не требуется никаких дополнительных вспомогательных устройств для запуска.
    • Стоимость этого мотора намного меньше по сравнению с другими моторами.
    • Срок службы этого двигателя очень высок.
    • Реакция якоря меньше.

    Связанная публикация: Прямой онлайн-пускатель — схема подключения стартера DOL для двигателей

    Недостатки

    Недостатки двигателя перечислены ниже;

    • В условиях небольшой нагрузки коэффициент мощности очень низкий. И он потребляет больше тока.Таким образом, потери в меди больше, что снижает эффективность при небольшой нагрузке.
    • Пусковой момент этого двигателя (асинхронный двигатель с короткозамкнутым ротором) не меньше.
    • Асинхронный двигатель — это двигатель с постоянной скоростью. В приложениях, где требуется регулировка скорости, этот двигатель не используется.
    • Управление скоростью этого двигателя затруднено.
    • Асинхронный двигатель имеет высокий пусковой ток. Это вызывает снижение напряжения во время запуска.

    Применение трехфазных асинхронных двигателей

    Асинхронный двигатель в основном используется в промышленности.Асинхронные двигатели с короткозамкнутым ротором используются в жилых и промышленных помещениях, особенно там, где не требуется регулирование скорости двигателей, например:

    • Насосы и погружные
    • Прессовочный станок
    • Токарный станок
    • Шлифовальный станок
    • Конвейер
    • Мукомольные мельницы
    • Компрессор
    • И другие устройства с малой механической мощностью

    Двигатели с контактными кольцами используются в тяжелых нагрузках, где требуется высокий начальный крутящий момент, например:

    • Сталелитейные заводы
    • Подъемник
    • Крановая машина
    • Подъемник
    • Линейные валы
    • и другие тяжелые механические мастерские и т. Д.

    Связанные сообщения:

    Однофазные асинхронные двигатели | Двигатели переменного тока

    Трехфазный двигатель может работать от однофазного источника питания.Однако он не запускается автоматически. Его можно запустить вручную в любом направлении, набрав скорость за несколько секунд. Он будет развивать только 2/3 номинальной мощности 3-φ, потому что одна обмотка не используется.

    3-фазный двигатель работает от 1-фазной мощности, но не запускается

    Одна катушка однофазного двигателя

    Одиночная катушка однофазного асинхронного двигателя создает не вращающееся магнитное поле, а пульсирующее поле, достигающее максимальной напряженности при электрическом напряжении 0 ° и 180 °.

    Однофазный статор создает невращающееся пульсирующее магнитное поле

    Другая точка зрения состоит в том, что одиночная катушка, возбуждаемая однофазным током, создает два вектора магнитного поля, вращающихся в противоположных направлениях, совпадающих дважды за оборот при 0 ° (рисунок выше-a) и 180 ° (рисунок e). Когда векторы поворачиваются на 90 ° и -90 °, они отменяются на рисунке c.

    При 45 ° и -45 ° (рисунок b) они частично складываются по оси + x и сокращаются по оси y.Аналогичная ситуация существует на рисунке d. Сумма этих двух векторов — это вектор, стационарный в пространстве, но чередующийся во времени. Таким образом, пусковой крутящий момент не создается.

    Однако, если ротор вращается вперед со скоростью немного меньшей, чем синхронная скорость, он будет развивать максимальный крутящий момент при 10% скольжении относительно вектора прямого вращения. Меньший крутящий момент будет развиваться выше или ниже 10% скольжения.

    Ротор будет испытывать скольжение на 200–10% относительно вектора магнитного поля, вращающегося в противоположных направлениях.Небольшой крутящий момент (см. Кривую зависимости крутящего момента от скольжения), за исключением двукратной пульсации частоты, создается вектором встречного вращения. Таким образом, однофазная катушка будет развивать крутящий момент после запуска ротора.

    Если ротор запускается в обратном направлении, он будет развивать такой же большой крутящий момент, поскольку он приближается к скорости вращающегося в обратном направлении вектора.

    Однофазные асинхронные двигатели имеют медную или алюминиевую короткозамкнутую клетку, встроенную в цилиндр из стальных пластин, типичных для многофазных асинхронных двигателей.

    Двигатель с постоянным разделением конденсаторов

    Одним из способов решения проблемы с однофазным двигателем является создание двухфазного двигателя, получающего двухфазное питание от однофазного. Для этого требуется двигатель с двумя обмотками, разнесенными друг от друга на 90 ° , электрический, питаемый двумя фазами тока, смещенными во времени на 90 ° . Это называется конденсаторным двигателем с постоянным разделением.

    Асинхронный двигатель с постоянным разделением конденсаторов

    Этот тип двигателя подвержен увеличенной величине тока и сдвигу во времени назад, когда двигатель набирает скорость, с пульсациями крутящего момента на полной скорости.Решение состоит в том, чтобы конденсатор (импеданс) оставался небольшим, чтобы минимизировать потери.

    Потери меньше, чем для двигателя с экранированными полюсами. Эта конфигурация двигателя хорошо работает до 1/4 лошадиных сил (200 Вт), хотя обычно применяется к двигателям меньшего размера. Направление двигателя легко изменить, включив конденсатор последовательно с другой обмоткой. Этот тип двигателя может быть адаптирован для использования в качестве серводвигателя, описанного в другом месте этой главы.

    Однофазный асинхронный двигатель со встроенными катушками статора

    Однофазные асинхронные двигатели могут иметь катушки, встроенные в статор двигателей большего размера.Тем не менее, меньшие размеры требуют меньшего количества сложностей для создания концентрированных обмоток с выступающими полюсами.

    Асинхронный двигатель с конденсаторным пуском

    На рисунке ниже конденсатор большего размера может использоваться для запуска однофазного асинхронного двигателя через вспомогательную обмотку, если он отключается центробежным переключателем, когда двигатель набирает обороты. Кроме того, во вспомогательной обмотке может быть намного больше витков из более тяжелого провода, чем в двигателе с разделенной фазой сопротивления, чтобы уменьшить чрезмерное повышение температуры.

    В результате для тяжелых нагрузок, таких как компрессоры кондиционеров, доступен больший пусковой крутящий момент. Эта конфигурация двигателя работает настолько хорошо, что доступна в многомощных (несколько киловаттных) размерах.

    Асинхронный двигатель с конденсаторным пуском

    Асинхронный двигатель с конденсаторным двигателем

    Вариант двигателя с конденсаторным запуском (рисунок ниже) заключается в запуске двигателя с относительно большим конденсатором для высокого пускового момента, но после запуска оставляют конденсатор меньшей емкости на месте для улучшения рабочих характеристик, не потребляя при этом чрезмерного тока.Дополнительная сложность конденсаторного двигателя оправдана для двигателей большего размера.

    Конденсаторный асинхронный двигатель

    Пусковой конденсатор двигателя может быть неполярным электролитическим конденсатором с двойным анодом, который может представлять собой два последовательно соединенных поляризованных электролитических конденсатора + к + (или — к -). Такие электролитические конденсаторы переменного тока имеют такие высокие потери, что их можно использовать только в прерывистом режиме (1 секунда во включенном состоянии, 60 секунд в выключенном состоянии), например, при запуске двигателя.

    Конденсатор для работы двигателя должен иметь не электролитическую конструкцию, а полимерный конденсатор с более низкими потерями.

    Асинхронный двигатель с двухфазным двигателем, сопротивление

    Если во вспомогательной обмотке гораздо меньше витков, меньший провод размещен под углом 90 ° ° к основной обмотке, он может запустить однофазный асинхронный двигатель. При более низкой индуктивности и более высоком сопротивлении ток будет испытывать меньший фазовый сдвиг, чем основная обмотка.

    Может быть получено около 30 ° разности фаз.Эта катушка создает умеренный пусковой крутящий момент, который отключается центробежным переключателем на 3/4 синхронной скорости. Эта простая (без конденсатора) конструкция хорошо подходит для двигателей мощностью до 1/3 лошадиных сил (250 Вт), управляющих легко запускаемыми нагрузками.

    Асинхронный электродвигатель с разделенным фазным сопротивлением

    Этот двигатель имеет больший пусковой крутящий момент, чем двигатель с экранированными полюсами (следующий раздел), но не такой большой, как двухфазный двигатель, построенный из тех же частей.Плотность тока во вспомогательной обмотке во время пуска настолько высока, что последующий быстрый рост температуры исключает частый перезапуск или медленные пусковые нагрузки.

    Корректор коэффициента мощности Nola

    Фрэнк Нола из НАСА предложил корректор коэффициента мощности для повышения эффективности асинхронных двигателей переменного тока в середине 1970-х годов. Он основан на предположении, что асинхронные двигатели неэффективны при нагрузке ниже полной. Эта неэффективность коррелирует с низким коэффициентом мощности.

    Коэффициент мощности меньше единицы возникает из-за тока намагничивания, необходимого для статора.Этот фиксированный ток составляет большую долю от общего тока двигателя при уменьшении нагрузки двигателя. При небольшой нагрузке полный ток намагничивания не требуется. Его можно уменьшить, уменьшив подаваемое напряжение, улучшив коэффициент мощности и КПД.

    Корректор коэффициента мощности определяет коэффициент мощности и снижает напряжение двигателя, тем самым восстанавливая более высокий коэффициент мощности и уменьшая потери.

    Поскольку однофазные двигатели примерно в 2–4 раза менее эффективны, чем трехфазные двигатели, существует потенциальная экономия энергии для двигателей 1-φ.Для полностью нагруженного двигателя нет экономии, поскольку требуется весь ток намагничивания статора.

    Напряжение не может быть уменьшено. Но есть потенциальная экономия от менее чем полностью загруженного двигателя. Двигатель с номинальным напряжением 117 В переменного тока рассчитан на работу при напряжении от 127 В переменного тока до 104 В переменного тока. Это означает, что он не полностью загружен при работе при напряжении более 104 В переменного тока, например, при работе холодильника на 117 В переменного тока.

    Контроллер коэффициента мощности может безопасно снизить сетевое напряжение до 104–110 В переменного тока.Чем выше начальное напряжение в сети, тем больше потенциальная экономия. Конечно, если энергокомпания подаст напряжение ближе к 110 В переменного тока, двигатель будет работать более эффективно без каких-либо дополнительных устройств.

    Любой практически неработающий однофазный асинхронный двигатель с 25% FLC или менее является кандидатом на использование PFC. Однако он должен работать большое количество часов в год. И чем больше времени он простаивает, как в пилораме, штамповочном прессе или конвейере, тем выше вероятность оплаты контроллера через несколько лет эксплуатации.

    За него должно быть втрое легче платить по сравнению с более эффективным 3-φ-двигателем. Стоимость PFC не может быть возмещена для двигателя, работающего всего несколько часов в день.

    Краткое описание: Однофазные асинхронные двигатели

    • Однофазные асинхронные двигатели не могут запускаться самостоятельно без вспомогательной обмотки статора, приводимой в действие противофазным током около 90 ° . После запуска вспомогательная обмотка необязательна.
    • Вспомогательная обмотка конденсаторного двигателя с постоянным разделением каналов имеет конденсатор, включенный последовательно с ней во время пуска и работы.
    • Асинхронный двигатель с конденсаторным запуском имеет только конденсатор, включенный последовательно со вспомогательной обмоткой во время запуска.
    • Конденсаторный двигатель обычно имеет большой неполяризованный электролитический конденсатор, включенный последовательно со вспомогательной обмоткой для запуска, а затем меньший неэлектролитический конденсатор во время работы.
    • Вспомогательная обмотка электродвигателя с разделенной фазой сопротивления развивает разность фаз по сравнению с основной обмоткой во время пуска из-за разницы в сопротивлении.

    СВЯЗАННЫЙ РАБОЧИЙ ЛИСТ:

    Как подключить трехфазный мотор к лифту. Запуск асинхронного двигателя переключением со звезды на треугольник

    Пуск закорочен, электродвигатель с переключателем звезды на треугольник используется для уменьшения пускового тока.Пусковой ток при пуске может превышать рабочий ток двигателя в 5-7 раз. В двигателях большой мощности пусковой ток настолько велик, что может вызвать перегорание различных предохранителей, отключение автоматического выключателя и привести к значительному снижению напряжения. Снижение напряжения снижает нагрев ламп, снижает крутящий момент электродвигателей, может вызвать отключение контакторов и магнитных пускателей. Поэтому многие стремятся снизить пусковой ток. Это достигается несколькими способами, но все они в конечном итоге сводятся к снижению напряжения в цепи статора электродвигателя в период пуска.Для этого в цепь статора на пусковой период вводят реостат, дроссель, автотрансформатор либо переключают обмотку со звезды на треугольник.


    Действительно, перед пуском и в первый период пуска обмотки соединены звездой; поэтому на каждый из них подается напряжение, которое в 1,73 раза меньше номинального, и, следовательно, ток будет намного меньше, чем при включении обмоток на полное сетевое напряжение. В процессе запуска двигатель увеличивает скорость, а ток уменьшается.После этого обмотки переключаются на треугольник.

    Схема управления.

    Подключение рабочего напряжения через контакт реле времени К1 и контакт К2 в цепи катушки контактора К3.
    Включение контактора К3 размыкает контакт К3 в цепи катушки контактора К2 (блокировка ошибочного включения), замыкает контакт К3 в цепи катушки контактора К1, совмещенного с пневматическим реле времени.
    Включение контактора K1, замыкает контакт K1 в цепи катушки контактора K1 (с собственным напряжением), одновременно активирует пневматическое реле времени, которое через определенное время размыкает свой контакт K1 в цепи катушки контактора K3 и замыкает контакт K1 в катушке цепь контактора К2.
    Отключение контактора К3, замыкает контакт К3 в цепи катушки контактора К2.
    Включение контактора К2 размыкает контакт К2 в цепи катушки контактора К3 (блокировка ошибочного включения).

    Схема питания

    На начало обмоток U1, V1 и W1 через силовые контакты магнитного пускателя К1 подается трехфазное напряжение. При срабатывании магнитного пускателя К3 его контактами К3 происходит короткое замыкание, соединяющее концы обмоток U2, V2 и W2 между собой, обмотки двигателя соединяются звездой.
    Через некоторое время срабатывает реле времени, которое совмещено с пускателем К1, выключая пускатель К3 и одновременно включив К2, силовые контакты К2 замыкаются и на концы обмоток двигателя U2 подается напряжение, V2 и W2.Таким образом, электродвигатель включается по схеме треугольника.

    Предупреждения.

    1. Переключение со звезды на треугольник допустимо только для двигателей с легким режимом пуска, потому что при подключении к звезде пусковой момент примерно вдвое меньше момента, который был бы при прямом пуске. Поэтому такой способ снижения пускового тока не всегда подходит, и если необходимо уменьшить пусковой ток и при этом добиться большого пускового момента, то берется электродвигатель с фазным ротором, а пусковой реостат вводится в контур ротора.

    2. Переключать со звезды на треугольник можно только те электродвигатели, которые предназначены для работы по схеме треугольника, т.е. имеющие обмотки, рассчитанные на сеть с линейным напряжением.

    Пуск асинхронных двигателей — еще один распространенный способ — переключение со звезды на треугольник .

    Метод переключения со звезды на треугольник применяется в двигателях, которые рассчитаны на работу при соединении обмоток треугольником. Этот метод осуществляется в три этапа.Вначале двигатель запускается при соединении обмоток звездой, на этом этапе двигатель разгоняется. Затем треугольник переключают на рабочую схему подключения, и при переключении необходимо учитывать пару нюансов. Во-первых, нужно правильно рассчитать время переключения, ведь если замкнуть контакты рано, то электрическая дуга не успеет погаснуть, и произойдет короткое замыкание. Если переключатель слишком длинный, это может привести к потере скорости двигателя и, как следствие, увеличению скачка тока.В общем, нужно четко регулировать время переключения. На третьем этапе, когда обмотка статора уже соединена треугольником, двигатель переходит в установившийся режим работы.

    Смысл этого метода в том, что при соединении обмоток статора звездой фазное напряжение в них уменьшается в 1,73 раза. В такое же количество раз уменьшается и фазный ток, протекающий в обмотках статора. Когда обмотки статора соединены треугольником, фазное напряжение линейно, а фазный ток равен 1.В 73 раза меньше линейного. Получается, что соединяя обмотки звездой, мы уменьшаем линейный ток в 3 раза.

    Чтобы не запутаться в цифрах, давайте рассмотрим пример.

    Допустим, по рабочей схеме обмотка асинхронного двигателя представляет собой треугольник, а линейное напряжение питающей сети составляет 380 В. Сопротивление обмотки статора Z = 20 Ом. Соединяя обмотки во время запуска по схеме звезды, уменьшите напряжение и ток в фазах.

    Ток в фазах равен линейному току и равен

    После разгона двигателя переключаемся со звезды на треугольник и получаем другие значения напряжений и токов.

    Как видите, линейный ток при соединении треугольником более чем в 3 раза превышает линейный ток при соединении звездой.

    Этот способ запуска асинхронного двигателя используется в случаях, когда есть небольшая нагрузка или когда двигатель работает на холостом ходу.Это связано с тем, что при уменьшении фазного напряжения в 1,73 раза по формуле для пускового момента, которая приведена ниже, крутящий момент уменьшается втрое, а этого недостаточно для запуска с нагрузкой на вал.

    Где m — количество фаз, U — фазное напряжение обмотки статора, f — частота сетевого тока, r1, r2, x1, x2 параметры схемы замещения асинхронного двигателя, p — количество пар полюсов.

    Основные способы подключения трехфазных электродвигателей — звезда или треугольник. Это особые случаи, когда трехфазные нагрузки подключаются через автоматический выключатель. В большинстве случаев используется универсальное соединение двигателя звезда-треугольник. При этом трехфазный электродвигатель можно подключить к обычной электропроводке.

    Способы подключения: звезда и треугольник

    Двигатель попеременно подключается двумя способами, а именно звездой и треугольником, простым переключением перемычек, установленных на клеммной колодке, между клеммами обмотки.

    Контакты обмоток двигателя подключены к контактам клеммной коробки. Это электрическая связка, в свою очередь, с обмотками двигателя и фазами питания. В клеммной коробке установлены специальные перемычки, позволяющие переключаться из положения «треугольник» в положение «звезда». Питание подается на концы треугольника, образованные обмотками двигателя. При соединении «звездой» перемычка устанавливается в такое положение, что все три обмотки соединяются в одной точке.

    В «треугольнике», наоборот, каждая обмотка соединена с другой, соответствующей обмоткой. Поскольку нагрузка во всех обмотках одинакова, нейтральный провод не нужен. В современных условиях в схеме подключения очень часто используется переход из режима «звезда» в режим треугольника. При этом значительно смягчается пусковой режим электродвигателя. Однако само подключение контактора совершенно не меняет общую схему, просто между электродвигателем и автоматом появляется дополнительное силовое устройство, включающее сразу несколько контакторов.

    Переключатель из разных положений

    При переключении электродвигателя из положения «треугольник» в положение «звезда» его мощность снижается почти в три раза. Если переключение производится в обратную сторону, мощность двигателя, наоборот, возрастает очень резко. При этом следует помнить, что если электродвигатель не рассчитан на работу в этих условиях, то он может просто сгореть.

    Подключение двигателя — «звезда-треугольник» используется для уменьшения пускового тока, значение которого в несколько раз превышает рабочий ток двигателя.В электродвигателях большой мощности пусковой ток настолько велик, что его действие может вызвать серьезные последствия и привести к падению напряжения. В процессе пуска частота вращения двигателя увеличивается, а ток уменьшается. После этого обмотки переводятся в режим треугольника.

    Асинхронный двигатель

    и синхронный: в чем разница?

    Все вращающиеся электродвигатели переменного и постоянного тока работают за счет взаимодействия двух магнитных полей. Один из них стационарный и (обычно) связан с внешним кожухом двигателя.Другой вращается и связан с вращающимся якорем двигателя (также называемым его ротором). Вращение вызвано взаимодействием двух полей.

    В простом двигателе постоянного тока имеется вращающееся магнитное поле, полярность которого меняется каждые пол-оборота с помощью комбинации щеточного коммутатора. Щетки — в основном проводящие углеродные стержни, которые касаются проводов на роторе при их вращении — также служат для подачи электрического тока во вращающийся якорь.В бесщеточном двигателе постоянного тока ситуация несколько иная. Вращающееся поле все еще меняется на противоположное, но посредством коммутации, которая происходит в электронном виде.

    Асинхронный двигатель обладает уникальным качеством, заключающимся в отсутствии электрического соединения между неподвижной и вращающейся обмотками. Сетевой переменный ток подается на клеммы двигателя и питает неподвижные обмотки.

    Все асинхронные двигатели являются асинхронными двигателями. Асинхронное название возникает из-за разницы между скоростью вращения поля статора и несколько меньшей скоростью ротора.

    Ротор с короткозамкнутым ротором от асинхронного двигателя. Этот пример взят из небольшого вентилятора.

    Большинство современных асинхронных двигателей имеют ротор в виде беличьей клетки. Цилиндрическая беличья клетка состоит из тяжелых медных, алюминиевых или латунных стержней, вставленных в канавки и соединенных с обоих концов токопроводящими кольцами, которые электрически замыкают стержни вместе. Твердый сердечник ротора состоит из листов электротехнической стали.

    Также можно найти асинхронные двигатели, содержащие роторы, состоящие из обмоток, а не из короткозамкнутого ротора.Это асинхронные двигатели с фазным ротором. Смысл конструкции состоит в том, чтобы обеспечить средство уменьшения тока ротора, когда двигатель впервые начинает вращаться. Обычно это достигается путем последовательного подключения каждой обмотки ротора к резистору. Обмотки получают ток через некое контактное кольцо. Как только ротор достигает конечной скорости, полюса ротора замыкаются на короткое замыкание, таким образом, электрически становятся такими же, как у ротора с короткозамкнутым ротором.

    Стационарная часть обмоток асинхронного двигателя (статор) подключается к источнику переменного тока.Подача напряжения на статор вызывает прохождение переменного тока в обмотках статора. Прохождение тока индуцирует магнитное поле, которое воздействует на ротор, создавая напряжение и ток в элементах ротора.

    Северный полюс статора индуцирует южный полюс ротора. Но положение полюса статора меняется при изменении амплитуды и полярности переменного напряжения. Индуцированный полюс в роторе пытается следовать за вращающимся полюсом статора. Однако закон Фарадея гласит, что электродвижущая сила создается, когда петля из проволоки перемещается из области с низкой напряженностью магнитного поля в область с высокой напряженностью магнитного поля, и наоборот.Если бы ротор точно следовал за движущимся полюсом статора, напряженность магнитного поля не изменилась бы. Таким образом, ротор всегда отстает от вращения поля статора, потому что поле ротора всегда на некоторую величину отстает от поля статора. Это отставание заставляет ротор вращаться со скоростью, несколько меньшей, чем скорость поля статора. Разница между ними называется скольжением.

    Размер скольжения может быть разным. Это зависит главным образом от нагрузки двигателя, но также зависит от сопротивления цепи ротора и напряженности поля, создаваемого магнитным потоком статора.Скольжение в двигателе конструкции B составляет от 0,5% до 5%.

    Когда двигатель остановлен, обмотки ротора и статора фактически являются первичной и вторичной обмотками трансформатора. Когда к статору изначально подается переменный ток, ротор не движется. Таким образом, индуцированное в роторе напряжение имеет ту же частоту, что и напряжение статора. Когда ротор начинает вращаться, частота индуцированного в нем напряжения f r падает. Если f — частота напряжения статора, то скольжение s связывает эти два значения через f r = sf.Здесь s выражается в виде десятичной дроби.

    Поскольку асинхронный двигатель не имеет щеток, коллектора или подобных движущихся частей, его производство и обслуживание дешевле, чем другие типы двигателей.

    Для сравнения, рассмотрим синхронный двигатель. Здесь ротор вращается с той же скоростью, то есть синхронно, с магнитным полем статора. Как и асинхронный двигатель, синхронный двигатель переменного тока также содержит статор и ротор. Обмотки статора также подключаются к сети переменного тока, как в асинхронном двигателе.Магнитное поле статора вращается синхронно с частотой сети.

    Обмотка ротора синхронного двигателя может получать ток различными способами, но обычно не за счет индукции (за исключением некоторых конструкций, только для обеспечения пускового момента). Тот факт, что ротор вращается синхронно с частотой сети переменного тока, делает синхронный двигатель полезным для управления высокоточными часами.

    Следует подчеркнуть, что ротор синхронного двигателя переменного тока вращается синхронно с целым числом циклов переменного тока.Это не то же самое, что сказать, что он вращается со скоростью, равной частоте сети. Частота вращения ротора двигателя, то есть синхронная скорость N, составляет:

    .

    N = 120 футов / P = 60 кадров

    Где f — частота сети переменного тока в Гц, P — количество полюсов (на фазу), а p — количество пар полюсов на фазу.

    Соответственно, чем больше полюсов, тем медленнее вращается синхронный двигатель. При равной мощности дороже построить более медленный двигатель. При 60 Гц:

    • Двухполюсный / фазный синхронный двигатель переменного тока вращается со скоростью 3600 об / мин.
    • Четырехполюсный / фазный синхронный двигатель переменного тока вращается со скоростью 1800 об / мин.
    • Шестиполюсный / фазный синхронный двигатель переменного тока вращается со скоростью 1200 об / мин.
    • Восьмиполюсный / фазный синхронный двигатель переменного тока вращается со скоростью 900 об / мин
    • Десятиполюсный / фазный синхронный двигатель переменного тока вращается со скоростью 720 об / мин.
    • Двенадцатиполюсный / фазный синхронный двигатель переменного тока вращается со скоростью 600 об / мин.
    Промышленный синхронный двигатель. Синхронные двигатели переменного тока

    малой мощности полезны там, где требуется точное время.Синхронные двигатели переменного тока высокой мощности, хотя и более дорогие, чем трехфазные асинхронные двигатели, обладают двумя дополнительными качествами. Несмотря на более высокую начальную стоимость, они могут окупиться в долгосрочной перспективе, поскольку они более энергоэффективны, чем другие типы двигателей. Во-вторых, иногда одновременно, они могут работать с опережающим или единичным коэффициентом мощности, поэтому один или несколько синхронных двигателей переменного тока могут обеспечивать коррекцию коэффициента мощности, а также выполнять полезную работу.

    Существует несколько различных типов синхронных двигателей переменного тока.Обычно их классифицируют по способам создания магнитного поля. Двигатели с независимым возбуждением имеют магнитные полюса, питаемые от внешнего источника. Напротив, магнитные полюса возбуждаются самим двигателем в самовозбуждаемой (также иногда называемой невозбужденной и непосредственно возбужденной) машине. Типы без возбуждения включают реактивные двигатели, двигатели с гистерезисом и двигатели с постоянными магнитами. Кроме того, существуют двигатели с возбуждением постоянным током.

    Синхронные двигатели без возбуждения имеют стальные роторы.В процессе работы ротор намагничивается необходимыми магнитными полюсами аналогично тому, как это происходит в асинхронном двигателе. Но ротор вращается с той же скоростью и синхронно с вращающимся магнитным полем статора. Причина в том, что в роторе есть прорези. Двигатели запускаются как асинхронные. Когда они приближаются к синхронной скорости, прорези позволяют синхронному магнитному полю фиксироваться на роторе. Затем двигатель вращается с синхронной скоростью до тех пор, пока требуемый крутящий момент низкий.

    В реактивном электродвигателе ротор имеет выступающие полюса, напоминающие отдельные зубцы.Ротора меньше, чем полюсов статора, что препятствует совмещению полюсов статора и ротора, и в этом случае вращения не будет. Реактивные двигатели не запускаются автоматически. По этой причине в ротор часто встраивают специальные обмотки (так называемые обмотки с короткозамкнутым ротором), поэтому реактивный двигатель запускается как асинхронный.

    Гистерезисный двигатель использует широкую петлю гистерезиса в высококоэрцитивном роторе из кобальтовой стали. Из-за гистерезиса фаза намагничивания в роторе отстает от фазы вращающегося магнитного поля статора.Эта задержка создает крутящий момент. При синхронной скорости поля ротора и статора блокируются, обеспечивая непрерывное вращение. Одним из преимуществ гистерезисного двигателя является то, что он самозапускается.

    Синхронный двигатель переменного тока с постоянными магнитами имеет постоянные магниты, встроенные в ротор. Последние лифты приводятся в действие этими двигателями, и коробка передач не требуется.

    Пример двигателя с постоянным магнитом с электронной коммутацией, в данном случае от небольшого воздушного вентилятора. Этот стиль называется аутраннером, потому что ротор находится вне статора и встроен в лопасти вентилятора.Это четырехполюсный двигатель, о чем свидетельствуют четыре обмотки статора (внизу). Также виден датчик Холла, который обеспечивает часть электронной коммутации.

    Синхронный двигатель с прямым возбуждением может называться различными именами, включая ECPM (постоянный магнит с электронной коммутацией), BLDC (бесщеточный двигатель постоянного тока) или просто бесщеточный двигатель с постоянным магнитом. Ротор содержит постоянные магниты. Магниты могут устанавливаться на поверхности ротора или вставляться в узел ротора (в этом случае двигатель называется внутренним двигателем с постоянными магнитами).

    Пример того, как на катушки двигателя постоянного тока подается питание в последовательности, которая приводит в движение ротор.

    Компьютер контролирует последовательное включение питания обмоток статора в нужное время с помощью твердотельных переключателей. Питание подается на катушки, намотанные на зубья статора, и если выступающий полюс ротора идеально совмещен с зубом статора, крутящий момент не создается. Если зуб ротора находится под некоторым углом к ​​зубу статора, по крайней мере, некоторый магнитный поток пересекает зазор под углом, не перпендикулярным поверхностям зуба.В результате возникает крутящий момент на роторе. Таким образом, переключение мощности на обмотки статора в нужное время вызывает структуру магнитного потока, которая приводит к движению либо по часовой стрелке, либо против часовой стрелки.

    Еще один тип синхронного двигателя — это реактивный двигатель с регулируемым сопротивлением (SR).
    Его ротор состоит из многослойных стальных пластин с рядом зубцов. Зубы магнитопроницаемы, а окружающие их области слабо проницаемы из-за прорезанных в них пазов.

    В отличие от асинхронных двигателей, здесь нет стержней ротора, и, следовательно, в роторе отсутствует ток, создающий крутящий момент.Отсутствие проводов какой-либо формы на роторе SR означает, что общие потери в роторе значительно ниже, чем в других двигателях, в которых роторы имеют проводники.

    Крутящий момент, создаваемый двигателем SR, регулируется путем регулировки величины тока в электромагнитах статора. Затем скорость регулируется путем регулирования крутящего момента (через ток в обмотке). Этот метод аналогичен способу регулирования скорости с помощью тока якоря в традиционном щеточном двигателе постоянного тока.

    Двигатель SR создает крутящий момент, пропорциональный величине тока, подаваемого на его обмотки.На производство крутящего момента не влияет скорость двигателя. Это отличается от асинхронных двигателей переменного тока, в которых при высоких скоростях вращения в области ослабления поля ток ротора все больше отстает от вращающегося поля по мере увеличения числа оборотов двигателя.

    И, наконец, синхронный двигатель переменного тока с возбуждением постоянным током. Для создания магнитного поля требуется выпрямленный источник питания. Эти двигатели обычно имеют мощность, превышающую одну лошадиную силу.

    .
    Опубликовано в категории: Разное

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *