Ветрогенератор что такое: чуть за и много против

Ветрогенераторы: вопросы и ответы — Энергетика и промышленность России — № 09 (101) май 2008 года — WWW.EPRUSSIA.RU

Газета «Энергетика и промышленность России» | № 09 (101) май 2008 года

Ветрогенераторы – это генераторы электрической энергии, работающие под действием энергии ветра. Сегодня ветрогенераторы – высокотехнологичные изделия мощностью от 5 кВт до 4500 кВт единичной мощности. Ветрогенераторы современных конструкций позволяют экономически эффективно использовать энергию даже самых слабых ветров – от 4 метров в секунду. С помощью ветрогенераторов можно не только поставлять электроэнергию в централизованные сети, но и решать задачи электроснабжения локальных объектов.

Как работает ветрогенератор?

Набегающие потоки ветра на высоте башни ветрогенератора – от 40 до 100 метров – вращают лопасти ветрогенератора. Энергия вращения передается по валу ротора на мультипликатор, который, в свою очередь, вращает асинхронный или синхронный электрический генератор. Широко распространены конструкции ветрогенераторов, не имеющих мультипликатора, что существенно увеличивает их производительность.

При изменении направления ветра сенсоры на башне ветрогенератора подают команду, и механизм ориентации поворачивает башню ветрогенератора по ветру.

Стабилизация вращения ветроколеса ветрогенератора достигается различными методами, один из которых – поворот лопастей или их фрагментов вокруг своей оси под углом к направлению ветра.

Ветрогенераторы могут работать как по одиночке (единичный комплекс), так и группами (ветропарк). Часто один или несколько ветрогенераторов работают параллельно с дизель-генераторами в качестве средства экономии расходов на дизельное топливо.

Что дает ветрогенератор?

Ветрогенератор мощностью 800 кВт при среднегодовой скорости ветра 6 м/с произведет за год 1500000 кВт-часов электроэнергии, при среднегодовой скорости ветра 5 м/с – 1100000 кВт-часов электроэнергии.

Ветрогенератор мощностью 2000 кВт при среднегодовой скорости ветра 6 м/с произведет за год 3700000 кВт-часов электроэнергии, при среднегодовой скорости ветра 5 м/с –2300000 кВт-часов электроэнергии.

Где применяются ветрогенераторы?

В самых разных местах: это открытые территории с хорошим ветропотенциалом, поля, острова, мелководье, горы. В России применение ветрогенераторов очень перспективно там, где подключение к существующим сетям дороже ветроэнергетического проекта или доставка дизельного топлива обходится дорого. А таких мест, изолированных или удаленных от централизованного энергоснабжения, у нас немало.

Какой силы ветер нужен для работы ветрогенератора?

Использование ветрогенератора экономически эффективно в местности со среднегодовой скоростью ветра от 4 м/с.

Для чего нужны ветрогенераторы?

Аргументов в пользу применения ветроэнергетических установок множество. Вот основные из них:
это независимый от внешних факторов источник электроэнергии;
после достижения срока окупаемости ветрогенератор требует затрат только на его обслуживание;
применение ветрогенераторов позволяет до 80 процентов сократить затраты на дизельное топливо в тех местах, где дизель-генераторы являются основным источником электроэнергии. Следовательно, экономятся расходы на хранение и транспортировку дизельного топлива, а энергоснабжение таких объектов перестает зависеть от случайных факторов;

капитальные затраты на ветроэнергетический комплекс по сравнению с традиционными источниками электроэнергии достаточно низки. Ориентировочно это 1300 евро на 1 кВт установленной мощности «под ключ»;
сроки ввода в эксплуатацию ветрогенераторов достаточно коротки. После изготовления оборудования (6‑8 месяцев) по заказу поставка и монтаж длятся 1‑2 месяца. В случае применения ветрогенераторов «с пробегом» срок поставки ограничивается 1‑2 месяцами;
ветроэнергетические установки не загрязняют окружающую среду. Этот аргумент становится все более актуальным при согласовании новых промышленных проектов в России.

Как влияют высота мачты и диаметр ротора на выработку энергии?

Увеличение высоты мачты до 18‑26 метров позволяет повысить среднегодовую скорость ветра на высоте оси на 15‑30 процентов и тем самым увеличить выработку энергии в 1,3‑1,5 раза.

Это особенно эффективно при среднегодовых скоростях ветра меньше 4 м/с.

Высокая мачта также позволяет устранить влияние деревьев и построек. Мощность зависит от диаметра в квадрате. Диаметр ротора выбирается исходя из среднегодовой скорости ветра. При ветре до 6‑7 м/с выработка ротора диаметром 5 метров выше, чем у ротора 4,2 метра. При больших среднегодовых скоростях ветра выработка выравнивается.

Принцип действия и устройство ветрогенератора (общие понятия)

В упрощенном виде принцип работы ветрогенератора можно представить следующим образом.

Сила ветра приводит в движение лопасти, которые через специальный привод заставляют вращаться ротор. Благодаря наличию статорной обмотки, механическая энергия превращается в электрический ток. Аэродинамические особенности винтов позволяют быстро крутить турбину генератора.

Принцип работы

Дальше сила вращения преобразуются в электричество, которое аккумулируется в батарее. Чем сильнее поток воздуха, тем быстрее крутятся лопасти, производя больше энергии. Поскольку работа ветрогенератора основана на максимальном использовании альтернативного источника энергии, одна сторона лопастей имеет закругленную форму, вторая – относительно ровная. Когда воздушный поток проходит по закругленной стороне, создается участок вакуума. Это засасывает лопасть, уводя её в сторону. При этом создается энергия, которая и заставляет раскручиваться лопасти.

Схема работы ветрогенератора: показан принцип преобразования энергии ветра и действия внутренних механизмов

Во время своих поворотов винты также вращают ось, соединённую с генераторным ротором. Когда двенадцать магнитиков, закреплённых на роторе, вращаются в статоре, создаётся переменный электрический ток, имеющий такую же частоту, как и в обычных комнатных розетках. Это основной принцип того, как работает ветрогенератор. Переменный ток легко вырабатывать и передавать на большие расстояния, но невозможно аккумулировать.

Принципиальная схема ветрогенератора

Для этого его нужно преобразовать в постоянный ток. Такую работу выполняет электронная цепь внутри турбины. Чтобы получить большое количество электроэнергии, изготавливаются промышленные установки. Ветровой парк обычно состоит из нескольких десятков установок. Благодаря использованию такого устройства дома, можно получить существенное снижение расходов на электроэнергию. Принцип действия ветрогенераторов позволяет применять их в таких вариантах:

  • для автономной работы;
  • параллельно с резервным аккумулятором;
  • вместе с солнечными батареями;
  • параллельно с дизельным или бензиновым генератором.

Если поток воздуха движется со скоростью 45 км/час, турбина вырабатывает 400 Вт электроэнергии. Этого хватает для освещения дачного участка. Данную мощность можно накапливать, собирая её в аккумуляторе.

Специальное устройство управляет зарядкой аккумуляторной батареи. По мере уменьшения заряда вращение лопастей замедляется. При полной разрядке батареи лопасти снова начинают вращаться. Таким способом зарядка поддерживается на определённом уровне. Чем сильнее воздушный поток, тем больше электроэнергии может произвести турбина.

Система торможения вращения лопастей

Чтобы установка не вышла из строя при сильном напоре воздуха, она снабжена специальной системой торможения. Если раньше движущиеся магниты индуцировали ток в обмотках, то теперь данная сила используется для остановки вращающихся магнитов. Для этого создается короткое замыкание, при котором замедляется движение ротора. Возникающее противодействие замедляет вращение магнитов.

Конструкция ветрогенератора и узлов

При ветре больше 50 км/час тормоза автоматически замедляют вращение ротора. Если скорость движения воздуха доходит до 80 км/час, тормозная система полностью останавливает лопасти. Все части турбины сконструированы так, чтобы максимально использовалась воздушная энергия. Когда ветер дует, лопасти вращаются, и генератор преобразует их движение в электричество. Совершая двойное преобразование энергии, турбина производит электричество из обычного перемещения воздушных масс.

Внешне ветрогенератор напоминает флюгер — направлен в ту сторону, откуда дует ветер

Данное устройство весьма полезно не только в каких-то экстремальных условиях, но и в обычной повседневной жизни. Довольно часто системы ветрогенераторов применяются на дачах или в тех населенных пунктах, где регулярно бывают перебои с подачей электроэнергии. Самостоятельно сделанный автономный источник электричества имеет такие преимущества:

  • установка экологически чистая;
  • отсутствует потребность её заправки топливом;
  • не накапливаются какие-либо отходы;
  • устройство работает очень тихо;
  • имеет большой срок эксплуатации.

Все ветрогенераторы работают по одинаковой схеме. Сначала полученное от давления ветра переменное напряжение преобразуется в постоянный ток. Благодаря этому заряжается аккумулятор. Затем инвертором снова производится переменный ток. Это нужно для того, чтобы светились лампочки; работал холодильник, телевизор и т. д. Благодаря аккумуляторной батарее, можно пользоваться электроприборами в безветренную погоду. Кроме того, во время сильных порывов ветра напряжение в сети остаётся стабильным.

Увеличение мощности установки

Конструкцию некоторых ветрогенераторов имеет ветровой датчик. Он собирает данные о направлении и скорости воздушного потока. Генератор ветряка не может выдать больше номинальной мощности, однако, в любое оборудование заложен запас он может составлять от 10-30% от расчетных. На этот «запас» рассчитывать не стоит, так как программно и конструктивно в ветрогенератор заложена защита от перегрузок.

Увеличить мощность ветроустановки можно с помощью системы резервирования электроэнергии на базе аккумуляторных батарей.

Выходная мощность (кВт) ветрогенератора определяется мощностью инвертора. Исходя из выдаваемых киловатт, можно определиться с максимальным количеством подключаемых электроприборов. Чтобы увеличить выходную мощность установки, необходимо параллельно подключить несколько инверторов.

Для трехфазных схемы электропитания необходимо установить по инвертору на каждую фазу.

Если мощности на фазе недостаточно, увеличивают количество инверторов, если это предусмотрено производителем. При отсутствии ветра продолжительность подачи электроэнергии прекращается. Генерации энергии не происходит, поэтому к ветрогенератору подключают накопители энергии, смотрите схему ниже.

Схема увеличения мощности и емкости ветрогенератора

Накопитель энергии состоит из связки инвертор-батарея. О батареях вы можете прочитать в этой рубрике, а о накопителях в этой. Увеличение ёмкости аккумуляторных батарей увеличивает запас хранимой энергии, но и длительность зарядки. Скорость зарядки аккумулятора зависит от мощности генератора и количества инверторов, которые тоже могут пропустить через себя только ту мощность, которая заложена производителем. Соответственно, скорость зарядки аккумуляторов зависит от пропускной способности инвертора и не зависит от мощности ветрогенератора.

Выбор ветрогенератора

Самые качественные ветряки производят в Германии, Франции и Дании. Эти страны делают ветровые установки для снабжения электричеством жилого частного сектора, фермерских хозяйств, школ, небольших торговых точек. В России из-за низкой стоимости электроэнергии и негласной монополии на продажу электроэнергии ветроустановки, солнечные панели и другие виды альтернативной энергии не сильно распространены.

Мобильный ветрогенератор подойдет для нефтепромышленности или монтажных бригад, которые ведут строительство в полях (прототип)

Но высокая стоимость подключения удаленных объектов от электросетей (есть до сих пор не электрифицированные деревни), хамство чиновников, длительные процедуры хождения и получения ТУ у монопольных компаний вынуждают собственников использовать альтернативную энергию своих объектов.

Прежде все вы должны понимать, что КПД ветровой установки составляет около 60%, есть зависимость от скорости ветра, и потребуется периодически проводить ТО. Если вы все-таки решили сделать выбор в пользу ветрогенератора, следует знать. Выбирать ветрогенератор нужно исходя из конкретных обстоятельств его применения. Существуют новые разработки и модели: с повышенным КПД, вертикальные, горизонтальные, ортогональные, безлопастные.

Подсчитывается активная и резистивная мощность всех потребителей энергии.

Для предприятий или частного дома эти данные могут быть в проекте или счетах за электроэнергию. Если вам необходимо обеспечить электроэнергией дачу выбирается модель ветроустановки на 1-3 кВт, инвертор нужно небольшой мощности и можно обойтись без аккумуляторных батарей. Принцип наличия дачной ветроустановки прост: есть ветер — есть электричество, нет ветра — работаем в огороде или по хозяйству. Простой ветрогенератор можно сделать самому, достаточно собрать необходимые материалы и соединить их вместе.

Для частного дома постоянного проживания, такой принцип не подойдет. При частом отсутствии ветра следует придать особое значение аккумулятору. Здесь нужна большая ёмкость. Однако, чтобы он быстрее заряжался, сам генератор электричества также должен быть большой мощности. То есть отдельные узлы установки тесно взаимосвязаны друг с другом. Более надежная комбинация — симбиоз с дизель-генератором и солнечными панелями. Это 100% гарантия наличия электричества в доме, но и более дорогая.

При наличии скважины вы будете полностью энергонезависимые от внешних сетей.

Сейчас большое распространение получили коммерческие ветровые установки. Получаемая с их помощью электроэнергия продается различным предприятиям, испытывающим недостаток в энергоснабжении. Обычно такие электростанции состоят из нескольких ветрогенераторов различной мощности. Вырабатываемое ими переменное напряжение в 380 вольт подается непосредственно в электросеть предприятия. Кроме того, ветрогенераторы могут использоваться для зарядки большого числа аккумуляторных батарей, с которых потом преобразованная в переменное напряжение энергия также подается в электрическую сеть.

Ветрогенераторы российского производства

В большинстве случаев владельцы предприятий ставят ветроустановки, солнечные панели и дизель-генераторы для нужд собственного производства. Получение разрешение на продажу электричества в России — это, скажем так, отдельная история. После проведения энергоаудита, высвобождаются мощности, например, путем замены ламп освещения на светодиодные. Подсчитывается срок окупаемости, при отсутствии бюджета можно разделить модернизацию на этапы.

Технологии развиваются. Создаются энергонезависимые дома, офисы, станции на земле и воде. Наша команда инженеров поможет вам с выбором, расчетом, проектом и монтажом оборудования. Готовы ответить на ваши вопросы в комментариях или через форму.

Расчет выработки энергии ветрогенератором

Немало статей размещено в интернете, в том числе и на нашем сайте, о том, как рассчитать систему с солнечными батареями для конкретного дома, дачи, офиса или производственного здания. Нельзя не затронуть тему расчета системы содержащей ветрогенератор.

Тонкости расчета вырабатываемой энергии ветрогенератором

Ветрогенератор в автономной системе крайне полезен. По большей части тем, что его выработка не имеет ярко выраженной зависимости от сезонов. Солнечные батареи хорошо работают летом и плохо зимой, тогда как ветрогенераторы сохраняют свою эффективность в зимний период. Немало важно то, что сильные ветра, как правило, наблюдаются в пасмурную погоду, поэтому совместное применение ветрогенераторов и солнечных панелей достаточно обоснованно. 

Основная проблема ветровых турбин заключается в том, что их эффективность мала при низких скоростях ветра. Если внимательно посмотреть на кривую зависимости мощности от скорости ветра, то можно обнаружить следующее: турбина только начнет вращаться при скорости ветра около 3метров в секунду и, более-менее ощутимая, выработка энергии начнется только при 7метрах в секунду.

Ветрогенераторы достаточно эффективны в прибрежных районах, либо на возвышенностях, где скорости ветра выше и ветра чаще. На большей части территории России средняя скорость ветра составляет 4-5метров в секунду, что создает неблагоприятные условия для применения ветрогенераторов. Но данные усреднены, поэтому следует изучить энерго-потенциал конкретной местности, если существует подозрение, что ветрогенератор  может быть эффективен.

Для повышения эффективности работы ветровых электростанций применяют различные технические решения:

  • ветрогенератор размещают на высокой мачте. Приведем пример: если увеличить высоту мачты с 5 до 20метров, выработка увеличится в 2 раза;
  • применяют ветрогенераторы с вертикальным расположением лопастей. Вертикальные турбины более эффективны при слабых ветрах, а также менее шумные, тем не менее, их стоимость значительно выше горизонтальных;
  • применяют специальные контроллеры заряда, которые, при низкой скорости, ветра сначала дают лопастям раскрутиться, и только потом подключают нагрузку. В таком режиме ветрогенератор вырабатывает некоторое количество энергии, хоть и небольшое, при слабом ветре.

On-line калькулятор для расчета энергии «ветряка»

Перейдем теперь к методам расчета систем с ветряными электростанциями. Покупая устройство, вы будете знать его заявленную номинальную мощность, а также найдете в инструкции график зависимости мощности вырабатываемой «ветряком» от скорости ветра. Имея эти данные довольно сложно оценить количество вырабатываемой энергии, поэтому для дальнейших рассуждений нужно воспользоваться одной из специальных программ, учитывающих метеорологические данные в вашей местности. Мы предлагаем вам воспользоваться удобным сервисом — on-line калькулятор на нашем сайте. Программа учитывает местоположение установки, высоту мачты, а также рельеф местности. Если в электростанции имеются солнечные батареи, в калькуляторе можно произвести расчет для всей системы и получить данные и графики как суммарной, так и раздельной выработки энергии. 

              

                

Рис.1. Расчет суточного потребления (нагрузки).
Рис.2. Подбор солнечных батарей и ветряка. Индивидуальные графики среднесуточной выработки.
Рис.3. Выгрузка графика среднесуточной выработки всех источников энергии.

Не стоит забывать о том, что программа никак не может брать в расчет влияние местных особенностей (предметов, деревьев, заграждающих зданий и т.п.), затеняющих солнечные батареи или вносящих турбулентности в поток воздуха, данные факторы следует учитывать отдельно. 

Читать еще статьи…

 

Ветрогенераторы могут быть ближе к людям и безопасны для птиц

текст: Константин Куцылло

Ветряные электростанции считаются едва ли не самым экологически безопасным способом производства энергии. Они не требуют органического топлива и не производят вредных выбросов. Однако вред от них все-таки есть. Ветряки убивают птиц и летучих мышей. Другая проблема — вибрация и инфразвук. Инфразвук вреден для человека. Кроме того, он разгоняет землеройных грызунов — полевых мышей, кротов, ежей, — а это приводит к размножению вредителей.

Если вибрация еще может быть минимизирована за счет балансировки, то инфразвук неизбежен при работе наиболее распространенного трехлопастного ветрогенератора — он возникает при срыве вихрей с лопастей, и пока нет способа от него избавиться.

При разрушении ветроустановки разлет обломков доходит до сотен метров. Поэтому в Европе, например, действует ограничение в 300 метров от мачты генератора до ближайшего жилья, а интервал между установками должен быть не менее 10 диаметров ветроколеса — чтобы избежать эффекта домино.

Однако все эти ограничения в полной мере относятся только к ветроустановкам мельничного типа, доля которых в мире сегодня около 95%. Основные проблемы ветроэнергетики могут быть разрешены, если применять турбину самолетного типа, разработанную в российской компании Optiflame Solutions, получившей благодаря своим исследованиям грант инновационного фонда «Сколково».

Действующий прототип защищенного жесткой оболочкой турбинного ветрогенератора прошел испытания в аэродинамической трубе

— Рынок классических трехлопастных ветрогенераторов — давно отработанная технология, как у двигателей внутреннего сгорания, — говорит Владимир Канин, директор по развитию компании. — Рынок поделен, и изобретать что-то новое как бы неудобно. Мировые производители давно устоялись, никто им на пятки не наступает, они так и продолжают производство уже 65-метровых монстров. Но производимые сейчас ветряки имеют серьезные ограничения — по минимальному расстоянию до жилых зон, по низкочастотным колебаниям, электромагнитным излучениям и по тем проблемам, которые они создают для птиц и летучих мышей. Если поставить ветряк на пути миграции птиц, то это, конечно же, будет мясорубка. Птица не воспринимает лопастной ветряк как опасность. Она воспринимает лопасти как отдельные палки, между которыми можно пролететь.

— Но первый вопрос, который возникает — почему нет ветрогенератора там, где он нужен? На крышах домов, в частных поселках — там, где есть потребитель. И наш вопрос был ровно в этом — как приблизить ветряк к потребителю. При этом решить надо ровно три задачи: низкие частоты, защита от разрушения, защита от механической опасности для птиц и, само собой, для людей.

Для ветроэлектростанции требуется не только ветрогенератор, но и инфраструктура. Это аккумуляторы и электрооборудование для преобразования тока в промышленный стандарт 220 вольт — 50 герц. Это передающие провода, отчуждаемые под ветряки земли, нередко необходимость включить систему в существующую электросеть. Ветроустановки нуждаются в охране (чтобы, как заметил Канин, пионеры их на металлолом не утащили). Все это удорожает ветрогенераторную станцию, и ее стоимость будет тем выше, чем дальше она от жилья.

— Бизнес-задача была поставлена так, — продолжает Канин, — две альтернативные научные команды должны были подтвердить или опровергнуть жизнеспособность идеи. То есть представить черновые расчеты ветродвигателя — пускай даже в ущерб КПД, с производительностью на 10% ниже, чем у аналогов, но который бы решил главные проблемы ветрогенераторов.

Помимо технических параметров, у установки должны быть определенные потребительские свойства. Одно из главных — размер. Понятно, что на крыше девятиэтажки нельзя ставить ветряк с лопастями в 40 метров. Другое важное свойство — установочная мощность. Потом идут такие параметры, как минимальная скорость ветра, при которой ветряк начинает работать, и максимальная, при которой он еще работает, а также показатель шумности, который должен соответствовать санитарным нормам.

— Конечно же, ветрогенератор, который крутится под ветром в 2 метра в секунду, будет вырабатывать предельно малую энергию, — говорит Канин. — Но если речь идет о зарядке аккумулятора, то какая нам разница — несколько ватт лучше, чем ноль. А гигантские промышленные ветряки ветер даже в 4-5 метров не может столкнуть, их приходится раскручивать специальным мотором.

За два года с начала работы над бизнес-идеей в 2008 году командой разработчиков Optiflame Solutions под руководством научного руководителя проекта, кандидата физико-математических наук Сергея Дудникова и научного руководителя по аэродинамике, профессора Санкт-Петербургского политехнического университета Рудольфа Измайлова, был создан и испытан в аэродинамической трубе действующий прототип ветрогенератора в жесткой оболочке, диаметром полметра. Ветрогенератор представляет собой турбину самолетного типа. Успешные испытания прототипа позволили создать модель ветрогенератора диаметром 2 метра с установочной мощностью в 1 киловатт, при максимальной в 2 киловатта. Ведется проектирование ветротурбины диаметром в 6,4 метра, номинальной мощностью 5 киловатт и максимальной — 10. В планах создание генератора диаметром 20 метров с мощностью от 50 до 100 киловатт.

Конструкция состоит из ротора с 32 лопатками, заключенными в обечайку — жесткий корпус, который и стал исполнителем главного требования по безопасности в случае разрушения лопастей. В передней части ротор закрыт направляющим аппаратом, который состоит из лобового обтекателя и таких же лопаток, как в роторе, но неподвижно закрепленных. Направляющий аппарат формирует воздушную струю в турбине и в то же время служит защитной решеткой — «радиатором» — для вращающихся лопастей.

— Благодаря особой конструкции направляющего аппарата, — говорит Канин, — нам удалось не только не потерять коэффициент полезного действия ветрогенератора по сравнению с классическим трехлопастным аналогом, но и существенно повысить его. А так как у нас 32 лопатки в роторе, то, соответственно, стоит 32 защитных лопатки в «радиаторе» — нельзя сказать, что туда совсем не просунешь руку, но от случайного попадания защищает, и кошка точно не пролезет. И та защита, которая будет работать от птиц и кошек — она справедлива и от детей, электромонтеров или домохозяек, которые надумают побаловаться на крыше с вентилятором.

— Насколько отличается наш КПД от классического, точно можно будет сказать в конце лета, когда мы испытаем двухметровую модель. Пока, по результатам испытания полуметровой модели, мы считаем, что КПД будет выше на 20-30%, — подтвердил слова коллеги Сергей Дудников. — Но главным мы считаем все же не КПД, а безопасность нашего ветряка. Если он «пойдет вразнос», то колесо ротора просто заклинит в обечайке, и ничего никуда не вылетит. С фасада он также безопасен из-за неподвижного направляющего аппарата.

Благодаря повышению скорости вращения турбинного ветрогенератора удалось решить проблему низкочастотных колебаний. По словам Владимира Канина, особый упор делался на то, чтобы вывести весь производимый ротором шум в слышимую область звукового спектра. Показатель шумности удалось ограничить на уровне в 35 децибел при скорости ветра 10 метров в секунду, что укладывается в нормы. Для жилых помещений ночью это 30 децибел, днем — 40. Предел уровня шума для офисных помещений, по европейским стандартам — 55 децибел.

— При повышении скорости вращения, при сильном ветре, растет тон звука, но не его мощность, — заверил Канин.

Вес установок будет небольшой, поскольку лопасти выполнены из пластика, а не металла. Для двухметровой турбины — 90-95 килограммов, пятикиловаттная турбина диаметром в 6,4 метра должна весить не более 200 килограммов.

За лето компания планирует построить опытную партию киловаттных генераторов, 5-10 штук, и отправить их на рабочие испытания. После испытаний и возможных доработок будет решаться вопрос о запуске в серийное производство.

— Если, скажем, производитель в Германии или любой другой стране скажет нам, что он готов делать и продавать 1000 штук в год, то мы поставим сборочную линию там, — сказал Канин.

Более мощная модель турбины, на 5 киловатт, планируется к производству опытной партией в следующем году. Это именно тот ветрогенератор, который может стать базовым для отдельного частного дома или фермерского хозяйства.

— Если говорить о России, то для частного дома мы бы рекомендовали нашу модель 5000 — это пять киловатт установочной мощности при 10 метрах в секунду, — говорит Канин. — У нас в России энергопотребление если не на порядок, то на полпорядка выше, чем энергопотребление в Азии, и на порядок больше, чем в Африке. По нашим расчетам, этих 5 киловатт будет достаточно для семьи среднего уровня энергопотребления — освещение, холодильник, компьютер, отопление. Если дом стоит в ветреном районе, на вершине холма, например, то мачта даже не нужна — турбину можно поставить на крышу. Если же ветер во дворе маленький, то мачта понадобится — 20 или 30 метров.

Стандартной оценкой стоимости ветрогенератора является цена за киловатт установочной мощности. Для малых ветряков в Европе считается хорошей цена в 2500-3000 евро, если 2300 — совсем замечательно. Поскольку конкуренция на рынке ветрогенераторов непрерывно растет, то и цена стремится вниз — хотя и не быстро, спрос достаточно большой. В прошлом году в США было установлено порядка 40 тысяч малых установок (до ста киловатт), в Китае — 40 тысяч, в Германии — 15-20 тысяч.

— Мы способны поставить цену ниже нижней планки, — считает Владимир Канин. — За пятикиловаттный ветряк мы прогнозируем цену в районе 10 тысяч долларов.

— В мире впустую простаивают десятки миллионов высоких крыш. Обычные ветряки туда ставить нельзя. А наш — можно! И мы это скоро начнем доказывать на практике, — резюмировал Сергей Дудников.

Солнечные батареи или ветрогенератор — вот в чем вопрос 🙂 © Солнечные.RU

Для балансировки поступления энергии от альтернативных источников часто возникает желание совместить солнечные батареи и ветрогенератор в одной системе.

В каких случаях стоит это делать и какой источник альтернативной энергии выбрать, можно понять, рассмотрев плюсы и минусы ветряков и солнечных панелей.

Плюсы солнечных панелей:

  • Надежность — качественные панели от известного мирового производителя проработают 25 лет и более, поскольку они не имеют подвижных частей и какой-либо электроники в своем составе, а закаленное стекло, прочная алюминиевая рама и надежная герметизация элементов обеспечивает беспроблемную эксплуатацию панелей в любых погодных условиях при любой температуре.
  • Простота установки — при помощи стандартных крепежных комплектов можно легко закрепить панели на крыше или на стене дома.
  • Отсутствие необходимости технического обслуживания — единственное, что рекомендуется для увеличения выработки энергии, это раз в год вымыть поверхность солнечных панелей моющим средством для стекла, но и это не обязательно.

Минусы солнечных панелей:

  • Низкая среднесуточная выработка электроэнергии в зимнее время — в 5-10 раз меньше, чем летом для средней полосы России, в 2-3 раза меньше — для южных регионов и полное отсутствие выработки зимой в северных регионах за полярным кругом. Для компенсации недостатка электроэнергии необходимо использовать дизель-генератор, бензогенератор или ветрогенератор.
  • Сильная зависимость выработки электроэнергии от погоды. В облачную погоду выработка снижается до 5-20% по сравнению с безоблачной солнечной погодой. Однако, устранить эту зависимость в автономной солнечной электростанции можно применив аккумуляторы повышенной емкости, обеспечивающие запас электроэнергии на 5-7 дней.

Плюсы ветрогенераторов:

  • Выработка электроэнергии не зависит от времени суток и времени года, если есть ветер.
  • В местности, где часто дуют ветры (в горах, в степях, на берегах рек и морей), ветряк может выработать значительное количество электроэнергии. Однако общая площадь таких мест, населенных людьми, в Российской Федерации составляет менее 1% от всех населенных мест.

Минусы ветрогенераторов:

  • Необходимость монтажа на мачте высотой более 25 метров на 99% местности Российской Федерации, поскольку жилая застройка и леса сильно снижают скорость ветра близко к земле — стоимость монтажа ветрогенератора во много раз превысит стоимость самого ветрогенератора.
  • При средней скорости ветра в России, равной 3-4 метра в секунду, ветрогенератор будет вырабатывать около 1-3% процентов от своей номинальной мощности. Номинальная мощность ветрогенератора указана для ветра скоростью 10-12 м/сек.
  • Отсутствие надежности в сегменте маломощных ветряков мощностью до 10 кВт — большинство дешевых маломощных ветряков не проработает больше 2-х лет без поломок, хотя есть случаи работы ветряков и по 8 лет. Если Вам известны факты более продолжительной работы без поломок, поделитесь этим со всеми на нашем форуме.
  • Необходимость ежегодного технического обслуживания для поддержания ветрогенератора в рабочем состоянии.
  • Замерзание смазки при отрицательных температурах приводит к невозможности старта ветряка зимой.
  • Свист маломощных ветряков, работающих на высоких оборотах при большой скорости ветра — не доставит удовольствия ни Вам, ни Вашим соседям.
  • Низкочастотный инфразвук мощных ветрогенераторов при любой скорости ветра и маломощных при небольшой скорости ветра — как известно, инфразвук оказывает отрицательное влияние на здоровье человека и всего живого. Именно по этой причине промышленные ветроэлектростанции расположены на значительном удалении от жилых массивов.

Подведём итог:

Использование ветрогенератора, как дополнительного источника энергии для солнечной электростанции имеет экономический смысл только в местности, где часто дуют ветры, при условии, что есть возможность его установки вдали от жилья. При этом необходимо устанавливать надежные мощные модели с мощностью от 10 кВт и обязательно проводить их ежегодное техобслуживание.

О том, имеет ли экономический смысл установка солнечных батарей, читайте здесь.

 

Ветрогенератор или солнечные батареи — вот в чем вопрос 🙂

FAQ по ветрякам

  • В каких случаях уместно использовать ветровую установку?

    Ветряную электростанцию следует использовать в местах, где имеются перебои в обеспечении электроэнергией или отсутствует централизованное электроснабжение при условии достаточного ветрового потенциала (среднегодовая скорость ветра не менее 3,5 м/с) и отсутствия высоких зданий или деревьев.

  • Как определить среднегодовую скорость ветра в том месте, где будет установлен ветряк?

    Чтобы получить подобную информацию, требуется проведение исследования. Репрезентативные результаты можно получить только через 1 год. Имейте ввиду то, что большинство ветровых электростанций достигают своей номинальной мощности пот скорости ветра около 7-10 м/с.

  • Необходимо ли разрешение для установки ветряка для частных лиц?

    Никаких разрешений или лицензий получать не нужно. Вы ведь не получаете разрешение на установку дизельного генератора. Тут точно та же ситуация.

  • Как должна быть расположена ось ветроколеса: горизонтально или вертикально? Какое оптимальное количество лопастей должен иметь ветрогенератор?

    Существует множество вариантов конструкции ветровых установок, но в настоящее время 95% всех выпускаемых в мире ветрогенераторов – трехлопастные с горизонтальной осью.

  • Каковы основные критерии для объективного сравнения ветрогенераторов, выпускаемых различными производителями?

    К таким критериям относятся: — безопасность эксплуатации ветрогенератора — коэффициент использования ветра — годовое количество энергии, вырабатываемое в год при заданной среднегодовой скорости ветра, и, соответственно, соотношение стоимости ветрогенератора к годовой выработки электроэнергии — какова необходимая периодичность сервисного обслуживания — надежность работы, характеризуемая, в частности, сроком гарантийного обслуживания — срок эксплуатации ветрогенератора — время выполнения заказа — продолжительность серийного выпуска

  • Чем Ваш ветрогенератор лучше других? Почему мы должны отдать предпочтение именно ему перед другими?

    1. Наши ветрогенераторы успешно эксплуатируются уже свыше 11 лет, показывая надежную работу. 2. Коэффициент использования ветра составляет 51% (Для сравнения: у лучших зарубежных образцов этот коэффициент составляет 49 – 52%, отечественных – 38%)

  • Можно ли приобрести ветроустановку отдельно без мачты? Мачту изготовить на месте.

    Да, такой вариант возможен. Но в этом случае мачта должна соответствовать требованиям нашей конструкторской документации. И в этом случае контроль за изготовлением лежит на покупателе и мы не предоставляем гарантии на ВЭУ.

  • Что означает следующая формулировка: «Мощность генератора составляет 800 Вт, а мощность ветроустановки – 3 кВт»?

    Установленная мощность генератора ветроустановки “ВЭУ-08» — 800 Вт. Благодаря энергоблоку содержащему в себе интеллектуальное зарядное устройство (которое в свою очередь заряжает блок аккумуляторных батарей от ветрогенератор и солнечных фотоэлектрических панелей) и инвертор, максимальная выходная мощность одной системы составляет 5кВт. Системы могут быть объединены, что позволит увеличить выработку электроэнергии.

  • Чем нужно руководствоваться при выборе мощности ветрогенератора для загородного дома?

    Для загородного дома будет достаточно ветрогенератора мощностью 1,5-6 кВт. Многое зависит от того, при какой скорости ветра ветроустановка выдает заявленную мощность, а также от скорости ветра в данном регионе. Если один ветрогенератор выдает мощность 2кВт при скорости ветра, например, 8м/с, а другой 5кВт при 12м/с, то в регионах со среднегодовой скоростью ветра до 7м/с первая установка будет вырабатывать больше электроэнергии за год. Это происходит из-за больших потерь мощности на втором ветрогенераторе при малых скоростях ветра.

  • Как происходит регулирование мощности ветрогенератора и что происходит с ВЭУ при высоких скоростях ветра?

    Регулирование мощности ветрогенератора при скоростях ветра выше расчетной, происходит наиболее прогрессивным способом, за счет изменения угла установки лопастей с помощью компактного регулятора оборотов аэродинамического типа. Остановка ветроколеса осуществляется с помощью системы автоматического перевода лопастей во флюгерное положение. Эти системы являются ноу-хау и были запатентованы.

  • Почему скорость вращения ветроколеса Вашего ветрогенератора 320 об/мин? У других производителей этот показатель выше.

    При данной скорости вращения ветроколеса энергия малых ветров используется наиболее полно. На малых оборотах аэродинамический шум от лопастей значительно ниже. Существуют ВЭУ с частотой вращения ветроколеса 400…500 об/мин и диаметром ветроколеса 4-5 м, в этой ситуации стартовая скорость работы ВЭУ значительно выше. Уровень шума также существенно возрастает.

  • Что означает тихоходное ветроколесо Вашего ветрогенератора?

    Одной из характеристик ветрогенераторов является быстроходность ветроколеса. Она определяется соотношением скорости движения конца лопасти к расчетной скорости ветра. Для современных ветроколес эта цифра лежит в пределах от 4 до 12. При прочих равных условиях, чем больше скорость вращения ветроколеса, тем выше эта цифра. Преимущество наших ветрогенераторов, более тихоходных ветроколес, состоит в том, что они начинают работать при малых ветрах, создают меньше шума, а также износ деталей таких ВЭУ минимален.

  • Что происходит с ветрогенератором при штормовом ветре?

    При скорости ветра более 25 м/с ветроколесо останавливается с помощью системы автоматического перевода лопастей во флюгерное положение, таким образом нагрузка на ветроколесо снижается. Это наиболее безопасный вариант защиты ВЭУ. Другие варианты уменьшения скорости вращения, связанные с созданием противодействующего момента за счет торможения генератором являются потенциально опасными как для ВЭУ, так и для жизни.

  • Как осуществляется грозовая защита?

    Установка имеет соответствующее стандартам и нормативам заземление.

  • Какими аккумуляторными батареями Вы рекомендуете комплектовать Вашу ветроустановку?

    Мы рекомендуем герметичные необслуживаемые аккумуляторные батареи с емкостью не менее 200А*час. Тип и емкость аккумуляторных батарей определяются ветровым потенциалом местности и пожеланиями заказчика.

  • Существуют ли какие-либо требования к месту установки аккумуляторных батарей?

    Для установки аккумуляторных батарей необходимо отапливаемое вентилируемое помещение с температурой выше 0оС площадью 1 м2. Такой шкаф (по желанию заказчика) может поставляться совместно с ветрогенератором. В нем так же может быть размещен дизельный, бензиновый или газовый генератор.

  • Можно ли комбинировать ветрогенераторы с другими источниками энергоснабжения?

    Ветрогенераторы могут быть сопряжены с солнечными батареями, а также с дизельный, бензиновый или газовый генераторами.

  • Зачем нужен инвертор?

    Инвертор служит для преобразования постоянного тока с аккумуляторов в переменный 220(380)В 50 Гц, пригодный для подключения электроприборов.

  • Почему Ваши установки не имеют мультипликатора?

    Мультипликатор увеличивает скорость вращения ветроколеса до скорости вращения быстроходного электрогенератора – от 1500 об/мин. Нашему электрогенератору на постоянных магнитах достаточно той скорости, с которой вращается ветроколесо – 300 об/мин.

  • Какой уровень шума, производимого Вашими установками?

    Ветряные установки создают определенный шум, как и все источники энергии. Шумовые характеристики ветряной установки 10 кВт — примерно 40 дБА непосредственно под установкой во время работы на средних оборотах, что отвечает требованиям европейских нормативных документов. Для сравнения, шум городских дорог 70-80 дБА, а звук от работающего дизель-генератора — 90-110 дБА.

  • Безопасно ли жить рядом с работающим ветрогенератором?

    Да, малые ветряные установки (до 100 кВт) совершенно безопасны для окружающих. Только кротов отпугивают.

  • Нуждается ли установка в сервисном обслуживании?

    ВЭУ-08 является необслуживаемым ветрогенератором и в сервисном обслуживании не нуждается.

  • Какой уход требуется ветряной установке для нормальной работы?

    Наши ветряные установки довольно надежны. Потребуется минимальный уход: проверка надежности закрепления лопастей, смазка движущихся частей. Проверка, не повреждены ли соединительные кабели.

  • Можно ли застраховать ветряную установку?
    Все ветряные установки от 2 до 20 кВт продаются со страховым полисом на 1 год. Страхование оборудования осуществляет компания Стройполис.
  • Можно ли приобрести ветрогенератор в кредит?

    Такая возможность имеется, обращайтесь за консультациями к менеджеру по работе с клиентами.

  • Какие сроки поставки ветряной установки?

    Стандартные сроки поставки ветряных установок: 60 рабочих дней после внесения предоплаты. Если продукция имеется на складе, сроки поставки сокращаются до 5 дней.

  • Как производится монтаж ветроустановки, какое оборудование необходимо, нужен ли подъемный кран?

    Для монтажа ветрогенератора применяется специальное устройство подъема оборудования (принцип «лебедки»). Данное приспособление упрощает монтаж ветроустановки, т.к не требуется подъемный кран. Установка монтируется двумя специалистами в течении 2-3 часов. Возможны два варианта монтажа: 1. Монтаж производителем 2. Шеф-монтаж.

  • Какая стоимость монтажа ветряной установки (ветряной электростанции)?

    Стоимость монтажа ветряного генератора зависит от многих факторов и составляет 10-20% от суммарной стоимости.

  • Можно ли смонтировать ветряную установку самостоятельно?

    Малые ветряные установки (до 2 кВт) вполне можно смонтировать и подключить самостоятельно. Для больших ветряных электростанций, от 5 до 20 кВт, потребуется участие бригады монтажников. Чаще всего монтаж ветряной электростанции проводит организация осуществляющая продажу ветряных электростанций.

  • Каков порядок проектирования места для установки ветрогенератора?

    Для определения подходящего участка для установки ветрогенератора возможен выезд наших специалистов на место. Данные по ветру обычно определяются по справочникам, а также анализом измерений ближайших метеостанций.

  • Существует ли демонстрационная площадка для практического ознакомления с работающими ветрогенераторами?

    Работающие ветрогенераторы можно увидеть и получить исчерпывающую консультацию по техническим вопросам на сайте www.AVANTE.com.ua

  • Какая площадь необходима для установки ВЭУ?

    Монтаж опоры осуществляется на фундамент, состоящий из трех бетонных блоков по 1.2 м3 каждый (высота 1,2 м, диаметр 0.9 м). В дно ям забиваются уголки — заземлители, соединяющиеся с закладными с помощью шины.

  • Каким образом Ваша ветроустановка ориентируется на ветер?

    Горизонтальные ветряки ориентируются за счет флюгера. Ветер сам доворачивает ветрогенератор в нужную сторону. Вертикальные ветрогенераторы не нуждаются в ориентации по веру и работают при любом и даже резко изменчивом ветре. Данная разработка защищена патентным свидетельством.

  • Каков расчетный срок службы ветряных генераторов?

    Срок службы ветряного генератора в зависимости от условий эксплуатации составляет от 15 до 25 лет.

  • Сказывается ли работа ветрогенераторов на работе ТВ и радиоприемников?

    Нет

  • Чем отличается ветроагрегатор с вертикальной осью вращения (вертикальный ветрогенератор) от горизонтальной? Коковы преимущества и недостатки ветрогенераторов вертикальных?

    Основные плюсы вертикальных ветрогенераторов по сравнению с горизонтальными это их бесшумность. Так же надо учитывать повышенную долговечность механизмов из за отсутствия нагрузки на вал. Следует так же учесть более слабый ветер необходимый для старта турбины (1.2м/с по сравнению с 2.5м/с у горизонтальных) Недостаток ветрикальных ветряков один — это цена. Цена вертикальных ветряных генераторов выше примерно в полтора-два раза. Вертикальные ветряные генераторы могут использоваться в городских условиях и крепиться непосредственно на здания и жилые помещения.

  • Как работает гелиосистема в ночное время?

    Поскольку ночью отсутствует солнечное излучение, необходимое для работы солнечного коллектора, гелиосистема не способна повышать температуру в баке накопителе за счет работы коллектора. В ночное время для дополнительного нагрева может быть задействован электрический ТЭН или иной источник тепловой энергии (газовый, электрический или твердотопливный котел).

  • Что такое площадь апертуры и абсорбции?
    Площадь апертуры это площадь с максимальной проекцией, на которую падает солнечное излучение. Площадь абсорбции рассчитывается как произведение ширины и длинны абсорбера. Для вакуумных трубчатых коллекторов с круглым абсорбером, учитывается проекция цилиндра вакуумной трубки на поверхность.
  • Какой расход воды на ГВС у частных лиц?

    Руководствоваться нормами потребления, описанными в СНиП и ДСТУ (100 литров на человека), не всегда целесообразно, поскольку они, как правило, существенно отличаются от фактических данных. Реальное потребление составляет 50-80 л/сутки на человека, если это частные дома, или 30-50 л/сутки — если многоквартирные. Для предварительных расчетов берется величина 50 литров на человека в сутки.

  • Как лучше ориентировать и размещать гелиосистему относительно сторон света?

    Оптимальная ориентация солнечного коллектора – строго на юг. При ориентации гелиосистемы на восточное или западное направление, производительность снижается на 20-25%.

  • Под каким углом устанавливаются солнечные коллекторы к горизонту?

    Как правило, оптимальный угол установки солнечного коллектора для круглогодичной системы равен широте местности, где находиться объект. Для Киева это 50°. Если гелиосистема проектируется с приоритетом на летнее использование то угол установки должен быть на 10-15° меньше широты местности установки (г.Киев — 35-40°). При зимнем приоритете, соответственно, на 10-15° больше широты местности (г. Киев — 60-65°).

  • Возможна ли установка гелиосистемы в уже существующих зданиях с действующими системами отопления и нагрева воды, или гелиосистему можно закладывать только на этапе проектирования и устанавливать во время строительства объекта?

    Гелиосистема устанавливается не только на этапе строительства объекта, но и в эксплуатируемых зданиях. Она с легкостью интегрируется в любые системы отопления и нагрева воды, работает со всеми типами водогрейных котлов, при этом, либо не требует изменений действующих тепловых схем вовсе, либо эти изменения минимальны. Нужно помнить, закладка гелиосистемы на этапе проектирования и строительства позволяет снизить стоимость монтажных работ и более эффективно реализовать тепловую схему с самого начала.

  • Что такое режим стагнации, почему он происходит, как влияет на систему?
    Стагнация (фр. stagnation, от лат. stagno — делаю неподвижным, останавливаю; лат. stagnum — стоячая вода). Режим, при котором прекращается проток теплоносителя по контуру гелиосистемы. Отсутствие расхода в гелиоконтуре может возникнуть по нескольким причинам:
    • отсутствует электроснабжение на циркуляционном насосе (до 30 минут), при высокой солнечной активности.
    • выход из строя циркуляционного насоса.
    • засорение контура сторонними элементами.
    • воздушная пробка в контуре.
    • разгерметизация контура, низкое давление.
    • не правильно настроенный или вышедший из строя контроллер.
    • действия третьих сил (например, случайное перекрытие запорной арматуры на контуре).
    При высокой солнечной инсоляции, отсутствие расхода, приводит к росту температуры коллектора до наступления теплового равновесия, когда выработка тепловой энергии соответствует тепловым потерям в текущий момент времени, при этом, как правило, температура стагнации намного превышает температуру кипения теплоносителя. Режим стагнации в гелиосистеме, сопровождается повышением давления и ростом температуры (в зависимости от коллектора и может достигать 250С). При высокой температуре, теплоноситель в коллекторе начинает превращаться в пар. При этом, возникающее избыточное давление компенсируемое расширительным баком, который обязательно устанавливается в любой системе с закрытым контуром. Солнечные коллекторы от компании ATMOSFERA и другие компоненты гелиосистем рассчитаны на работу при высоких температурах в режиме стагнации. Но следует учесть, что при многократно перегреве теплоносителя может деградировать (вплоть до образования твердых фракций), его химический состав меняется и приводит к менее эффективной работе системы или выходу ее из строя. При частых режимах стагнации особенно тщательно нужно следить за состоянием и характеристиками теплоносителя. Для предотвращения наступления режима стагнации часто используют системы утилизации избыточного тепла. Фаза процесса стагнации описаны ниже:

    I фаза – Температурное расширение теплоносителя Данная фаза продолжается то начала первичного парообразование, рост давления в системе происходит за счет температурного расширения теплоносителя (для пропиленгликоля 8,48%). Давление при этом повышается на 1 Атм.

    II фаза — Парообразование теплоносителя Температура теплоносителя достигает температуры кипения (зависит от давления в системе). Образуется пар, давление возрастает еще на 1 Атм.

    III фаза — Кипение теплоносителя в коллекторе Обильное парообразование, до полного вытеснение жидкого теплоносителя из теплообменника коллектора. Сопровождается ростом давления и температуры.

    IV фаза — Режим устойчивого перегрева Собственно режим стагнации – режим теплового равновесия. Тепловые потери на коллекторе равны производительности коллектора.

    V фаза — Режим конденсации Температура паровой смеси опускается (на коллектор поступает меньше солнечной энергии – затенение, изменение условий окружающей среды) и достигает температуры конденсации (температуры фазового перехода), теплоноситель переходи опять в жидкое состояние.

  • Как влияет снег на производительность гелиосистемы?

    Вакуумные коллекторы имеют преимущество — очень низкие теплопотери, что дает возможность улавливать и собирать тепло даже при экстремально низких температурах (до -30С°). Но в случае со снегом это играет свою отрицательную роль — ввиду низких теплопотерь снег на трубках оттаивает очень плохо. Однако, вакуумный солнечный коллектор прозрачен для снега, так как между трубками есть расстояние в несколько сантиметров. Вакуумные солнечные коллекторы могут быть засыпаны снегом только в периоды сильного снегопада с налипанием мокрого снега, что случается достаточно редко. Проблема решается грамотным монтажом, чисткой или установкой дополнительных систем оттаивания снега. Плоские коллекторы за счет собственных конвективных потерь самоочищаются от снега — снег тает на поверхности коллектора.

  • Гелиосистемы предназначены для небольших или крупных потребителей тепловой энергии? Можно ли использовать гелиосистемы для больших объемов воды, которые используются в многоквартирных жилых домах, школах, гостиницах, бассейнах?

    Конечно! Гелиосистема – универсальна, она идеально подходит, как для частного коттеджного строительства, так и для объектов с большими тепловыми нагрузками. Мощность гелиосистемы, легко регулируется, она прямо пропорциональна количеству солнечных коллекторов в системе – чем их больше, тем больше произведенной тепловой энергии на выходе, это позволяет подобрать систему под любой объект с любым потреблением. Срок окупаемости объектов с большим потреблением значительно меньше, поскольку в таких системах дополнительного оборудования меньше, а генерирующего (солнечные коллекторы) больше.

  • До какой температуры нагревает воду гелиосистема?

    Производительность гелиосистемы зависит от многих условий: окружающей среды (поступление солнечной энергии, влажность, сила ветра, температура) и применяемого оборудования (технические параметры солнечных коллекторов, изоляции трубопровода, размещение в пространстве и т.д.), поэтому для каждого конкретного случая она будет отличаться. Если говорить о среднестатистических данных для территории Украины, то в тепловое время года — с мая по сентябрь гелиосистема может быть основным источником нагрева воды и подогревать воду до температуры 55°C  — 60°C (при необходимости может довести воду до кипения). В зимний период гелиосистема служит источником предварительного нагрева с температурой нагрева до 30°C.

  • Какие коллекторы более эффективны, вакуумные или плоские?

    К счастью (или к сожалению) однозначного ответа на этот вопрос нет. Производительность каждого коллектора зависит, не только от его технических параметров (оптического КПД, и 2-х температурных коэффициентов), но и от притока солнечной радиации, температуры окружающей среды и теплоносителя внутри коллектора. Именно поэтому, сравнивать коллекторы между собой корректно только при конкретных условиях окружающей среды. Вакуумный коллектор более производителен при использовании в зимнее время года и в целом в круглогодичном цикле, в то же время в летний период (при небольших перепадах температур) плоский коллектор может показывать более высокую эффективность. Наряду с более низкой стоимостью плоский коллектор является идеальным решением при замещении сезонных нагрузок в летний период года (в летних лагерях, базах отдыха, санаториях и т.д.), а вакуумный коллектор, если нужен больший уровень комфорта при круглогодичном цикле.

  • Может ли гелиосистема обеспечить 100% потребности в горячем водоснабжении и отоплении для жилья?

    К сожалению нет. Гелиосистема может заместить 100% потребности в горячей воде с мая по сентябрь, в зимнее время эта величина будет составлять 30-40%. В течении года замещение гелиосистемой потребности в ГВС может достигать 70-75%. Это связано с тем, что в первую очередь производительность гелиосистемы зависит от притока солнечного излучения, которое меняется, как в течении дня, так и течении года. При этом разница между зимней и летней солнечной активностью составляет 5 раз. Следует помнить, что увеличение количества коллекторов в гелиосистеме в зимнее время не приведет к росту температуры, поскольку в этот период года преобладает рассеянное излучение. В тоже время летом (когда преобладает прямое излучение) не пропорциональная система, в которой потребление существенно меньше производительности коллекторов, накладывает дополнительные требования к системе утилизации тепла во избежание закипания теплоносителя внутри коллекторов.

  • Эффективна ли гелиосистема в зимнее время?

    Конечно! Гелиосистемы работают даже при очень низких температурах — до -30°C если используется теплоноситель на основе пропиленгликоля, и до -50°C если на основе глицерина. Естественно, производительность гелиосистемы в зимнее время снижается (в той или иной мере в зависимости от конструкции и применяемого оборудования), но они не теряют своей работоспособности и продолжают нагревать воду.

  • Работает ли гелиосистема при рассеянном солнечном излучении, при облачной погоде?

    Селективное (поглощающее) покрытие солнечного коллектора улавливает широкий спектр солнечного излучения, от ультрафиолетового до инфракрасного, эта особенность позволяет работать коллектору даже при рассеянном излучении и вырабатывать тепловую энергию даже при пасмурной погоде.

  • Каков срок службы и гарантии на гелиосистемы?

    Срок службы гелиосистем составляет от 25 до 50 лет. При этом гарантия на солнечные коллекторы составляет до 15 лет. Такие длительные сроки эксплуатации и гарантии на гелиосистемы обусловлены применением только качественных комплектующих от ведущих мировых производителей. Более полную информацию по условиям и срокам гарантийных обязательств на все комплектующие вы можете получить в соответствующем пункте гарантийного талона.

  • Из чего состоит гелиосистема, какие основные узлы?
    1. Коллекторное поле, из вакуумных или плоских коллекторов
    2. Рама для солнечных коллекторов
    3. Воздухоотводчик
    4. Насосная группа
    5. Бак накопитель (косвенного нагрева)
    6. Расширительный бак
    7. Термосмесительный клапан
    8. Теплоноситель
    9. Контроллер
    10. Соединитель коллекторов
  • Что такое солнечная радиация и солнечная инсоляция?

    Это тождественные понятия. Солнечная радиация — это энергия излучения, испускаемого солнцем в результате реакции ядерного синтеза. Следует отметить, что данный термин является калькой с английского (Solar radiation) и является синонимом «солнечной инсоляции». Солнечная инсоляция — облучение поверхностей солнечным светом (солнечной радиацией) или поток прямой солнечной радиации на горизонтальную поверхность. Инсоляцией называют облучение поверхности, пространства параллельным пучком лучей, поступающих с направления, в котором виден в данный момент времени центр солнечного диска. Измеряется в Вт×час/м².

  • Что такое солнечная постоянная?

    Солнечная константа (или солнечная постоянная) — это количество солнечного электромагнитного излучения (солнечной радиации) на единицу площади, измеренной на внешней поверхности земной атмосферы, перпендикулярной к лучам, на расстоянии одной астрономической единицы от Солнца. Солнечная постоянная включает в себя все виды солнечного излучения, а не только видимый свет. По данным внеатмосферных измерений, солнечная постоянная составляет 1367 Вт×час/м². Солнечная постоянная не является неизменной во времени величиной. Известно, что на её значение влияют два основных фактора: расстояние между Землей и Солнцем, изменяющееся в течение года по причине эллиптичности орбиты Земли (годичная вариация 6,9% — от 1,412 кВт/м² в начале января до 1,321 кВт/м² в начале июля).

  • Что такое солнечный коллектор?

    Солнечный коллектор является основной частью гелиосистемы, и предназначен для преобразования поглощенного солнечного излучения в тепловую энергию.

  • Что такое боросиликатное стекло и почему оно применяется в солнечных коллекторах?

    У боросиликатного стекла коэффициент теплового расширения очень мал. Это позволяет стеклу не трескаться при резких изменениях температуры. Этим обусловлено его применение в гелиотехнике, где необходима термическая стойкость, поскольку суточные перепады температур на коллекторе могут достигать 250 °C.

  • Зачем нужно бариевое напыление на трубках вакуумных коллекторов?

    Бариевое напыление, находящееся в нижней части вакуумной трубки служит для индикации наличия вакуума между колбами. Барий (Ba, атомный номер 56) это редкоземельный элемент в чистом виде, практически, не встречается, поскольку мгновенно окисляется под воздействием кислорода. При наличии вакуума между колбами бариевое напыление имеет зеркальный стальной оттенок, при разгерметизации трубки и попадании воздуха, бариевое напыление выпадает в осадок и становится мутновато-молочного оттенка.

  • Нуждается ли гелиосистема в периодическом техобслуживании?

    Компания ATMOSFERA рекомендует проводить ежегодный сервисный осмотр и диагностику гелиосистем (впрочем, как и любых других инженерных систем, установленных на вашем объекте). Диагностика включает в себя проверку работоспособности всех элементов системы, проверку герметичности контуров, отработку алгоритмов управления, при необходимости замену расходных частей. Особое внимание необходимо уделить элементам с ограниченным сроком эксплуатации. Например, магниевые аноды в баках накопителях, как правило, меняют раз в год (частота зависит от характеристик воды). Также следует обратить внимание на теплоноситель гелиоконтура — в зависимости от режимов эксплуатации его замена требуется каждые 5-7 лет.

  • Какой срок окупаемости гелиосистем?

    На текущий момент, срок окупаемости гелиосистем составляет от 3 лет. Эта величина зависит не только от производительности системы, ее стоимости, и режима ее использования, но и от потребителя, который ее использует. Поскольку стоимость энергоресурсов для юридических и физических лиц отличаться в 3-5 раз, естественно, при прочих равных условиях (размера системы и места установки) срок окупаемости гелиосистемы, установленной для юридического лица, будет в 3-5 раз меньше, нежели для физического. Чем больше гелиосистема, тем меньше в процентном соотношении нужно дополнительного оборудования (трубы, изоляция, баки накопители), соответственно, срок окупаемости уменьшается.

  • Существует ли упрощенный алгоритм примерного расчета затрат на установку солнечной водонагревательной системы?
    В разделе «Коммерческие предложения» вы можете ознакомиться с предварительными предложениями для различных типов систем с различным потреблением тепла. Из представленного списка систем вы сможете выбрать самый подходящий именно для вас вариант. Для более точного расчета системы, с учетом особенностей вашего объекта, вы можете заполнить опросный лист, и в течении суток наши менеджеры подготовят для вас персонализированное предложение.
  • Можете ли вы дать координаты ваших клиентов, у которых уже установлено ваше оборудование? Мы хотели бы получить отзывы от пользователей ваших солнечных водонагревателей.

    Политика нашей компании не предусматривает передачу третьим лицам информации о наших клиентах, эта информация строго конфиденциальна. Это правило продиктовано многолетним опытом и действует во избежание причинения беспокойства и лишних хлопот нашим клиентам. В тоже время, понимая интерес, мы стараемся организовать в каждом регионе несколько объектов с возможностью их посещения или получения объема данных о работе системы. Всю необходимую информацию и условия уточняйте у региональных дилеров и представительств компании ATMOSFERA.

  • Насколько прочны вакуумные и плоские коллекторы?
    В конструкции вакуумных и плоских солнечных коллекторов применяются ударопрочные и боросиликатные стекла. Коллекторы предназначены для эксплуатации в условиях внешней окружающей среды и выдерживают высокие механические воздействия вплоть до попадания града диаметром 40 мм.
  • Как влияет загрязнение и обледенение на производительность гелиосистемы?

    Действительно, мощность гелиосистемы может снижаться на 5-7% в зависимости от степени загрязненности поверхности солнечного коллектора грязью, пылью или смогом. При полном обледенении производительность падает на 25%. Однако, эти потери производительности носят кратковременный характер, поскольку солнечный коллектор самоочищается в условиях окружающей среды (дождь, снег, ветер) и не требует дополнительных действий по своей очистке. В тоже время, никаких ограничений по дополнительной очистке солнечных коллекторов нет, и она безусловно положительно скажется на производительности солнечной системы.

  • Какие есть способы утилизации избыточного тепла?

    Лучшим способом утилизации тепла служит правильно спроектированная система с отсутствием этого самого избытка тепла. Также, существуют аппаратные решения (функция «выходной день») и алгоритмы работы контроллера, которые позволяют сбрасывать тепло в ночное время непосредственно через гелиоконтур. Помимо этого можно использовать дополнительные конструктивные элементы системы:

  • Что такое фотомодуль?

    Фотомодуль – специальное полупроводниковое устройство, выполняющее преобразование энергии солнечного излучения в электрическую энергию.

  • Что лучше поликристалл или монокристалл?

    Теоретический КПД монокристаллического фотоэлемента выше чем у поликристаллического, но общий КПД фотомодуля отличается от КПД фотоэлемента и на него влияет качество сборки. Поэтому у одного производителя эффективно поликристаллических фотомодулей не сильно отличается от эффективности монокристаллических.

  • Тонконпленочные фотоэлементы лучше работают в пасмурную погоду, правда ли это?

    Больших различий в выработке тонкопленочных и кристаллических элементов при пасмурной погоде нет, но рабочие напряжения тонкопленочных фотомодулей выше и даже при пасмурной погоде напряжение на тонкопленочных фотомодулях будет выше минимального рабочего напряжения системы. Это значит, что в то время когда система с кристаллическими фотомодулями отключится из-за недостатка напряжения – система на тонкопленочных фотомодулях продолжит работать.

  • Могу ли я полностью обеспечить свой дом электроэнергией от солнечных панелей?

    Увы, приток солнечной энергии на фотомодули не постоянен во времени и для обеспечения гарантированного электроснабжения всех потребителей необходимо установить фотомодули с запасом для обеспечение требуемой зимней выработки и добавить к системе аккумуляторы. Стоимость такой станции для среднего домохозяйства составит десятки тысяч долларов и при условии отключения от электросети станция имеет шансы не окупится. Компания Атмосфера предлагает полностью автономные станции для электропитания объектов к которым нет возможности провести электричество, резервные станции для аварийного электропитания и сетевые станции для экономии электроэнергии и продажи ее в сеть по зеленому тарифу.

  • Из чего состоят солнечные электростанции?

    Основными компонентами солнечных электростанций являются фотомодули, вырабатывающие постоянный ток и инверторы, преобразующие постоянный ток в переменный. Для автономных и резервных станций необходимы аккумуляторные батареи для накопления электрической энергии и контроллеры заряда управляющие процессом заряда АКБ.

  • Мощность фотомодуля это сколько он выработает в час?

    Теоретически, мощность фотомодуля это произведение напряжения в точке максимальной мощности на ток в точке максимальной мощности. На практике это мгновенное значение, которое можно получить из фотомодуля при идеальных условиях.

  • Сколько выработает фотомодуль?

    Приблизительная годовая выработка 1Вт кристаллического фотомодуля составит 1кВт*ч, 1Вт тонкопленочного фотомодуля – 1,3кВт*ч. Более точные данные и детализацию за определенный период времени можно получить используя специализированное ПО.

  • Работает ли это?

    Да! Тепловой насос просто транспортирует тепло из одного места в другое. Ваш холодильник работает по такому же принципу. Если Вы поставите бутылку с водой в холодильник, через некоторое время, она охладится. Притронувшись к задней стенке холодильника, и Вы почувствуете тепло, которое холодильник забрал у бутылки. Используя этот же принцип, тепловой насос перемещает тепло из земли в Ваш дом, а Солнце снова восстанавливает это тепло.

  • Как тепло перемещает из моего участка в дом?

    Земля имеет свойство впитывать солнечное тепло. Это тепло извлекается из коллектора, уложенного на Вашем участке. Вода с незамерзающей жидкостью циркулирует в коллекторе, абсорбируя тепло из окружающего его грунта. Коллектор в доме подсоединен к тепловому насосу, который передает тепло в систему отопления и нагревает бытовую воду.

  • Если температура в коллекторе понизится ниже нуля, тепловой насос не будет работать и извлекать тепло?

    Нет, при нуле замерзает вода. Тепловая энергия есть во всем, температура чего выше -273 °C. Геотермальный тепловой насос будет работать вплоть до -10 °C в коллекторе. В Украине укладка горизонтального коллектора на глубину около метра есть оптимальной.

  • Какой тип установки мне выбрать?

    Доступная площадь возле здания определяет метод поглощения тепла. Коллектор может быть уложен в грунт или погружен в скважину. Также он может быть уложен на дно водоёма. Если места для горизонтальной укладки недостаточно и бурить очень дорого, можно установить воздушный тепловой насос. Его эффективность ниже, но установить его можно где угодно.

  • Насколько эффективен тепловой насос?

    Тепловой насос функционирует от электросети, используя затраченную энергию гораздо эффективнее любых котлов, сжигающих топливо. Значение КПД у него в несколько раз больше единицы. Например, расходуя 1 кВт электроэнергии, Вы получите 3-4 кВт тепла. Таким образом, получаете 2-3 кВт тепла бесплатно из окружающей среды.

  • Где в доме нужно размещать тепловой насос?

    Можно размещать в подсобном помещении, кладовке, подвале, или даже в гараже.

  • Насколько он шумен?

    Тепловой насос шумит как обычный бытовой холодильник.

  • Какой тип отопления выбрать?

    Можно использовать как радиаторную систему, так и напольное отопление. Наиболее эффективным сочетанием является тепловой насос с напольным отоплением. В таком случае КПД будет максимально возможным. В коммерческих зданиях тепловой насос лучше подключить к системе воздушного распределения.

  • Будет ли он отапливать в самое холодное время года?

    Да. Тысячи этих систем были установлены в разных точках Европы, в том числе и в Скандинавии, где зимы очень суровые. Мы спланируем наиболее подходящую систему для Вас.

  • Можно ли получить необходимое количество горячей воды?

    Мы сделаем правильный подбор исходя из пикового количества потребляемой горячей воды в самый холодный день в году. Тепловые насосы производят не такую горячую воду как газовые котлы. Вместо производства горячей воды, которой можно обжечься, Вам нужно будет добавлять меньше холодной воды, чем Вы привыкли. Цель в том, чтобы не вырабатывать слишком горячую воду и таким образом экономить Ваши деньги. Ведь выработка неадекватно горячей воды приводит к уменьшению эффекта теплового насоса.

  • Можно использовать тепловой насос в качестве кондиционера летом?

    Да. Можно приобрести тепловой насос с блоком охлаждения, что абсолютно уберет потребность в кондиционировании и горячей воде в летний период. Технически это реализуется с помощью фанкойлов или приточной вентиляции.

  • Могу ли я отапливать бассейн?

    Да. Мы можем разработать установку с подогревом бассейна.

  • Сэкономит ли это мне деньги?

    Да, сравнивая с любой топливной системой, тепловой насос в несколько раз экономичнее в эксплуатации.

  • В чем экологическая безопасность теплового насоса?

    Насос не производит вредных выбросов, воздейстие коллектора минимально, хладагент R407C, циркулирующий в агрегате, нетоксичен и безвреден для озонового слоя.

  • Откуда тепловой насос извлекает тепло ?

    Солнце – мощнейший источник энергии, оно нагревает воздух, воду, земную поверхность и глубины. Тепловой насос извлекает эту накопленную солнечную энергию.

  • Как производится управление работой теплового насоса?

    Системный мониторинг реализуется микропроцессорными средствами автоматики, автоматизированная система управления обеспечивает безопасный и эффективный режим работы теплового насоса и дополнительного оборудования. Подробное описание функций можно найти в инструкциях пользователей.

  • Что можно сказать о надежности системы?

    Срок эксплуатации земляного коллектора зависит от уровня кислотности почвы и может достигать 50-100 лет, при повышенном же «pH» — приблизительно 30 лет. Непосредственно в самой установке единственной движущей частью является компрессор, срок службы которого составляет 15 лет, и который можно легко и дешево заменить по истечении срока его эксплуатации.

  • Насколько сложно обслуживание установки?

    В процессе эксплуатации система не нуждается в специальном обслуживании, возможные манипуляции не требуют специальных навыков и описаны в инструкциях к конкретным моделям.

  • Как дизайн установки вписывается в интерьер дома?

    Тепловой насос компактен — серийные установки имеют размер 600x600x1650 и 600x600x850 мм. По желанию заказчика корпус может быть выполнен в дереве.

  • Совместим ли тепловой насос с уже имеющейся в наличии у заказчика отопительной системой?

    Тепловой насос совместим с практически любой циркуляционной теплопроводной отопительной системой, независимо от вида котла.

  • Принцип работы ветрогенератора и его комплектующие

    Содержание раздела:

    1. Компоненты ветроустановки
    2. Комплектация наших ветроустановок
    3. Подбор ветряка
    4. Примеры подбора компонентов установки
    5. Схемы работы ветрогенератора

    1. Компоненты ветроустановки

    К основным компонентам системы, без которых работа ветряка невозможна, относят следующие элементы:

    1. Генератор – необходим для заряда аккумуляторных батарей. От его мощности зависит как быстро будут заряжаться ваши аккумуляторы. Генератор необходим для выработки переменного тока. Сила тока и напряжение генератора зависит от скорости и стабильности ветра.
    2. Лопасти – приводят в движение вал генератора благодаря кинетической энергии ветра.
    3. Мачта – обычно, чем выше мачта, тем стабильнее и сильнее сила ветра. Отсюда следует – чем выше мачта, тем больше выработка генератора. Мачты бывают разных форм и высот.

    Список дополнительных необходимых компонентов:

    1. Контроллер – управляет многими процессами ветроустановки, такими, как поворот лопастей, заряд аккумуляторов, защитные функции и др. Он преобразовывает переменный ток, который вырабатывается генератором в постоянный для заряда аккумуляторных батарей.
    2. Аккумуляторные батареи – накапливают электроэнергию для использования в безветренные часы. Также они выравнивают и стабилизируют выходящее напряжение из генератора. Благодаря им вы получаете стабильное напряжение без перебоев даже при порывистом ветре. Питание вашего объекта идёт от аккумуляторных батарей.
    3. Анемоскоп и датчик направления ветра – отвечают за сбор данных о скорости и направлении ветра в установках средней и большой мощности.
    4. АВР – автоматический переключатель источника питания. Производит автоматическое переключение между несколькими источниками электропитания за промежуток в 0,5 секунды при исчезновении основного источника. Позволяет объединить ветроустановку, общественную электросеть, дизель-генератор и другие источники питания в единую автоматизированную систему. Внимание: АВР не позволяет работать сети одного объекта одновременно от двух разных источников питания!
    5. Инвертор – преобразовывает ток из постоянного, который накапливается в аккумуляторных батареях, в переменный, который потребляет большинство электроприборов.
    6. Инверторы бывают четырёх типов:
      1. Модифицированная синусоида – преобразовывает ток в переменный с напряжением 220В с модифицированной синусоидой (ещё одно название: квадратная синусоида). Пригоден только для оборудования, которое не чувствительно к качеству напряжения: освещение, обогрев, заряд устройств и т.п.
      2. Чистая синусоида — преобразовывает ток в переменный с напряжением 220В с чистой синусоидой. Пригоден для любого типа электроприборов: электродвигатели, медицинское оборудование и др.
      3. Трехфазный – преобразовывает ток в трехфазный с напряжением 380В. Можно использовать для трехфазного оборудования.
      4. Сетевой – в отличие от предыдущих типов позволяет системе работать без аккумуляторных батарей, но его можно использовать только для вывода электроэнергии в общественную электросеть. Их стоимость, обычно, в несколько раз превышает стоимость несетевых инверторов. Иногда они стоят дороже, чем все остальные компоненты ветроустановки вместе взятые.

    2. Комплектация наших ветроустановок

    В комплект наших ветроэнергетических установок входит:

    1. Турбина
    2. Мачта (не входит в комплект EuroWind 300L)
    3. Лопасти
    4. Крепления
    5. Тросы мачты
    6. Поворотный механизм (только с ветрогенераторами EuroWind 3 и старше)
    7. Контроллер
    8. Анемоскоп и датчик ветра (только с ветрогенераторами EuroWind 3 и старше)
    9. Хвост (только с ветрогенераторами EuroWind 2 и младше)

    Аккумуляторы, инвертор и дополнительно оборудование подбираются индивидуально и в базовую комплектацию не входят. Независимо от комплектации ветрогенератор всегда автоматически позиционируется по ветру.


    Комплектующие ветрогенератора EuroWind 10

    3. Подбор ветряка

    Первый вопрос, на который вы должны дать ответ и который поможет вам ответить на остальные вопросы: Для чего вам нужен ветрогенератор и какие задачи он должен выполнять?

    Ответив на главный вопрос, вы можете без проблем ответить на остальные вопросы и решить какой набор оборудования вам необходим и сколько это будет стоить.

    Итак, три основные величины, которые определяют работу всего комплекса:

    1. Выходная мощность ветроустановки (кВт), определяется только мощностью преобразователя (инвертора) и не зависит от скорости ветра, емкости аккумуляторов. Ещё её называют «пиковой нагрузкой». Этот параметр определяет максимальное количество электроприборов, которые могут быть одновременно подключены к вашей системе. Вы не сможете одновременно потреблять больше электроэнергии, чем позволяет мощность вашего инвертора. Если вы потребляете электроэнергию редко, но в больших количествах, то обратите внимание на более мощные инверторы. Для увеличения выходной мощности возможно одновременное подключение нескольких инверторов.
    2. Время непрерывной работы при отсутствии ветра или при слабом ветре определяется емкостью аккумуляторных батарей (Ач или кВт) и зависит от мощности и длительности потребления. Если вы потребляете электроэнергию редко, но в больших количествах, обратите внимание на аккумуляторы с большой емкостью.
    3. Скорость заряда аккумуляторных батарей (кВт/час) зависит от мощности самого генератора. Также этот показатель прямо зависит от скорости ветра, а косвенно от высоты мачты и рельефа местности. Чем мощнее ваше генератор, тем быстрее будут заряжаться аккумуляторные батареи, а это значит, что вы сможете быстрее потреблять электроэнергию из батарей и в больших объемах. Более мощный генератор следует брать в том случае, если ветра в месте установки слабые или вы потребляете электроэнергию постоянно, но в небольших количествах. Для увеличения скорости заряда аккумуляторов возможна установка нескольких генераторов одновременно и подключение их к одной аккумуляторной батарее.

    Исходя из перечисленных выше факторов, для подбора ветрогенератора и сопровождающего оборудования вам необходимо ответить на три вопроса:

    1. Количество электроэнергии, необходимое вашему объекту ежемесячно (измеряется в киловаттах). Эти данные необходимы для подбора генератора. Их можно взять из коммунальных счетов на оплату электроэнергии или рассчитать самостоятельно, если объект находится в стадии строительства.
    2. Желаемое время автономной работы вашей энергосистемы в безветренные периоды или периоды, когда ваше потребление энергии из аккумуляторов будет превышать скорость зарядки аккумуляторных батарей генератором. Данный параметр определяет количество и емкость аккумуляторных батарей.
    3. Максимальная нагрузка на вашу сеть в пиковые моменты (измеряется в киловаттах). Необходимо для подбора инвертора переменного тока.

    4. Примеры подбора компонентов установки

    Рассмотрим несколько общих примеров подбора оборудования ветроустановки. Более точный расчёт может быть произведён нашими специалистами и включает в себя гораздо больше необходимых деталей.

    Пример расчёта ветряка №1

    Описание:

    Частный дом в Киевской области находится в стадии строительства. По предварительным расчётам жильцы дома будут потреблять не больше 300 400 кВт электроэнергии ежемесячно. Затраты электроэнергии не очень высокие, т.к. хозяева будут использовать для отопления и нагрева воды твердотопливный котёл, а ветрогенератор необходим только для полного обеспечения бытовых приборов электроэнергией.

    Хозяева проводят основную часть дня на работе, а пик потребления электроэнергии припадает на утренние и вечерние часы. В этот момент могут быть включены электроприборы суммарной мощностью до 4 киловатт.

    Дом находится на возвышенности и есть открытое пространство вокруг будущего места установки ветрогенератора.

    Общественной электросети нет.

    Задача:

    Полностью обеспечить 300-400 кВт электроэнергии ежемесячно с пиковыми нагрузками до 4 кВт.

    Решение:
    Генератор:

    Чтобы понять как быстро должны заражаться аккумуляторы при расходе электроэнергии 400 кВт в месяц, мы должны разделить 400 кВт/мес на 30 дней (получим ежедневное потребление), а затем полученное число разделить на 24 часа (400/30/24 = 0,56 кВт/час – среднее ежечасное потребление). Скорость заряда аккумуляторных батарей генератором должна составить как минимум 560 Ватт в час.

    В Киевской области низкая среднегодовая скорость ветра, но открытое пространство и возвышение объекта позволит ветрогенератору работать как минимум на 30-40% от номинальной мощности. Для более точных показателей можно произвести замер скорости ветра в месте установки.

    Для того, чтобы обеспечить заряд аккумуляторных батарей генератором при этих условиях со скоростью 560 Ватт в час, нужно взять генератор, номинальная мощность которого будет как минимум в три раза больше необходимой, т.к. генератор будет работать всего на 30-35% от номинальной мощности (560Вт/ч*3=1680Вт/ч). Для этих нужд нам подходит генератор EuroWind 2 с номинальной мощностью 2000 Ватт.

    Аккумуляторы:

    Проводя 8-9 часов на работе в будние дни, хозяева отсутствуют, и энергопотребление их дома сведено к минимуму. В ночное время потребление также сведено к минимуму. Основное потребление происходит утром и вечером. Между этими основными пиками существует интервал в 8-9 часов.

    При среднем уровне заряда аккумуляторных батарей 560 Вт/ч за интервал 8-9 часов ветровой генератор сможет выработать около 5000 Ватт. В ветреные дни этот показатель может увеличиться как минимум в два раза, поэтому за тот же период времени может быть выработано 10000 Ватт электроэнергии.

    Генератор EuroWind 2 имеет напряжение 120 Вольт, поэтому ему необходимо 10 аккумуляторов с напряжением 12 Вольт (12В*10=120В). Одна аккумуляторная батарея 12В 100Ач способна сохранить до 1,2 кВт электроэнергии. Десять таких батарей могут сохранить до 12 кВт (1200Вт*10=12000Вт). Для запаса 10000 Ватт электроэнергии нам отлично подойдут 10 аккумуляторных батарей 12В с емкостью 100Ач.

    Инвертор:

    Для максимального потребления электроэнергии в пиковые моменты до 4 кВт, можно установить инвертор 5 кВА. Он сможет обеспечить постоянную нагрузку 4 кВт и пусковые токи до 6 кВт (150% нагрузка). Таблицу совместимости инверторов вы найдёте в разделе Инверторы.

    Дополнительное оборудование:

    АВР в данном случае не нужен, т.к. нет основной сети, а коммутацию с дизельным генератором (или бензиновым) можно производить посредством перекидного рубильника.

    А вот дизельный генератор на 5 кВт в нашем случае не помешает – его можно использовать как резервное питание при полном отсутствии ветра.

    ИТОГО:

    Для полного энергообеспечения объекта нам необходим генератор EuroWind 2, 10 аккумуляторных батарей 12В с емкостью 100Ач, инвертор 5 кВА, дизельная электростанция на 5 кВт.


    Пример расчёта ветряка №2

    Описание:

    Небольшой отель на 8 номеров вместе с рестораном расположены на трассе в открытом поле. Среднегодовая скорость ветра в месте установки была замерена предварительно и составляет 6,8 м/с. Расходы электроэнергии на бытовые приборы и освещение составляют 60 кВт на один номер в месяц и около 2500 кВт в месяц на ресторан. Ресторан и отель обогреваются, кондиционируются и круглый год обеспечивают себя горячей водой с помощью трехфазного геотермального теплонасоса инверторного типа мощностью 14 кВт. Потребление электроэнергии данного теплонасоса составляет 3,5 кВт/час, а пусковые токи — всего 2,8 кВт.

    В ресторане и отеле используются энергосберегающие лампы для освещения. Пиковая нагрузка при использовании электроприборов и освещения объекта составляет около 7,5 кВт (не считая 3,5 кВт теплонасоса).

    Есть общественная электросеть, но она не может обеспечить потребности, т.к. выделена линия мощностью только 4 кВт. Большую мощность не может обеспечить местная подстанция.

    Задача:

    Полное обеспечение объекта независимой электроэнергией, отоплением и резервным питанием от основной сети.

    Решение:
    Генератор:

    Ежемесячный расход электроэнергии на содержание номеров составит 60 кВт * 8 номеров = 480 кВт в месяц. Общий расход электроэнергии на содержание отеля и ресторана без учёта отопления составит 2980 кВт в месяц (480 кВт + 2500 кВт = 2980 кВт). Отсюда следует, что среднее ежечасное потребление на все электроприборы и освещение без учёта обогрева составит 4,14 кВт/час (2980 кВт / 30 дней / 24 часа = 4,14 кВт/час). К этому числу необходимо прибавить 3,5 кВт/час, которые будет потреблять теплонасос. В итоге мы получаем, что генератор должен обеспечивать нас как минимум 7,64 киловаттами электроэнергии ежечасно (4,14 кВт/час + 3,5 кВт/час = 7,64 кВт/час).

    Среднегодовая скорость ветра 6,8 м/с позволяет генератору работать как минимум на 40% от номинальной мощности. Отсюда следует, что номинальная мощность генератора должна составлять как минимум 19,1 кВт/час (7,64 кВт/час / 40% = 19,1 кВт/час)

    Для этих целей отлично подошёл бы генератор EuroWind 20, но он рассчитан на более высокие средние скорости ветра, как и другие мощные генераторы (EuroWind 15, 20, 30, 50). Поэтому мы отдадим предпочтение двум генераторам EuroWind 10, которые будут работать в одной системе, вместо одного генератора EuroWind 20. Тем более, что свободное место для установки ветрогенератора в данном случае не критично – есть свободная площадь вокруг отеля и ресторана.

    Аккумуляторы:

    В этом комплексе практически отсутствуют большие перерывы в использовании электроэнергии, а постоянные ветра поддерживают равномерный уровень заряда аккумуляторов.

    В этом случае необходимы аккумуляторы, которые будут являться своеобразным «буфером» между генератором и инвертором. Их главная задача будет состоять в стабилизации и выпрямлении напряжения, а не накоплении электроэнергии.

    Генератор EuroWind 10 имеет напряжение 240 Вольт, поэтому ему необходимо 20 аккумуляторов с напряжением 12 Вольт (12В*20=240В). Одна аккумуляторная батарея 12В 150Ач способна сохранить до 1,8 кВт электроэнергии. Двадцать таких батарей могут сохранить до 36 кВт (1800Вт*20=36000Вт). Запаса электроэнергии в 36 кВт должно хватить всему комплексу почти на 5 часов непрерывной работы при средней нагрузке при полном отсутствии ветра. Для этого нам подойдут 20 аккумуляторных батарей 12В с емкостью 150Ач.

    Инвертор:

    Для максимального потребления электроэнергии в пиковые моменты до 7,5 кВт, можно установить инвертор 10 кВА. Он сможет обеспечить постоянную нагрузку 8 кВт и пусковые токи до 12 кВт (150% нагрузка).

    А для обеспечения теплонасоса мощностью 3,5 кВт нам необходим трехфазный инвертор, т.к. этот теплонасос требует трехфазный ток с напряжением 380В. В этом случае возьмём ещё один инвертор – трехфазный 5 кВА, который обеспечит нас напряжением 380В и постоянной мощностью 4 кВт.

    Дополнительное оборудование:

    Можно установить АВР, который будет автоматически переключать питание отеля и ресторана с ветрогенератора на общественную электросеть в случае полного безветрия и разряда аккумуляторных батарей. Среднее потребление отеля и ресторана (4,14 кВт) практически равно мощности общественной линии электропередач, которая была выделена объекту (4 кВт), поэтому резервное питание будет обеспечено.

    Для резервного обеспечения теплового насоса можно установить трехфазную бензиновую или дизельную электростанцию мощностью 3,5 4 кВт, т.к. общественная электросеть не сможет обеспечить трехфазный ток для резервного питания теплонасоса.

    ИТОГО:

    Для полного энергообеспечения этого объекта нам необходимы два генератор EuroWind 10, 20 аккумуляторных батарей 12В с емкостью 150Ач, однофазный инвертор 10 кВА, трехфазный инвертор 5 кВА, АВР, бензиновая или дизельная электростанция на 3,5-4 кВт.

    5. Схемы работы ветрогенератора

    Приводим несколько популярных схем работы ветрогенераторных систем с потребителем. Это всего лишь некоторые примеры, поэтому возможны и другие схемы работы. В каждом случае составляется индивидуальный проект, который способен решить поставленную перед нами задачу.


    Автономное обеспечение объекта (с аккумуляторами).
    Объект питается только от ветроэнергетической установки.


    Ветрогенератор (с аккумуляторами) и коммутация с сетью.
    АВР позволяет переключить питание объекта при отсутствии ветра и полном разряде аккумуляторов на электросеть. Эта же схема может использоваться и наоборот – ветрогенератор, как резервный источник питания. В этом случае АВР переключает вас на аккумуляторные батареи ветрогенератора при потери питания от электросети.


    Ветрогенератор (с аккумуляторами) и резервный дизель-(бензо-)генератор.
    В случае отсутствия ветра и разряде аккумуляторных батарей происходит автоматический запуск резервного генератора.


    Ветрогенератор (без аккумуляторов) и коммутация с сетью.
    Общественная электросеть используется вместо аккумуляторных батарей – в неё уходит вся выработанная электроэнергия и из неё потребляется. Вы платите только за разницу между выработанной и потреблённой электроэнергией. Такая схема работы пока-что не разрешена в Украине и во многих других странах.


    Гибридная автономная система – солнце-ветер
    Возможно подключение солнечных фотомодулей к ветрогенераторной системе через гибридный контроллер или с помощью отдельного контроллера для солнечных систем.


    Увеличение производительности системы.
    Возможно установить два и более генератора, инвертора и комплекта аккумуляторов для увеличения мощности системы.

    Также возможны другие схемы работы и коммутации ветрогенераторов.

    Топ-10 вещей, которые вы не знали о ветроэнергетике

    Пополните свои знания о ветре! Эта статья является частью серии Energy.gov, посвященной серии «Основные вещи, которые вы не знали об энергии».

    10. Человеческие цивилизации использовали энергию ветра за тысячи лет . Ранние формы ветряных мельниц использовали ветер для измельчения зерна или перекачивания воды. Теперь современные ветряные турбины используют ветер для производства электроэнергии. Узнайте , как работает ветряная турбина .

    9. Современные ветряные турбины — это гораздо более сложные машины, чем традиционные ветряные мельницы в прериях. Ветряная турбина состоит из 8000 различных компонентов .

    8. Ветряки большие. Лопасти ветряных турбин в среднем составляют более 190 футов в длину, а башни турбин в среднем 295 футов в высоту — это примерно высота Статуи Свободы.

    7. Чем выше скорость ветра, тем больше электричества, а ветровые турбины становятся выше, чтобы достигать более высоких высот над уровнем земли, где еще ветрено.См. Карту ветровых ресурсов Министерства энергетики , чтобы узнать среднюю скорость ветра в вашем штате или родном городе и узнать больше о возможностях для более высоких ветряных турбин в отчете Национальной лаборатории возобновляемых источников энергии Министерства энергетики.

    6. Большинство компонентов ветряных турбин, установленных в США, производится здесь. В 43 штатах расположено более 500 производственных предприятий, связанных с ветроэнергетикой, а в ветроэнергетике США в настоящее время занято более 114000 человек.

    5. Морская ветровая энергия представляет собой отличную возможность для обеспечения энергией густонаселенных прибрежных городов, и первая в стране оффшорная ветряная электростанция была установлена ​​у побережья Род-Айленда в 2016 году. Посмотрите, что делает Министерство энергетики для развития морской ветровой энергии В Соединенных Штатах.

    4. С вводом в эксплуатацию первой ветряной электростанции в Северной Каролине в начале 2017 года ветряные электростанции коммунального масштаба установлены в 41 штате. распределенных ветряков установлено во всех 50 штатах, а также в Пуэрто-Рико, Гуаме и США.Южные Виргинские острова.

    3. Мощность ветроэнергетики США составила 105,591 мегаватт на конец 2019 года, что сделало их крупнейшим возобновляемым источником энергии в Соединенных Штатах. Этого электричества достаточно, чтобы компенсировать потребление 29,5 миллионов домов в США.

    2. Энергия ветра доступна по цене. Цены на ветроэнергетику по контрактам на электроэнергию, подписанные в последние несколько лет, и приведенные цены на ветер (цена, которую коммунальное предприятие платит за покупку энергии у ветряной электростанции) составляют 2–4 цента за киловатт-час.

    1.Энергия ветра обеспечивает более 10% общего производства электроэнергии в 14 штатах и ​​более 30% в Канзасе, Айове и Оклахоме.

    Узнать больше

    Оценка и характеристика ветровых ресурсов

    На карте, показанной выше, обозначены области по всей стране, которые имеют средний коэффициент ветроэнергетики 35% или больше при высоте ступицы турбины 140 метров (459 футов), представляющие запланированные усовершенствования турбин. На дополнительной карте указаны области с такой же потенциальной мощностью при высоте ступицы турбины 110 метров (361 фут), что отражает последние достижения в технологии турбин.В отчете Министерства энергетики «Включение ветроэнергетики в национальном масштабе» подтверждается, что ключом к раскрытию потенциала ветровой энергии во всех 50 штатах является доступ к более сильным и устойчивым ветрам, которые встречаются на большей высоте над землей. Узнайте больше о НИОКР, чтобы получить доступ к этому ресурсу на нашей веб-странице по производству ветроэнергетики.

    Избранные проекты

    Проект улучшения прогнозов ветра

    В сотрудничестве с NOAA, Управление ветроэнергетических технологий Министерства энергетики США возглавило проект улучшения прогнозов ветра (WFIP) с использованием целевых наблюдений за ветром и передовых моделей прогнозов и алгоритмов для управления вкладом энергии ветра в электрические сети.На первом этапе проекта, WFIP 1, изучалось влияние улучшенных начальных условий на передовые модели прогнозирования, что привело к увеличению точности на 8%. Вторая фаза проекта, WFIP 2, была сосредоточена на атмосферных процессах, влияющих на прогнозы ветра в регионах со сложным рельефом, полевые работы начались в 2015 году.

    Оценка морских ресурсов и условия проектирования

    Морская энергетическая отрасль требует точной метеорологической и океанографической информации для оценки энергетического потенциала, экономической жизнеспособности и инженерных требований объектов морской энергетики.Управление ветроэнергетических технологий работает над удовлетворением этих потребностей посредством распространения данных, совершенствования инструментов и наблюдений, а также разработки инструментов нового поколения. Открытое собрание Министерства энергетики по оценке ресурсов и условиям проектирования стало первым шагом в устранении этих информационных пробелов и помогло определить дальнейший путь для будущих приоритетов.

    В качестве последующего шага в рамках программы AWS Truepower была профинансирована разработка общенационального веб-ресурса с возможностью поиска, национального метеорологического ресурса ветровой энергии и данных об условиях проектирования, U.Центр данных S. Met-Ocean для морских возобновляемых источников энергии (USMODCORE). Инвентаризация данных включает ресурсы федеральных агентств, правительств штатов, региональных альянсов, исследовательских институтов, коммерческих проектов и международных организаций.

    Кроме того, буи для определения характеристик ветровых ресурсов WindSentinel Министерства энергетики будут предоставлять долгосрочные данные о профиле ветра в море, которые поддержат исследования, необходимые для ускорения использования морской энергии ветра в Соединенных Штатах.Тихоокеанская северо-западная национальная лаборатория Министерства энергетики США развернула плавучие лидарные буи у берегов Вирджиния-Бич, штат Вирджиния, и Атлантик-Сити, штат Нью-Джерси, для сбора данных о погоде и волнении, которые будут играть важную роль как в проектировании ветряных электростанций, так и в обеспечении финансирования проекта. Получите доступ к данным в архиве данных и портале «Атмосфера для электронов» (A2e).

    Инициатива от атмосферы к электронам

    Низкая производительность ветряных электростанций, которая в настоящее время в некоторых случаях достигает 20%, представляет большие возможности для Управления ветроэнергетических технологий по повышению производительности ветряных электростанций и снижению стоимости энергии ветра.Инициатива Министерства энергетики США по исследованию атмосферы в электроны (A2e) направлена ​​на повышение производительности и надежности ветряных электростанций за счет беспрецедентного понимания того, как атмосфера Земли взаимодействует с ветряными электростанциями, и разработки инновационных технологий для максимального извлечения энергии из ветра.

    Инициатива A2e предусматривает комплексный портфель исследований для координации и оптимизации достижений в четырех основных областях исследований:

    1. Производительность предприятия и оценка финансовых рисков
    2. Наука об атмосфере
    3. Аэродинамика ветровой установки
    4. Технология ветряных электростанций нового поколения.

    Цель A2e — обеспечить размещение, строительство и эксплуатацию будущих заводов таким образом, чтобы производить наиболее рентабельные электроны — в виде полезной электроэнергии — от ветра, проходящего через установку. Узнайте больше об инициативе A2e.

    Федеральное партнерство

    Управление ветроэнергетических технологий Министерства энергетики работает с другими правительственными учреждениями, университетами и представителями отрасли для оценки и характеристики ветровых ресурсов США. Затем результаты оценки становятся общедоступными, что позволяет ветроэнергетике определить области, наиболее подходящие для развития будущих наземных и морских ветряных электростанций.

    Характеристика погодозависимых и океанических возобновляемых источников энергии

    С 2011 года Управление энергоэффективности и возобновляемых источников энергии Министерства энергетики действует в соответствии с Меморандумом о взаимопонимании (MOU) с Национальным управлением океанических и атмосферных исследований (NOAA) Министерства торговли по вопросам погоды -Зависимая и океаническая характеристика возобновляемых источников энергии для повышения точности, точности и полноты информации о ресурсах для технологий энергии ветра и воды.Сочетая технический опыт Министерства энергетики с передовыми возможностями NOAA в области предсказания, картирования и прогнозирования океанических и атмосферных условий, два агентства работают над безопасным и эффективным использованием погодозависимых и океанических технологий возобновляемой энергии.

    Скоординированное развертывание морской ветровой, морской и гидрокинетической энергии на внешнем континентальном шельфе США

    В 2010 году Управление энергоэффективности и возобновляемых источников энергии Министерства энергетики подписало меморандум о взаимопонимании с Бюро управления океанической энергией Министерства внутренних дел о скоординированном развертывании Морская ветровая и морская и гидрокинетическая энергия на Ю.С. Внешний континентальный шельф. Меморандум о взаимопонимании учредил рабочие группы из сотрудников агентства для совместной работы над конкретными тематическими областями, необходимыми для развертывания морских энергетических систем. Рабочая группа по оценке ресурсов и проектным условиям координирует исследовательскую деятельность, чтобы лучше понять основные атмосферные и океанические условия, относящиеся к прибрежным возобновляемым источникам энергии.

    Участвующие федеральные партнеры: Министерство энергетики США, Министерство торговли США, Министерство внутренних дел США, U.S. Министерство обороны, Национальное управление по аэронавтике и исследованию космического пространства, Национальный научный фонд и Администрация президента

    WINDExchange: что такое энергия ветра?

    На этом виде с воздуха на ветряную электростанцию ​​показано, как группа ветряных турбин может производить электроэнергию для коммунальной сети. Электроэнергия подается по линиям передачи и распределения в дома, предприятия, школы и так далее. Просмотрите анимацию ветряной турбины, чтобы увидеть, как она работает, или загляните внутрь.

    Энергия ветра или Энергия ветра описывает процесс, с помощью которого ветер используется для выработки механической энергии или электричества. Ветровые турбины преобразуют кинетическую энергию ветра в механическую энергию. Эта механическая энергия может использоваться для конкретных задач (например, измельчения зерна или перекачивания воды) или может быть преобразована в электричество с помощью генератора.

    Вы можете узнать, как ветряные турбины вырабатывают электричество, и увидеть иллюстрацию компонентов внутри ветряной турбины или просмотреть анимацию ветровой энергии, которая показывает, как движущийся воздух вращает лопасти ветряной турбины и как внутренние компоненты работают для выработки электроэнергии.

    Размеры и применение ветряных турбин

    Ветровые турбины могут обеспечивать электроэнергией для использования на месте, а также для продажи на экспорт. Потребность в энергии определит размер турбины.

    Экономика ветряных турбин максимальна, если размер проекта рассчитан на соответствие потребностям нагрузки в энергии, а также на монетизацию экономии за счет масштаба и послужного списка оборудования. Для использования энергии в жилых домах требуется небольшая турбина (обычно менее 10 киловатт (кВт)), которая может генерировать количество энергии, необходимое дому для повседневной работы.Машины среднего размера могут производить достаточно энергии, чтобы выдерживать большие коммерческие нагрузки на объекте. Машины масштаба коммунальных предприятий, которые максимизируют генерацию с учетом занимаемой площади и стоимости инфраструктуры объекта, лучше всего подходят для проектов масштаба коммунальных предприятий.

    Независимо от размера проекта, проекты, подключенные к электросети, потребуют одобрения со стороны коммунальных служб и могут потребовать проведения исследований воздействия на сеть до начала строительства.

    Потребление энергии на месте в жилых домах (

    <10 кВт)

    Бытовые небольшие турбины производят столько же энергии, сколько требуется дому.Поскольку эти турбины обычно устанавливаются на более короткие башни, вам необходимо получить оценку площадки, чтобы определить, где разместить проект, чтобы убедиться, что он будет работать так, как задумано. Эти ветряные турбины приобретаются за наличные, поэтому, хотя важно учитывать окупаемость инвестиций, это не всегда является решающим фактором при реализации проекта. Многие государства предоставляют стимулы для этого класса машин. Ветряные турбины бытового назначения обычно не требуют подробной оценки ресурсов на месте.

    Небольшое коммерческое использование энергии на месте (10-50 кВт)

    Ветряные турбины этого класса производят больше энергии, чем потребляет средний дом, но могут хорошо подходить для малых предприятий; фермы; ранчо; объекты, такие как школы, офисные здания или часть университетского городка; или общественная нагрузка, такая как больница. Этот класс турбин обычно включает в себя более высокий уровень сложности машин, что приводит к большей эффективности и выработке энергии, но также требует повышенного обслуживания.Однако эти турбины обычно требуют меньшего обслуживания, чем более крупные машины. Машины этого класса могут стоить столько же, сколько дом, и являются наименьшим размером проекта, который может быть профинансирован, что потребует проверки кредитора. Проекты такого размера также могут вызвать потребность в оценке ресурсов на месте, но часто проекты могут продвигаться вперед, используя близлежащие измерения, а также опытное размещение и моделирование проекта.

    Энергопотребление на месте в коммерческих целях (50-250 кВт)

    Этот класс ветряных турбин производит коммерческое количество энергии и может быть хорошо согласован с университетскими городками, более крупными объектами, сообществами и более крупными муниципальными коммунальными нагрузками.Этот класс ветряных турбин имеет много общих технических и эксплуатационных характеристик с машинами коммунального масштаба и часто устанавливается на мачтах, требующих специальных разрешений и согласования с другими регулирующими организациями или агентствами. Эти турбины часто требуют значительных капиталовложений и, следовательно, требуют корпоративных или институциональных одобрений. Для руководителей предприятий нет ничего необычного в том, чтобы сотрудничать с финансовыми игроками при разработке проектов такого размера. Эти проекты требуют опытного и подробного моделирования проекта с использованием данных о ветровых ресурсах на месте или поблизости.

    Крупное коммерческое или промышленное энергопотребление (500 кВт — 1,5 МВт)

    Этот класс ветряных турбин является лучшим среди машин среднего размера и хорошо подходит для местных сообществ и очень больших промышленных нагрузок, а в определенных ситуациях может даже стать основой небольших ветряных электростанций. Этот класс машин с технологической точки зрения обычно неотличим от турбин для коммунальных предприятий. Башни часто превышают 200 футов, и их необходимо оборудовать заградительным освещением. Проекты такого размера требуют участия сообщества и одобрения или одобрения на всех уровнях.Этот класс, за исключением очень необычных ситуаций, обычно финансируется через коммерческих кредиторов с их собственными требованиями комплексной проверки и, следовательно, требует технико-экономических обоснований и кампаний по оценке ресурсов на месте.

    Энергопотребление в коммунальном масштабе (1,5-7,5 МВт)

    Ветряные турбины коммунального назначения, хотя иногда и устанавливаются на месте использования, обычно устанавливаются большими группами, производящими энергию для продажи. Это высокоэффективные современные ветряные турбины, которые работают с исключительно высокой степенью готовности и генерируют конкурентоспособную по стоимости электроэнергию в масштабах электростанции.Эти большие турбины имеют роторы диаметром более 250 футов и устанавливаются на высоких башнях, которые требуют уведомления о препятствиях с воздуха и освещения. Из-за своих размеров и масштабов установок ветряные турбины коммунального масштаба требуют координации с окружающей средой, коммунальными службами и общественностью на самом высоком уровне. Ветряные электростанции масштаба коммунальных предприятий требуют точной оценки ресурсов, юридической и финансовой проверки, интеграции коммунальных предприятий и финансирования, типичных для объектов с очень крупными капиталовложениями, таких как аэропорты.

    Основы ветроэнергетики | NREL

    Ветер возникает, когда поверхность земли неравномерно нагревается солнцем. Энергия ветра можно использовать для выработки электроэнергии.

    Ветряные турбины

    Ветряные турбины, как и ветряные мельницы, устанавливаются на башне, чтобы улавливать как можно больше энергии.На высоте 100 футов (30 метров) и более они могут воспользоваться более быстрым и менее бурный ветер. Турбины улавливают энергию ветра своим пропеллером. лезвия. Обычно на валу устанавливаются две или три лопасти, образующие ротор .

    Лезвие действует как крыло самолета. Когда дует ветер, карман низкого давления воздух образуется на подветренной стороне лопасти.Затем воздушный карман низкого давления вытягивает лезвие к нему, заставляя ротор вращаться. Это называется лифт . Сила подъема на самом деле намного сильнее, чем сила ветра, направленная против ветра. передняя сторона клинка, которая называется , драг . Комбинация подъемной силы и сопротивления заставляет ротор вращаться, как пропеллер, и вращающийся вал вращает генератор, чтобы вырабатывать электричество.

    Исследования ветроэнергетики

    NREL в основном проводятся в кампусе Флэтайронс, отдельном месте недалеко от Боулдера, Колорадо.

    Ветряные турбины коммунального назначения на ветряной электростанции Сидар-Крик в Гровере, штат Колорадо. Фото Денниса Шредера / NREL

    Плавающая морская ветряная турбина VolturnUS с полупогружной плавучей ветроэнергетической установкой Платформа, Университет штата Мэн, часть консорциума DeepCWind. Фотография из Университета штата Мэн

    Наземная ветроэнергетика

    Ветряные турбины могут использоваться как автономные приложения или их можно подключать к электросети или даже в сочетании с фотоэлектрической системой (солнечными элементами).Для коммунальные (мегаваттные) источники энергии ветра, большое количество ветряных турбин обычно строятся близко друг к другу, образуя ветряную электростанцию ​​ , также называемую ветровой электростанцией . Некоторые поставщики электроэнергии сегодня используют ветряные электростанции для снабжения электроэнергией своих потребителей.

    Автономные ветряные турбины обычно используются для перекачки воды или связи. Однако домовладельцы, фермеры и владельцы ранчо в ветреных районах также могут использовать ветряные турбины. как способ сократить свои счета за электричество.

    Распределенная энергия ветра

    Малые ветровые системы также обладают потенциалом в качестве распределенных энергоресурсов. Распространено энергоресурсы относятся к множеству небольших модульных технологий производства энергии. которые могут быть объединены для улучшения работы системы подачи электроэнергии. Для получения дополнительной информации о распределенном ветре посетите офис ветроэнергетических технологий Министерства энергетики США.

    Морская ветроэнергетика

    Оффшорная ветроэнергетика — относительно новая отрасль в США. Америки первая оффшорная ветряная электростанция, расположенная в Род-Айленде, у побережья острова Блок, был запущен в декабре 2016 года. В отчете Wind Vision Министерства энергетики показано, что к 2050 году морской ветер будет доступен во всех прибрежных регионах страны.

    Дополнительные ресурсы

    Для получения дополнительной информации о ветровой энергии посетите следующие ресурсы:

    Основы ветроэнергетики
    Управление энергоэффективности и возобновляемых источников энергии Министерства энергетики США

    Карты и данные по ветроэнергетике
    DOE’s WINDExchange

    Как работают ветряные турбины
    U.S. Управление энергоэффективности и возобновляемых источников энергии Министерства энергетики.

    Малые ветроэнергетические системы
    Программа энергосбережения Министерства энергетики США

    Американская ассоциация ветроэнергетики

    Energy Kids Wind Basics
    Управление энергетической информации США Energy Kids

    Энергия ветра

    Энергия ветра — одна из самых быстрорастущих технологий возобновляемой энергетики.Во всем мире их использование растет, отчасти потому, что снижаются затраты. Согласно последним данным IRENA, глобальная установленная мощность ветроэнергетики на суше и на море увеличилась почти в 75 раз, с 7,5 гигаватт (ГВт) в 1997 году до примерно 564 ГВт к 2018 году. В период с 2009 по 2013 год производство ветровой электроэнергии увеличилось вдвое, а в 2016 году на ветровую энергию приходилось 16% электроэнергии, вырабатываемой из возобновляемых источников. Во многих частях света сильный ветер, но лучшие места для выработки энергии ветра иногда находятся в удаленных местах.Оффшорная ветроэнергетика предлагает огромный потенциал.

    Ветряные турбины впервые появились более века назад. После изобретения электрического генератора в 1830-х годах инженеры начали попытки использовать энергию ветра для производства электроэнергии. Производство энергии ветра имело место в Соединенном Королевстве и Соединенных Штатах в 1887 и 1888 годах, но считается, что современная ветроэнергетика была впервые разработана в Дании, где в 1891 году были построены ветряные турбины с горизонтальной осью и началась ветряная турбина высотой 22,8 метра. операция в 1897 г.

    Ветер используется для производства электроэнергии с использованием кинетической энергии, создаваемой движущимся воздухом. Она преобразуется в электрическую энергию с помощью ветряных турбин или систем преобразования энергии ветра. Ветер сначала поражает лопасти турбины, заставляя их вращаться и вращать присоединенную к ним турбину. Это изменяет кинетическую энергию на энергию вращения, перемещая вал, который подключен к генератору, и тем самым вырабатывает электрическую энергию за счет электромагнетизма.

    Количество энергии, которое может быть получено от ветра, зависит от размера турбины и длины ее лопастей.Мощность пропорциональна размерам ротора и кубу скорости ветра. Теоретически, когда скорость ветра удваивается, потенциал энергии ветра увеличивается в восемь раз.

    Мощность ветряных турбин со временем увеличивалась. В 1985 году типичные турбины имели номинальную мощность 0,05 мегаватт (МВт) и диаметр ротора 15 метров. Сегодняшние новые ветроэнергетические проекты имеют турбинную мощность около 2 МВт на суше и 3-5 МВт на суше.

    Имеющиеся в продаже ветряные турбины достигли мощности 8 МВт с диаметром ротора до 164 метров.Средняя мощность ветряных турбин увеличилась с 1,6 МВт в 2009 году до 2 МВт в 2014 году.

    Согласно последним данным IRENA, производство ветровой электроэнергии в 2016 году составило 6% электроэнергии, произведенной с помощью возобновляемых источников энергии. Во многих частях света сильный ветер, но лучшие места для выработки энергии ветра иногда находятся в удаленных местах. Оффшорная ветроэнергетика предлагает огромный потенциал.



    Как работает ветряная турбина?

    Что такое ветряная турбина?

    Ветряная турбина — это самая современная версия ветряной мельницы.Проще говоря, он использует силу ветра для производства электричества. Наиболее заметны большие ветряные турбины, но вы также можете купить небольшую ветряную турбину для индивидуального использования, например, для обеспечения энергией каравана или лодки.

    Что такое ветряная электростанция?

    Ветряная электростанция — это группа ветряных турбин. Довольно впечатляюще думать, что электричество, которое так сильно влияет на нашу жизнь — от зарядки наших телефонов до того, что позволяет нам приготовить чашку кофе и, все чаще, заправлять наши автомобили — могло начаться с простого порыва ветра. .

    Как работает ветряная турбина?

    Сначала давайте начнем с видимых частей ветряной электростанции, которые мы все привыкли видеть — этих высоких белых или бледно-серых турбин. Каждая из этих турбин состоит из набора лопастей, коробки рядом с ними, называемой гондолой, и вала. Ветер — а это может быть просто легкий ветерок — заставляет лопасти вращаться, создавая кинетическую энергию. Вращающиеся таким образом лопасти также заставляют вращаться вал в гондоле, а генератор в гондоле преобразует эту кинетическую энергию в электрическую.

    Что происходит с электричеством, вырабатываемым ветряной турбиной?

    Для подключения к национальной сети электрическая энергия затем пропускается через трансформатор на объекте, который увеличивает напряжение до уровня, используемого в национальной электроэнергетической системе. Именно на этом этапе электричество обычно направляется в передающую сеть National Grid, готовую к передаче, чтобы в конечном итоге ее можно было использовать в домах и на предприятиях. В качестве альтернативы, ветряная электростанция или отдельная ветряная турбина могут вырабатывать электроэнергию, которая используется частным образом отдельным лицом или небольшой группой домов или предприятий.


    Почему ветряки обычно белые или бледно-серые?

    Ветряные турбины обычно бывают белыми или очень бледно-серыми — идея состоит в том, чтобы сделать их визуально ненавязчивыми, насколько это возможно. Обсуждается, следует ли их перекрашивать в другие цвета, особенно в зеленый, в некоторых условиях, чтобы помочь им лучше вписаться в окружающую среду.

    Насколько сильным должен быть ветер для работы ветряной турбины?

    Ветровые турбины могут работать при любых скоростях ветра — от очень слабого до очень сильного.Они генерируют около 80% времени, но не всегда на полную мощность. При очень сильном ветре они отключаются, чтобы предотвратить повреждение.

    Где расположены ветропарки?

    Ветряные электростанции, как правило, располагаются в самых ветреных местах, чтобы максимально использовать энергию, которую они могут производить — вот почему вы с большей вероятностью увидите их на склонах холмов или на побережье. Ветряные электростанции, расположенные в море, называются оффшорными ветряными электростанциями, а расположенные на суше — наземными ветряными фермами.

    Где была первая ветряная турбина и первая ветряная электростанция?

    Самая первая ветряная турбина, вырабатывающая электричество, была создана профессором Джеймсом Блайтом в своем доме отдыха в Шотландии в 1887 году.Он был 10 метров в высоту и имел парусину.

    Первая в мире ветряная электростанция открылась в Нью-Гэмпшире в США в 1980 году.

    Вредны ли ветряные электростанции для птиц?

    Дело в том, что изменение климата представляет собой самую серьезную долгосрочную угрозу для птиц и других диких животных. И возобновляемые источники энергии, ключевыми компонентами которых являются ветряные турбины, необходимы для сокращения парниковых газов .

    Королевское общество защиты птиц Великобритании ( RSPB ) признает эту более широкую картину, заявляя: «Переход на возобновляемые источники энергии сейчас, а не через 10 или 20 лет, необходим, если мы хотим стабилизировать выбросы парниковых газов в атмосфера на безопасном уровне.”

    Разработчики ветряных электростанций тесно сотрудничают с RSPB и местными экологическими группами в рамках процесса консультаций по выбору ветряных электростанций, чтобы продолжить рост наземной и морской ветроэнергетики, одновременно компенсируя любой потенциальный вред птицам в результате утраты среды обитания, нарушения и столкновение.

    В отчете США делается вывод о том, что влияние энергии ветра на популяции птиц относительно невелико по сравнению с падением жертвой кошек и столкновениями с высотными зданиями.

    Сколько энергии в Великобритании вырабатывается ветром?

    Узнайте, сколько энергии в Великобритании вырабатывается ветром, с помощью приложения National Grid ESO для Google Play или Apple iOS .

    Энергия ветра | Национальное географическое общество

    Все, что движется, обладает кинетической энергией, а ученые и инженеры используют кинетическую энергию ветра для выработки электроэнергии. Энергия ветра, или энергия ветра, создается с помощью ветряной турбины, устройства, которое направляет энергию ветра для выработки электроэнергии.

    Ветер обдувает лопатки турбины, прикрепленные к ротору. Затем ротор вращает генератор для выработки электричества. Есть два типа ветряных турбин: ветряные турбины с горизонтальной осью (HAWT) и ветровые турбины с вертикальной осью (VAWT). HAWT — наиболее распространенный тип ветряных турбин. У них обычно есть две или три длинных тонких лопасти, которые похожи на пропеллер самолета. Лопасти расположены так, что они обращены прямо против ветра. VAWT имеют более короткие и широкие изогнутые лопасти, которые напоминают лопасти, используемые в электрическом миксере.

    Небольшие индивидуальные ветряные турбины могут производить 100 киловатт энергии, достаточной для питания дома. Небольшие ветряные турбины также используются в таких местах, как водонасосные станции. Ветряки чуть большего размера расположены на башнях высотой до 80 метров (260 футов) с лопастями ротора, длина которых составляет примерно 40 метров (130 футов). Эти турбины могут генерировать 1,8 мегаватт энергии. Еще более крупные ветряные турбины можно найти на башнях высотой 240 метров (787 футов) с лопастями ротора длиной более 162 метров (531 фут).Эти большие турбины могут генерировать от 4,8 до 9,5 мегаватт энергии.

    После выработки электроэнергии ее можно использовать, подключать к электросети или хранить для будущего использования. Министерство энергетики США работает с национальными лабораториями над разработкой и улучшением технологий, таких как батареи и гидроаккумулирующие установки, чтобы их можно было использовать для хранения избыточной энергии ветра. Такие компании, как General Electric, устанавливают батареи вместе со своими ветряными турбинами, чтобы электричество, вырабатываемое за счет энергии ветра, можно было сразу же хранить.

    По данным Геологической службы США, в США имеется 57 000 ветряных турбин как на суше, так и на море. Ветровые турбины могут быть автономными конструкциями или они могут быть объединены в так называемую ветряную электростанцию. В то время как одна турбина может генерировать достаточно электроэнергии для удовлетворения потребностей в энергии одного дома, ветряная электростанция может вырабатывать гораздо больше электроэнергии, достаточной для снабжения энергией тысяч домов. Ветряные электростанции обычно располагаются на вершине горы или в другом месте, где ветрено, чтобы использовать в своих интересах естественные ветры.

    Самая большая оффшорная ветряная электростанция в мире называется Walney Extension. Эта ветряная электростанция расположена в Ирландском море примерно в 19 километрах (11 милях) к западу от северо-западного побережья Англии.

    Опубликовано в категории: Разное

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *