Трехфазный мотор в однофазную сеть: Включение 3-х фазного двигателя в однофазную сеть, от теории к практике

Как переделать трехфазный двигатель для подключения в однофазную сеть

Работа любого трехфазного асинхронного двигателя рассчитана на два основных напряжения, присутствующих в трехфазной сети, из которых чаще всего встречаются номинальные значения в 380 или 220 вольт. При возникновении определенных ситуаций, нередко возникает вопрос, как переделать трехфазный двигатель для подключения в однофазную сеть.

Как переделать электродвигатель с 380 на 220

Электродвигатель переключается с одного вида напряжения на другой при помощи специальных подключений обмоток. Для 380-ти вольт – это положение «звезда», а для 220-ти вольт применяется «треугольник». На практике,  схема переключения «звезда-треугольник» осуществляются с помощью специальных колодок подключения, установленных на двигателе. Колодка имеет шесть выводов, соединенных перемычками в определенном порядке.

При отсутствии в двигателе колодок и наличии шести выводов, провода собираются в пучки, по три вывода в каждом. Один пучок содержит в себе начало обмотки, а другой пучок является концом обмотки, то есть обмотки последовательно соединяются между собой.

Таким образом, вопрос, как переделать трехфазный двигатель для подключения в однофазную сеть, технически вполне решаемый. Однако, применяемые в цепи конденсаторы, вовсе не способствуют нормальной работе электродвигателя. Конечно, электродвигатель будет работать, но его максимальная мощность будет составлять всего 70% от номинальной.

Пусковой момент находится в прямой зависимости от величины пусковой емкости конденсатора. Постоянно изменяющаяся нагрузка вызывает определенные сложности при подборе оптимальной емкости. Применение трехфазного двигателя в однофазной сети является вынужденной мерой, хотя во многих ситуациях, это единственный выход.

Расчет емкости конденсатора

Формулы, позволяющие рассчитать рабочую емкость конденсатора, в данном случае не могут быть использованы по следующим причинам:

  • Электродвигатель почти не работает с номинальной мощностью, и в случае недогрузки он будет перегреваться. Это произойдет из-за того, что конденсатор обладает излишней емкостью, а это увеличивает в обмотке силу тока.
  • Номинальная и фактическая емкость конденсатора различаются между собой на 20%, что отмечено на корпусе. На практике, это значение гораздо больше, поэтому, конденсатор следует подбирать для каждого конкретного двигателя, таким образом, выравнивая значение токов.

Любая однофазная электрическая сеть работает от напряжения 220 вольт, поэтому двигатель подключается с применением схемы «треугольника». Запускать двигатель без нагрузки можно только с одним рабочим конденсатором.

Трехфазный двигатель в однофазной сети. Схема правильного подключения трехфазного двигателя

Бывают в жизни ситуации, когда нужно включить какое-то промышленное оборудование в обычную домашнюю сеть электропитания. Тут же возникает проблема с числом проводов. У машин, предназначенных для эксплуатации на предприятиях, выводов, как правило, три, а бывает и четыре. Что с ними делать, куда их подключать? Те, кто пытался испробовать различные варианты, убедились, что моторы просто так крутиться не хотят. Возможно ли вообще однофазное подключение трехфазного двигателя? Да, добиться вращения можно. К сожалению, в этом случае неизбежно падение мощности почти вдвое, но в некоторых ситуациях это – единственный выход.

Для того чтобы понять, как подключить трехфазный двигатель к обычной розетке, следует разобраться, как соотносятся напряжения в промышленной сети. Общеизвестны величины напряжений – 220 и 380 Вольт. Раньше еще было 127 В, но в пятидесятые годы от этого параметра отказались в пользу более высокого. Откуда взялись эти «волшебные цифры»? Почему не 100, или 200, или 300? Вроде бы круглые цифры считать легче.

Большая часть промышленного электрооборудования рассчитана на подключение к трехфазной сети переменного тока. Напряжение каждой из фаз по отношению к нейтральному проводу составляет 220 Вольт, совсем как в домашней розетке. Откуда же берутся 380 В? Это очень просто, достаточно рассмотреть равнобедренный треугольник с углами в 60, 30 и 30 градусов, который представляет собой векторная диаграмма напряжений. Длина самой длинной стороны будет равна длине бедра, умноженной на cos 30°. После нехитрых подсчетов можно убедиться, что 220 х cos 30°= 380.

Устройство трехфазного двигателя

Не все типы промышленных двигателей могут работать от одной фазы. Самые распространенные из них – «рабочие лошадки», составляющие большинство электромашин на любом предприятии – асинхронные машины мощностью в 1 – 1,5 кВА. Как работает такой трехфазный двигатель в трехфазной сети, для которой он предназначен?

Изобретателем этого революционного устройства стал русский ученый Михаил Осипович Доливо-Добровольский. Этот выдающийся электротехник был сторонником теории трехфазной питающей сети, которая в наше время стала главенствующей. Асинхронный двигатель трехфазный работает по принципу индукции токов от обмоток статора на замкнутые проводники ротора. В результате их протекания по короткозамкнутым обмоткам в каждой из них возникает магнитное поле, вступающее во взаимодействие с силовыми линиями статора. Так получается вращающий момент, приводящий к круговому движению оси двигателя.

Обмотки расположены под углом 120°, таким образом, вращающееся поле, создаваемое каждой из фаз, последовательно толкает каждую намагничиваемую сторону ротора.

Треугольник или звезда?

Трехфазный двигатель в трехфазной сети может включаться двумя способами – с участием нейтрального провода или без него. Первый способ называется «звезда», в этом случае каждая из обмоток находится под фазным напряжением (между фазой и нулем), равным в наших условиях 220 В. Схема подключения трехфазного двигателя «треугольником» предполагает последовательное соединение трех обмоток и подачу линейного (380 В) напряжения на узлы коммутации. Во втором случае двигатель будет выдавать большую примерно в полтора раза мощность.

Как включить мотор в обратном направлении?

Управление трехфазным двигателем может предполагать необходимость изменения направления вращения на противоположное, то есть реверс. Чтобы этого добиться, нужно просто поменять местами два провода из трех.

Для удобства изменения схемы в клеммной коробке двигателя предусмотрены перемычки, выполненные, как правило, из меди. Для включения «звездой» нежно соединить три выходных провода обмоток вместе. «Треугольник» получается немного сложнее, но и с ним справится любой электрик средней квалификации.

Фазосдвигающие емкости

Итак, порой возникает вопрос о том, как подключить трехфазный двигатель в обычную домашнюю розетку. Если просто попробовать подсоединить к вилке два провода, он вращаться не станет. Для того чтобы дело пошло, нужно сымитировать фазу, сдвинув подаваемое напряжение на какой-то угол (желательно 120°). Добиться этого эффекта можно, если применить фазосдвигающий элемент. Теоретически это может быть и индуктивность, и даже сопротивление, но чаще всего трехфазный двигатель в однофазной сети включается с использованием электрических емкостей (конденсаторов), обозначаемых на схемах латинской буквой С.

Что касается применений дросселей, то оно затруднено по причине сложности определения их значения (если оно не указано на корпусе прибора). Для замера величины L требуется специальный прибор или собранная для этого схема. К тому же выбор доступных дросселей, как правило, ограничен. Впрочем, экспериментально любой фазосдвигающий элемент подобрать можно, но это дело хлопотное.

Что происходит при включении двигателя? На одну из точек соединения подается ноль, на другую – фаза, а на третью — некое напряжение, сдвинутое на некоторый угол относительно фазы. Понятно и неспециалисту, что работа двигателя не будет полноценной в отношении механической мощности на валу, но в некоторых случаях достаточно самого факта вращения. Однако уже при запуске могут возникать некоторые проблемы, например, отсутствие начального момента, способного сдвинуть ротор с места. Что делать в этом случае?

Пусковой конденсатор

В момент пуска валу требуются дополнительные усилия для преодоления сил инерции и трения покоя. Чтобы увеличить момент вращения, следует установить дополнительный конденсатор, подключаемый к схеме только в момент старта, а затем отключающийся. Для этих целей лучшим вариантом является применение замыкающей кнопки без фиксации положения. Схема подключения трехфазного двигателя со стартовым конденсатором приведена ниже, она проста и понятна. В момент подачи напряжения следует нажать на кнопку «Пуск», и пусковой конденсатор создаст дополнительной сдвиг фазы. После того как двигатель раскрутится до нужных оборотов, кнопку можно (и даже нужно) отпустить, и в схеме останется только рабочая емкость.

Расчет величины емкостей

Итак, мы выяснили, что для того, чтобы включить трехфазный двигатель в однофазной сети, требуется дополнительная схема подключения, в которую, помимо пусковой кнопки, входят два конденсатора. Их величину нужно знать, иначе работать система не будет. Для начала определим величину электрической емкости, необходимую для того, чтобы заставить ротор тронуться с места. При параллельном включении она представляет собой сумму:

С = С ст + Ср, где:

С ст – стартовая дополнительная отключаемая после разбега емкость;

С р – рабочий конденсатор, обеспечивающий вращение.

Еще нам потребуется величина номинального тока I н (она указана на табличке, прикрепленной к двигателю на заводе-изготовителе). Этот параметр также можно определить с помощью нехитрой формулы:

I н = P / (3 х U), где:

U – напряжение, при подключении «звездой» — 220 В, а если «треугольник», то 380 В;

P – мощность трехфазного двигателя, ее иногда в случае утери таблички определяют на глаз.

Итак, зависимости требуемой рабочей мощности вычисляются по формулам:

С р = Ср = 2800 I н / U – для «звезды»;

С р = 4800 I н / U – для «треугольника»;

Пусковой конденсатор должен быть больше рабочего в 2-3 раза. Единица измерения – микрофарады.

Есть и совсем уж простой способ вычисления емкости: C = P /10, но эта формула скорее дает порядок цифры, чем ее значение. Впрочем, повозиться в любом случае придется.

Почему нужна подгонка

Метод расчета, приведенный выше, является приблизительным. Во-первых, номинальное значение, указанное на корпусе электрической емкости, может существенно отличаться от фактического. Во-вторых, бумажные конденсаторы (вообще говоря, вещь недешевая) часто используются бывшие в употреблении, и они, как всякие прочие предметы, подвержены старению, что приводит к еще большему отклонению от указанного параметра. В-третьих, ток, который будет потребляться двигателем, зависит от величины механической нагрузки на валу, а потому оценить его можно только экспериментально. Как это сделать?

Здесь потребуется немного терпения. В результате может получиться довольно объемный набор конденсаторов, соединенных параллельно и последовательно. Главное – после окончания работы все хорошенько закрепить, чтобы не отваливались припаянные концы от вибраций, исходящих от мотора. А потом не лишним будет еще раз проанализировать результат и, возможно, упростить конструкцию.

Составление батареи емкостей

Если в распоряжении у мастера нет специальных электролитических клещей, позволяющий замерять ток без размыкания цепей, то следует подключить амперметр последовательно к каждому проводу, который входит в трехфазный двигатель. В однофазной сети будет протекать суммарное значение, а подбором конденсаторов следует стремиться к наиболее равномерной загрузке обмоток. При этом следует помнить о том, что при последовательном подключении общая емкость уменьшается по закону:

1/С = 1/С1 + 1/С2… и так далее, а при параллельном – наоборот, складывается.

Также необходимо не забывать и о таком важном параметре, как напряжение, на которое рассчитан конденсатор. Оно должно быть не менее номинального значения сети, а лучше с запасом.

Разрядный резистор

Схема трехфазного двигателя, включенного между одной фазой и нейтральным проводом, иногда дополняется сопротивлением. Оно служит для того, чтобы на стартовом конденсаторе не накапливался заряд, остающийся после того, как машина уже выключена. Эта энергия может вызвать электрический удар, не опасный, но крайне неприятный. Для того чтобы обезопасить себя, следует параллельно с пусковой емкостью соединить резистор (у электриков это называется «зашунтировать»). Величина его сопротивления большая – от половины мегома до мегома, а по размерам он невелик, поэтому довольно и полуваттной мощности. Впрочем, если пользователь не боится быть «ущипнутым», то без этой детали вполне можно и обойтись.

Использование электролитов

Как уже отмечалось, пленочные или бумажные электрические емкости дорогие, и прибрести их не так просто, как хотелось бы. Можно произвести однофазное подключение трехфазного двигателя с использованием недорогих и доступных электролитических конденсаторов. При этом совсем уж дешевыми они тоже не будут, так как должны выдерживать 300 Вольт постоянного тока. Для безопасности их следует зашунтировать полупроводниковыми диодами (Д 245 или Д 248, например), но нелишним будет помнить о том, что при пробитии этих приборов переменное напряжение попадет на электролит, и он сперва сильно нагреется, а потом взорвется, громко и эффектно. Поэтому без крайней необходимости лучше все же использовать конденсаторы бумажного типа, работающие под напряжением хоть постоянным, хоть переменным. Некоторые мастера вполне допускают применение электролитов в пусковых цепях. В силу кратковременного воздействия на них переменного напряжения, они могут и не успеть взорваться. Лучше не экспериментировать.

Если нет конденсаторов

Где обычные граждане, не имеющие доступа к пользующимся спросом электрическим и электронным деталям, их приобретают? На барахолках и «блошиных рынках». Там они лежат, заботливо выпаянные чьими-то (обычно пожилыми) руками из старых стиральных машин, телевизоров и прочей вышедшей из обихода и строя бытовой и промышленной техники. Просят за эти изделия советского производства немало: продавцы знают, что если деталь нужна, то ее купят, а если нет – и даром не возьмут. Бывает, что как раз самого необходимого (в данном случае конденсатора) как раз и нет. И что же делать? Не беда! Сойдут и резисторы, только нужны мощные, желательно керамические и остеклованные. Конечно, идеальное сопротивление (активное) фазу не сдвигает, но в этом мире ничего нет идеального, и в нашем случае это хорошо. Каждое физическое тело обладает собственной индуктивностью, электрической мощностью и резистивностью, будь оно крошечной пылинкой или огромной горой. Включение трехфазного двигателя в розетку становится возможным, если на вышеприведенных схемах заменить конденсатор сопротивлением, номинал которого вычисляется по формуле:

R = (0,86 x U) / kI, где:

kI — величина тока при трехфазном подключении, А;

U – наши верные 220 Вольт.

Какие двигатели подойдут

Перед тем как приобретать за немалые деньги мотор, который рачительный хозяин собирается использовать в качестве привода для точильного круга, циркулярной пилы, сверлильного станка или другого какого-либо полезного домашнего устройства, не помешает подумать о его применимости для этих целей. Не каждый трехфазный двигатель в однофазной сети вообще сможет работать. Например, серию МА (у него короткозамкнутый ротор с двойной клеткой) следует исключить, дабы не пришлось тащить домой немалый и бесполезный вес. Вообще, лучше всего сначала поэкспериментировать или пригласить опытного человека, электромеханика, например, и посоветоваться с ним перед покупкой. Вполне подойдет асинхронный двигатель трехфазный серии УАД, АПН, АО2, АО и, конечно же, А. Эти индексы указаны на заводских табличках.

Подключение 3 х фазного двигателя в однофазную сеть. Трехфазный двигатель в однофазной сети без конденсаторов. Двигатель с магнитным пускателем

В работе электриков распространённой задачей является подключение двигателя, рассчитанного на три фазы, в однофазную сеть. Выполнить это, на первый взгляд, непростое задание без помощи дополнительных приборов сложно. Устройствами, которые позволяют мотору с тремя фазами работать в сети 220 В, являются различные фазосдвигающие элементы. Из их многообразия чаще всего для этих целей выбирают ёмкость. Правильно подобрать конденсатор для трехфазного двигателя можно с помощью схем и несложных формул.

Асинхронные электродвигатели с тремя обмотками на статоре преобладают в различных отраслях сельского хозяйства. Их применяют для привода устройств вентиляции, уборки навоза, приготовления кормов, подачи воды. Популярность таких моторов обусловлена рядом преимуществ:

Подключить трехфазный двигатель на 220 можно пытаться, зная различия схем соединения обмоток. Количество фаз, на которое рассчитан двигатель, можно определить по числу зажимов в его клеммной коробке: у трёхфазного в ней будет 6 выводов, а у однофазного два или четыре.

Обмотки мотора с тремя фазами соединяются по установленной схеме, называемой «звездой» или «треугольником». Каждая из них имеет свои преимущества и недостатки. При соединении в звезду концы обмоток соединены. В клеммной коробке эта схема соединения будет отображена использованием двух перемычек между зажимами с обозначениями «С6», «С4», «С5». Если же обмотки двигателя соединяются в треугольник, то к каждому концу присоединяется начало. В клеммной коробке будут использованы три перемычки, которые будут соединять зажимы «С1» и «С6», «С2» и «С4», «С3» и «С5».

Необходимость фазосдвигающих элементов

При подключении трехфазного электродвигателя в сеть 220 В пусковой вращающий момент не возникает. Поэтому появляется необходимость в подключении пусковых устройств. Они создают сдвиг фаз, который позволяет мотору запускаться и длительно работать под нагрузкой.

В качестве фазосдвигающих элементов могут быть использованы:

  • сопротивление;
  • индуктивность;
  • ёмкость.

Из-за подключения трехфазного двигателя через конденсатор вал начинает вращаться при подаче напряжения. Присоединение ёмкости гарантирует мотору не только пуск, но и удерживание нагрузки продолжительное время.

Подключить трехфазный электродвигатель в сеть 220 В можно только после изучения схемы соединения обмоток и назначения устройства, которое он будет приводить в действие.

Присоединение конденсатора к обмоткам мотора необходимо выполнять, соблюдая некоторые правила. Подключение трехфазного двигателя к однофазной сети производится с использованием одной из двух стандартных схем: «звезда» или «треугольник».

В моторах средней и высокой мощности необходимо две ёмкости — рабочая и пусковая. Рабочий конденсатор Ср необходим для возникновения кругового поля при номинальном режиме работы. Пусковой конденсатор Сп нужен для создания кругового поля при пуске с номинальной нагрузкой на валу.

Порядок подключения при «звезде»:

Порядок подключения при схеме «треугольник»:

  • Соединить в коробке клемм выводы катушек мотора, установив три перемычки между зажимами С1 и С6, С2 и С4, С3 и С5.
  • Присоединить конденсаторы к началу и концу одной фазы (С1, С4 или С2, С5 либо С3, С6).
  • Подвести ноль к клемме перемычки, свободной от ёмкости, а фазу к любому другому зажиму.

Для изменения направления вращения вала нужно либо напряжение, либо конденсаторы присоединить к другой фазе двигателя.

Выбирая конденсатор, необходимо предупредить ситуацию, при которой фазный ток превысит своё номинальное значение. Поэтому к подсчётам необходимо подойти очень тщательно — неправильные результаты могут привести не только к поломке конденсатора, но и перегоранию обмоток двигателя.

На практике для пуска моторов небольшой мощности пользуются упрощённым подбором исходя из соображений, что для каждых 100 Вт мощности двигателя необходимо 7 мкФ ёмкости при соединении в треугольник. При подключении обмотки в звезду это значение уменьшается вдвое. Если в однофазную сеть присоединяют мотор на три фазы с мощностью 1 квт, то необходим конденсатор зарядом 70-72 мкФ при соединении обмоток треугольником, и 36 мкФ в случае подключения звездой.

Расчёт необходимого значения ёмкости для работы производится по формулам.

При схеме соединения звездой:

Если обмотки образуют треугольник:

I — номинальный ток двигателя. Если по каким-либо причинам его значение неизвестно, для расчёта необходимо воспользоваться формулой:

При этом U = 220 В при соединении звездой, U = 380в — треугольником.

Р — мощность, измеряемая в ваттах.

При пуске двигателя со значительной нагрузкой на валу параллельно с рабочей ёмкостью необходимо включить пусковую.

Её значение рассчитывают по формуле:

Сп=(2,5÷3,0) Ср

Пусковая ёмкость должна превышать значение рабочей в 2,5 — 3 раза.

Очень важен правильный выбор значения напряжения для конденсатора. Этот параметр, так же как и ёмкость, влияет на цену и габариты прибора. Если напряжение сети больше номинального значения конденсатора, пусковое приспособление выйдет из строя.

Но и использовать оборудование с завышенным напряжением также не стоит. Ведь это приведёт к неэффективному увеличению габаритов конденсаторной батареи.

Оптимальным является значение напряжения конденсатора в 1,15 раз превышающее значение напряжения сети: Uk =1,15 U с.

Очень часто при включении мотора с тремя обмотками в однофазную сеть используются конденсаторы типа КГБ-МН или БГТ (термостойкие). Они выполнены из бумаги. Металлический корпус полностью герметичен. Имеет прямоугольный вид. Необходимо учитывать, что допустимые значения напряжения и ёмкости, обозначенные на приборе, указаны для постоянного тока. Поэтому при работе на переменном токе необходимо уменьшать показатели напряжения конденсатора в 2 раза.

Выбор схемы подключения

Обмотки одного и того же двигателя можно соединить либо звездой, либо треугольником. Выбирать схему соединения нужно по нагрузке. Если трехфазный мотор в однофазной сети будет приводить в движение какой-либо маломощный механизм, то можно выбрать схему соединения «звезда». При этом рабочий ток будет невелик, но габариты и цена конденсаторной батареи значительно снизятся.

В случае большой нагрузки при работе или в момент пуска, обмотки двигателя обязательно должны быть включены по схеме «треугольник». Это обеспечит достаточный ток для длительной работы. К недостаткам следует отнести значительную цену и габариты конденсаторов.

Если после присоединения конденсаторов и подачи напряжения мотор гудит, но не запускается, причины могут быть разнообразными:

Громкий неприятный шум при включении мотора и вращении вала свидетельствует о превышенной ёмкости конденсатора.

Работать трехфазный двигатель в однофазной сети будет неплохо. Недостатком будет лишь развиваемая им мощность — не 100%, а 60-80% номинальной. Если ёмкость используется только для пуска, то полезная мощность двигателя не превысит 60% его номинальной мощности.


В разных любительских электромеханических станках и устройствах в большинстве случаев используются трехфазные асинхронные двигатели с короткозамкнутым ротором. Увы, трехфазная сеть в обиходу — явление очень редкое, потому для их питания от обыкновенной электрической сети любители используют фазосдвигающий конденсатор, чтоне разрешает в полном объеме воплотить мощность и пусковые свойства мотора.

Асинхронные трехфазные электродвигатели, а конкретно именно их, в следствии широкого распространения, нередко приходится применять, состоят из неподвижного статора и подвижного ротора. В пазах статора с угловым расстоянием в 120 электрических градусов уложены проводники обмоток, начала и концы которых (C1, C2, C3, C4, C5 и C6) выведены в распределительную коробку.

Подключение «треугольник» (для 220 вольт)

Подключение «звезда» (для 380 вольт)

Распределительная коробка трехфазного двигателя с положением перемычек для подключения по схеме звезда

При включении трехфазного мотора к трехфазной сети по его обмоткам в различный момент времени по очереди начинает идти ток, создающий крутящееся магнитное поле, которое ведетвзаимодействие с ротором, принуждая его крутиться. При подключении мотора в однофазовую сеть, крутящий момент, способный двинуть ротор, не создается.

В случае если вы можете подсоединить движок на стороне к трехфазной сети то опредилить мощьность не тяжело. В разрыв одной из фаз ставим амперметр. Запускаем. Показания амперметра умнажаем на фазовое напряжение.

В хорошей сети оно 380. Получаем мощьность P=I*U. Отнимаем % 10-12 на КПД. Получаете фактически верный результат.

Для измерения оборотов есть мех-ские приборы. Хотя на слух также возможно определить.

Посреди различных методов включения трехфазных электродвигателей в однофазную сеть наиболее обычный — включение третьего контакта через фазосдвигающий конденсатор.

Подключение трехфазного двигателя к однофазной сети

Частота вращения трехфазного мотора, работающего от однофазовой сети, остается практически той же, как и при его подключении в трехфазную сеть. Увы, этого невозможно заявить о мощности, потери которой достигают значимых величин. Четкие значения потери силы находятся в зависимости от схемы включения, условий работы мотора, величины емкости фазосдвигающего конденсатора. Приблизительно, трехфазный движок в однофазовой сети утрачивает в пределах 30-50% собственной силы.

Не многие трехфазные электродвигатели готовы хорошо действовать в однофазовых сетях, но большая часть из них справляются с данной задачей полностью удовлетворительно — в случае если не считать потери мощности. В главном для работы в однофазовых сетях используются асинхронные движки с короткозамкнутым ротором (А, АО2, АОЛ, АПН и др.).

Асинхронные трехфазные движки рассчитаны на 2 номинальных напряжения сети — 220/127, 380/220 и так далее Более всераспространены электродвигатели с рабочим напряжением обмоток 380/220В (380В — для «звезды», 220 — для «треугольника»). Наибольшее напряжение для «звезды», наименьшее — для «треугольника». В паспорте и на табличке движков не считая прочих характеристик указывается рабочее напряжение обмоток, схема их соединения и вероятность ее изменения.

Таблички трехфазных электродвигателей

Обозначение на табличке А гласит о том, что обмотки мотора имеют все шансы быть подключены как «треугольником» (на 220В), так и «звездой» (на 380В). При подключении трехфазного мотора в однофазовую сеть лучше применять схему «треугольник», так как в данном случае движок растеряет меньше силы, нежели при включении «звездой».

Табличка Б информирует, что обмотки мотора подсоединены по схеме «звезда», и в разветвительной коробке не учтена вероятность переключить их на «треугольник» (имеется не более чем 3 вывода). В данном случае остается либо смириться с большой утратой мощности, подключив движок по схеме «звезда», либо, внедрившись в обмотку электродвигателя, попробовать вывести отсутствующие концы, чтоб соединить обмотки по схеме «треугольник».

В случае если рабочее напряжение мотора составляет 220/127В, то к однофазной сети на 220В движок возможно подключить лишь по схеме «звезда». При включении 220В по схеме «треугольник», двигатель сгорит.

Начала и концы обмоток (различные варианты)

Наверное, главная сложность включения трехфазного мотора в однофазовую сеть состоит в том, чтоб разобраться в электропроводах, выходящих в распределительную коробку либо, при неимении последней, просто выведенных наружу мотора.

Самый обычный вариант, когда в имеющемся двигателе на 380/220В обмотки уже подключены по схеме «треугольник». В данном случае необходимо просто подсоединить токоподводящие электропровода и рабочий и пусковой конденсаторы к клеммам мотора согласно схеме подключения.

В случае если в двигателе обмотки соединены «звездой», и имеется вероятность поменять ее на «треугольник», то такой случай также нельзя отнести к трудоемким. Необходимо просто поменять схему включения обмоток на «треугольник», использовав для этого перемычки.

Определение начал и концов обмоток. Дело обстоит труднее, в случае если в распределительную коробку выведено 6 проводов без указания про их принадлежности к конкретной обмотке и обозначения начал и концов. В данном случае дело сводится к решению 2-ух задач (Хотя до того как этим заниматься, необходимо попробовать поискать в сети некоторую документацию к электродвигателю. В ней быть может описано к чему относятся электропровода различных расцветок.):

определению пар проводов, имеющих отношение к одной обмотке;

нахождению начала и конца обмоток.

1-ая задачка решается «прозваниванием» всех проводов тестером (замером сопротивления). Когда прибора нет, возможно решить её при помощи лампочки от фонарика и батареек, подсоединяя имеющиеся электропровода в цепь поочередно с лампочкой. В случае если последняя загорается, значит, два проверяемых конца относятся к одной обмотке. Этим методом определяются 3 пары проводов (A, B и C на рисунке ниже) имеющих отношение к 3 обмоткам.

Определение пар проводов относящихся к одной обмотке

Вторая задача, нужно определить начала и концы обмоток, здесь будет несколько сложнее и будет необходимо наличие батарейки и стрелочного вольтметра. Цифровой для этой задачи не подойдет из-за инертности. Порядок определения концов и начал обмоток показан на схемах 1и 2.

Нахождение начала и конца обмоток

К концам одной обмотки (к примеру, A) подключается батарейка, к концам иной (к примеру, B) — стрелочный вольтметр. Сейчас, когда порвать контакт проводов А с батарейкой, стрелка вольтметра качнется в какую-нибудь сторону. Потом нужно подключить вольтметр к обмотке С и сделать такую же операцию с разрывом контактов батарейки. По мере надобности меняя полярность обмотки С (меняя местами концы С1 и С2) необходимо добиться того, чтоб стрелка вольтметра качнулась в такую же сторону, как и в случае с обмоткой В. Точно так же проверяется и обмотка А — с батарейкой, подсоединенной к обмотке C либо B.

В конечном итоге всех манипуляций должно выйти следующее: при разрыве контактов батарейки с хоть какой из обмоток на 2-х других должен появляться электрический потенциал одинаковой полярности (стрелка устройства качается в одну сторону). Сейчас остается пометить выводы 1-го пучка как начала (А1, В1, С1), а выводы другого — как концы (А2, В2, С2) и соединить их по нужной схеме — «треугольник» либо «звезда» (когда напряжение мотора 220/127В).

Извлечение отсутствующих концов. Наверное, самый непростой вариант — когда движок имеет слияние обмоток по схеме «звезда», и нет способности переключить ее на «треугольник» (в распределительную коробку выведено не более чем 3 электропровода — начала обмоток С1, С2, С3) .

В данном случае для включения мотора по схеме «треугольник» нужно вывести в коробку отсутствующие концы обмоток С4, С5, С6.

Схемы включения трехфазного мотора в однофазную сеть

Включение по схеме «треугольник». В случае домашней сети, исходя из убеждений получения большей выходной мощности более подходящим считается однофазное включение трехфазных двигателей по схеме «треугольник». При всем этом их мощность имеет возможность достигать 70% от номинальной. 2 контакта в разветвительной коробке подсоединяются непосредственно к электропроводам однофазной сети (220В), а 3-ий — через рабочий конденсатор Ср к хоть какому из 2-ух первых контактов либо электропроводам сети.

Обеспечивание запуска. Запуск трехфазного мотора без нагрузки возможно производить и от рабочего конденсатора (подробнее ниже), но в случае если эл-двигатель имеет какую-то нагрузку, он либо не запустится, либо станет набирать обороты чрезвычайно медлительно. Тогда уже для быстрого запуска нужен вспомогательный пусковой конденсатор Сп (расчет емкости конденсаторов описан ниже). Пусковые конденсаторы врубаются лишь на время запуска мотора (2-3 сек, покуда обороты не достигнут приблизительно 70% от номинальных), потом пусковой конденсатор необходимо отключить и разрядить.

Комфортен пуск трехфазного мотора при помощи особенного выключателя, одна пара контактов которого замыкается при нажатой кнопке. При ее отпускании одни контакты размыкаются, а другие остаются включенными — пока же не будет нажата кнопка «стоп».

Выключатель для запуска электродвигателей

Реверс. Направление вращения двигателя зависит от того, к какому контакту («фазе») подсоединена третья фазная обмотка.

Направлением вращения возможно управлять, подсоединив последнюю, через конденсатор, к двухпозиционному переключателю, соединенному двумя своими контактами с первой и 2-ой обмотками. Зависимо от положения переключателя движок станет крутиться в одну либо другую сторону.

На рисунке ниже представлена схема с пусковым и рабочим конденсатором и клавишей реверса, дозволяющая производить комфортное управление трехфазным двигателем.

Схема подключения трехфазного двигателя к однофазной сети, с реверсом и кнопкой для подключения пускового конденсатора

Подключение по схеме «звезда». Подобная схема подключения трехфазного двигателя в сеть с напряжением 220В используется для электродвигателей, у которых обмотки рассчитаны на напряжение 220/127В.


Конденсаторы. Нужная емкость рабочих конденсаторов для работы трехфазного мотора в однофазной сети находится в зависимости от схемы включения обмоток мотора и прочих характеристик. Для соединения «звездой» емкость рассчитывается по формуле:

Cр = 2800 I/U

Для соединения «треугольником»:

Cр = 4800 I/U

Где Ср — емкость рабочего конденсатора в мкФ, I — ток в А, U — напряжение сети в В. Ток рассчитывается по формуле:

I = P/(1.73 U n cosф)

Где Р — мощность электродвигателя кВт; n — КПД двигателя; cosф — коэффициент мощности, 1.73 — коэффициент, определяющий соответствие меж линейным и фазным токами. КПД и коэффициент мощности указаны в паспорте и на табличке мотора. Традиционно их значение располагается в спектре 0,8-0,9.

На практике значение емкости рабочего конденсатора при подсоединении «треугольником» возможно счесть по облегченной формуле C = 70 Pн, где Pн — номинальная мощность электродвигателя в кВт. Согласно данной формуле на каждые 100 Вт мощности электродвигателя нужно около 7 мкФ емкости рабочего конденсатора.

Корректность подбора емкости конденсатора проверяется результатами эксплуатации двигателя. В случае если её значение оказывается больше, нежели потребуется при этих условиях работы, движок станет перенагреваться. Ежели емкость оказалась менее требуемой, выходная мощность электродвигателя станет очень низкой. Имеет резон подыскивать конденсатор для трехфазного мотора, начиная с небольшой емкости и равномерно повышая её значение до рационального. В случае если есть возможность, гораздо лучше выбрать емкость измерением тока в электропроводах присоединенных к сети и к рабочему конденсатору, к примеру токоизмерительными клещами. Значение тока должно быть более близким. Замеры следует производить при том режиме, в каком движок будет действовать.

При определении пусковой емкости исходят, сначала, из требований создания нужного пускового момента. Не перепутывать пусковую емкость с емкостью пускового конденсатора. На приведенных выше схемах, пусковая емкость равна сумме емкостей рабочего (Ср) и пускового (Сп) конденсаторов.

В случае если по условиям работы запуск электродвигателя случается без нагрузки, то пусковая емкость традиционно принимается одинаковой рабочей, другими словами пусковой конденсатор не нужен. В данном случае схема подключения упрощается и удешевляется. Для такового упрощения и основное удешевления схемы, возможно организовать вероятность отключения нагрузки, к примеру, сделав возможность быстро и комфортно изменять положение мотора для падения ременной передачи, либо сделав для ременной передачи прижимающей ролик, к примеру, как у ременного сцепления мотоблоков.

Запуск под нагрузкой требует присутствия доборной емкости (Сп) подключаемой временно пуска двигателя. Повышение отключаемой емкости приводит к возрастанию пускового момента, и при неком конкретном ее значении момент достигает собственного наибольшего значения. Дальнейшее повышение емкости приводит к обратному эффекту: пусковой момент начинает убавляться.

Отталкиваясь от условия пуска двигателя под нагрузкой ближайшей к номинальной, пусковая емкость обязана быть в 2-3 раза более рабочей, то есть, в случае если емкость рабочего конденсатора 80 мкФ, то емкость пускового конденсатора обязана быть 80-160 мкФ, что обеспечит пусковую емкость (сумма емкости рабочего и пускового конденсаторов) 160-240 мкФ. Хотя в случае если двигатель имеет маленькую нагрузку при запуске, емкость пускового конденсатора быть может меньше либо ее может и небыть вообще.

Пусковые конденсаторы действуют недолговременное время (всего несколько секунд за весь период подключения). Это дает возможность использовать при запуске двигателя более дешевые пусковые электролитические конденсаторы, специально созданные для данной цели.

Заметим, что у двигателя присоединенного к однофазной сети через конденсатор, работающего в отсутствии нагрузки, по обмотке, питаемой через конденсатор, следует ток на 20-30% превосходящий номинальный. Потому, в случае если движок используется в недогруженном режиме, то емкость рабочего конденсатора надлежит минимизировать. Но тогда уже, в случае если движок запускался без пускового конденсатора, последний имеет возможность потребоваться.

Гораздо лучше применять не 1 великий конденсатор, а несколько гораздо меньше, частично из-за способности подбора хорошей емкости, подсоединяя добавочные либо отключая ненадобные, последние применяют в качестве пусковых. Нужное число микрофарад набирается параллельным соединением нескольких конденсаторов, отталкиваясь от того, что суммарная емкость при параллельном соединении подсчитывается по формуле:

Определение начала и конца фазных обмоток асинхронного электродвигателя









Асинхронные трехфазные двигатели распространены в производстве и быту. Особенность заключается в том, что подсоединить их можно как к трехфазной, так и однофазной сети. В случае с однофазными моторами это невозможно: они работают только при питании от 220В. А какие существуют способы подключения двигателя 380 Вольт? Рассмотрим, как соединять статорные намотки в зависимости от количества фаз в электросети с использованием иллюстраций и обучающего видео.

Различают две базовые схемы (видео и схемы в следующем подразделе статьи):

  • треугольник,
  • звезда.

Преимущество соединения треугольником – работа на максимальной мощности. Но при включении электродвигателя в намотках продуцируются высокие пусковые токи, опасные для техники. При подключении звездой пуск мотора плавный, поскольку токи при нем низкие. Но достичь максимальной мощности при этом не получится.

В связи с вышесказанным двигатели при питании от 380 Вольт соединяют только звездой. Иначе высокий вольтаж при включении треугольником способен развить такие пусковые токи, что агрегат выйдет из строя. Но при высокой нагрузке выдаваемой мощности может не хватать. Тогда прибегают к хитрости: запускают двигатель звездой для безопасного включения, а затем переключаются с этой схемы на треугольник для набора высокой мощности.

Треугольник и звезда

Перед тем, как рассмотрим эти схемы, условимся:

  • У статора есть 3 обмотки, у каждой из которых – по 1 началу и по 1 концу. Они выведены наружу в виде контактов. Поэтому для каждой намотки их 2. Будем обозначать: обмотка – О, конец – К, начало – Н. На схеме ниже 6 контактов, пронумерованных от 1 до 6. Для первой обмотки начало – 1, конец – 4. Согласно принятым обозначениям это НО1 и КО4. Для второй обмотки – НО2 и КО5, для третьей – НО3 и КО6.
  • В электросети 380 Вольт 3 фазы: A, B и C. Их условные обозначения оставим прежними.

При соединении обмоток электродвигателя звездой сначала соединяют все начала: НО1, НО2 и НО3. Тогда к КО4, КО5 и КО6 соответственно подают питание от A, B и C.

При подключении асинхронного электродвигателя треугольником каждое начало соединяют с концом намотки последовательно. Выбор порядка номеров обмоток произвольный. Может получиться: НО1-КО5-НО2-КО6-НО3-КО2 .

Соединения звездой и треугольником выглядят так:

Бывают в жизни ситуации, когда нужно включить какое-то промышленное оборудование в обычную домашнюю сеть электропитания. Тут же возникает проблема с числом проводов. У машин, предназначенных для эксплуатации на предприятиях, выводов, как правило, три, а бывает и четыре. Что с ними делать, куда их подключать? Те, кто пытался испробовать различные варианты, убедились, что моторы просто так крутиться не хотят. Возможно ли вообще однофазное подключение трехфазного двигателя? Да, добиться вращения можно. К сожалению, в этом случае неизбежно падение мощности почти вдвое, но в некоторых ситуациях это — единственный выход.

Напряжения и их соотношение

Для того чтобы понять, как подключить трехфазный двигатель к обычной розетке, следует разобраться, как соотносятся напряжения в промышленной сети. Общеизвестны величины напряжений — 220 и 380 Вольт. Раньше еще было 127 В, но в пятидесятые годы от этого параметра отказались в пользу более высокого. Откуда взялись эти «волшебные цифры»? Почему не 100, или 200, или 300? Вроде бы круглые цифры считать легче.

Большая часть промышленного электрооборудования рассчитана на подключение к трехфазной сети Напряжение каждой из фаз по отношению к нейтральному проводу составляет 220 Вольт, совсем как в домашней розетке. Откуда же берутся 380 В? Это очень просто, достаточно рассмотреть равнобедренный треугольник с углами в 60, 30 и 30 градусов, который представляет собой векторная диаграмма напряжений. Длина самой длинной стороны будет равна длине бедра, умноженной на cos 30°. После нехитрых подсчетов можно убедиться, что 220 х cos 30°= 380.

Устройство трехфазного двигателя

Не все типы промышленных двигателей могут работать от одной фазы. Самые распространенные из них — «рабочие лошадки», составляющие большинство электромашин на любом предприятии — асинхронные машины мощностью в 1 — 1,5 кВА. Как работает такой трехфазный двигатель в трехфазной сети, для которой он предназначен?

Изобретателем этого революционного устройства стал русский ученый Михаил Осипович Доливо-Добровольский. Этот выдающийся электротехник был сторонником теории трехфазной питающей сети, которая в наше время стала главенствующей. трехфазный работает по принципу индукции токов от обмоток статора на замкнутые проводники ротора. В результате их протекания по короткозамкнутым обмоткам в каждой из них возникает магнитное поле, вступающее во взаимодействие с силовыми линиями статора. Так получается вращающий момент, приводящий к круговому движению оси двигателя.

Обмотки расположены под углом 120°, таким образом, вращающееся поле, создаваемое каждой из фаз, последовательно толкает каждую намагничиваемую сторону ротора.

Треугольник или звезда?

Трехфазный двигатель в трехфазной сети может включаться двумя способами — с участием нейтрального провода или без него. Первый способ называется «звезда», в этом случае каждая из обмоток находится под (между фазой и нулем), равным в наших условиях 220 В. Схема подключения трехфазного двигателя «треугольником» предполагает последовательное соединение трех обмоток и подачу линейного (380 В) напряжения на узлы коммутации. Во втором случае двигатель будет выдавать большую примерно в полтора раза мощность.

Как включить мотор в обратном направлении?

Управление трехфазным двигателем может предполагать необходимость изменения направления вращения на противоположное, то есть реверс. Чтобы этого добиться, нужно просто поменять местами два провода из трех.

Для удобства изменения схемы в клеммной коробке двигателя предусмотрены перемычки, выполненные, как правило, из меди. Для включения «звездой» нежно соединить три выходных провода обмоток вместе. «Треугольник» получается немного сложнее, но и с ним справится любой электрик средней квалификации.

Фазосдвигающие емкости

Итак, порой возникает вопрос о том, как подключить трехфазный двигатель в обычную домашнюю розетку. Если просто попробовать подсоединить к вилке два провода, он вращаться не станет. Для того чтобы дело пошло, нужно сымитировать фазу, сдвинув подаваемое напряжение на какой-то угол (желательно 120°). Добиться этого эффекта можно, если применить фазосдвигающий элемент. Теоретически это может быть и индуктивность, и даже сопротивление, но чаще всего трехфазный двигатель в однофазной сети включается с использованием электрических обозначаемых на схемах латинской буквой С.

Что касается применений дросселей, то оно затруднено по причине сложности определения их значения (если оно не указано на корпусе прибора). Для замера величины L требуется специальный прибор или собранная для этого схема. К тому же выбор доступных дросселей, как правило, ограничен. Впрочем, экспериментально любой фазосдвигающий элемент подобрать можно, но это дело хлопотное.

Что происходит при включении двигателя? На одну из точек соединения подается ноль, на другую — фаза, а на третью — некое напряжение, сдвинутое на некоторый угол относительно фазы. Понятно и неспециалисту, что работа двигателя не будет полноценной в отношении механической мощности на валу, но в некоторых случаях достаточно самого факта вращения. Однако уже при запуске могут возникать некоторые проблемы, например, отсутствие начального момента, способного сдвинуть ротор с места. Что делать в этом случае?

Пусковой конденсатор

В момент пуска валу требуются дополнительные усилия для преодоления сил инерции и трения покоя. Чтобы увеличить момент вращения, следует установить дополнительный конденсатор, подключаемый к схеме только в момент старта, а затем отключающийся. Для этих целей лучшим вариантом является применение замыкающей кнопки без фиксации положения. Схема подключения трехфазного двигателя со стартовым конденсатором приведена ниже, она проста и понятна. В момент подачи напряжения следует нажать на кнопку «Пуск», и создаст дополнительной сдвиг фазы. После того как двигатель раскрутится до нужных оборотов, кнопку можно (и даже нужно) отпустить, и в схеме останется только рабочая емкость.

Расчет величины емкостей

Итак, мы выяснили, что для того, чтобы включить трехфазный двигатель в однофазной сети, требуется дополнительная схема подключения, в которую, помимо пусковой кнопки, входят два конденсатора. Их величину нужно знать, иначе работать система не будет. Для начала определим величину электрической емкости, необходимую для того, чтобы заставить ротор тронуться с места. При параллельном включении она представляет собой сумму:

С = С ст + Ср, где:

С ст — стартовая дополнительная отключаемая после разбега емкость;

С р — рабочий конденсатор, обеспечивающий вращение.

Еще нам потребуется величина номинального тока I н (она указана на табличке, прикрепленной к двигателю на заводе-изготовителе). Этот параметр также можно определить с помощью нехитрой формулы:

I н = P / (3 х U), где:

U — напряжение, при подключении «звездой» — 220 В, а если «треугольник», то 380 В;

P — мощность трехфазного двигателя, ее иногда в случае утери таблички определяют на глаз.

Итак, зависимости требуемой рабочей мощности вычисляются по формулам:

С р = Ср = 2800 I н / U — для «звезды»;

С р = 4800 I н / U — для «треугольника»;

Пусковой конденсатор должен быть больше рабочего в 2-3 раза. Единица измерения — микрофарады.

Есть и совсем уж простой способ вычисления емкости: C = P /10, но эта формула скорее дает порядок цифры, чем ее значение. Впрочем, повозиться в любом случае придется.

Почему нужна подгонка

Метод расчета, приведенный выше, является приблизительным. Во-первых, номинальное значение, указанное на корпусе электрической емкости, может существенно отличаться от фактического. Во-вторых, бумажные конденсаторы (вообще говоря, вещь недешевая) часто используются бывшие в употреблении, и они, как всякие прочие предметы, подвержены старению, что приводит к еще большему отклонению от указанного параметра. В-третьих, ток, который будет потребляться двигателем, зависит от величины механической нагрузки на валу, а потому оценить его можно только экспериментально. Как это сделать?

Здесь потребуется немного терпения. В результате может получиться довольно объемный набор конденсаторов, Главное — после окончания работы все хорошенько закрепить, чтобы не отваливались припаянные концы от вибраций, исходящих от мотора. А потом не лишним будет еще раз проанализировать результат и, возможно, упростить конструкцию.

Составление батареи емкостей

Если в распоряжении у мастера нет специальных электролитических клещей, позволяющий замерять ток без размыкания цепей, то следует подключить амперметр последовательно к каждому проводу, который входит в трехфазный двигатель. В однофазной сети будет протекать суммарное значение, а подбором конденсаторов следует стремиться к наиболее равномерной загрузке обмоток. При этом следует помнить о том, что при последовательном подключении общая емкость уменьшается по закону:

Также необходимо не забывать и о таком важном параметре, как напряжение, на которое рассчитан конденсатор. Оно должно быть не менее номинального значения сети, а лучше с запасом.

Разрядный резистор

Схема трехфазного двигателя, включенного между одной фазой и нейтральным проводом, иногда дополняется сопротивлением. Оно служит для того, чтобы на стартовом конденсаторе не накапливался заряд, остающийся после того, как машина уже выключена. Эта энергия может вызвать электрический удар, не опасный, но крайне неприятный. Для того чтобы обезопасить себя, следует параллельно с пусковой емкостью соединить резистор (у электриков это называется «зашунтировать»). Величина его сопротивления большая — от половины мегома до мегома, а по размерам он невелик, поэтому довольно и полуваттной мощности. Впрочем, если пользователь не боится быть «ущипнутым», то без этой детали вполне можно и обойтись.

Использование электролитов

Как уже отмечалось, пленочные или бумажные электрические емкости дорогие, и прибрести их не так просто, как хотелось бы. Можно произвести однофазное подключение трехфазного двигателя с использованием недорогих и доступных электролитических конденсаторов. При этом совсем уж дешевыми они тоже не будут, так как должны выдерживать 300 Вольт постоянного тока. Для безопасности их следует зашунтировать полупроводниковыми диодами (Д 245 или Д 248, например), но нелишним будет помнить о том, что при пробитии этих приборов переменное напряжение попадет на электролит, и он сперва сильно нагреется, а потом взорвется, громко и эффектно. Поэтому без крайней необходимости лучше все же использовать конденсаторы бумажного типа, работающие под напряжением хоть постоянным, хоть переменным. Некоторые мастера вполне допускают применение электролитов в пусковых цепях. В силу кратковременного воздействия на них переменного напряжения, они могут и не успеть взорваться. Лучше не экспериментировать.

Если нет конденсаторов

Где обычные граждане, не имеющие доступа к пользующимся спросом электрическим и электронным деталям, их приобретают? На барахолках и «блошиных рынках». Там они лежат, заботливо выпаянные чьими-то (обычно пожилыми) руками из старых стиральных машин, телевизоров и прочей вышедшей из обихода и строя бытовой и промышленной техники. Просят за эти изделия советского производства немало: продавцы знают, что если деталь нужна, то ее купят, а если нет — и даром не возьмут. Бывает, что как раз самого необходимого (в данном случае конденсатора) как раз и нет. И что же делать? Не беда! Сойдут и резисторы, только нужны мощные, желательно керамические и остеклованные. Конечно, идеальное сопротивление (активное) фазу не сдвигает, но в этом мире ничего нет идеального, и в нашем случае это хорошо. Каждое физическое тело обладает собственной индуктивностью, электрической мощностью и резистивностью, будь оно крошечной пылинкой или огромной горой. Включение трехфазного двигателя в розетку становится возможным, если на вышеприведенных схемах заменить конденсатор сопротивлением, номинал которого вычисляется по формуле:

R = (0,86 x U) / kI, где:

kI — величина тока при трехфазном подключении, А;

U — наши верные 220 Вольт.

Какие двигатели подойдут?

Перед тем как приобретать за немалые деньги мотор, который рачительный хозяин собирается использовать в качестве привода для точильного круга, циркулярной пилы, сверлильного станка или другого какого-либо полезного домашнего устройства, не помешает подумать о его применимости для этих целей. Не каждый трехфазный двигатель в однофазной сети вообще сможет работать. Например, серию МА (у него короткозамкнутый ротор с двойной клеткой) следует исключить, дабы не пришлось тащить домой немалый и бесполезный вес. Вообще, лучше всего сначала поэкспериментировать или пригласить опытного человека, электромеханика, например, и посоветоваться с ним перед покупкой. Вполне подойдет асинхронный двигатель трехфазный серии УАД, АПН, АО2, АО и, конечно же, А. Эти индексы указаны на заводских табличках.

В трёхфазной сети обычно есть 4 провода (3 фазы и ноль). Может быть ещё отдельный провод «земля». Но бывают и без нулевого провода.

Как определить напряжение в вашей сети?
Очень просто. Для этого нужно измерить напряжение между фазами и между нулём и фазой.

В сетях 220/380 В напряжение между фазами (U1, U2 и U3) будет равно 380 В, а напряжение между нолём и фазой (U4, U5 и U6) будет равно 220 В.
В сетях 380/660В напряжение между любыми фазами (U1, U2 и U3) будет равно 660В, а напряжение между нулем и фазой (U4, U5 и U6) будет равно 380 В.

Возможные схемы подключения обмоток электродвигателей

Асинхронные электродвигатели имеют три обмотки, каждая из которых имеет начало и конец и соответствует своей фазе. Системы обозначения обмоток могут быть разными. В современных электродвигателях принята система обозначения обмоток U, V и W, а их выводы обозначают цифрой 1 начало обмотки и цифрой 2 – её конец, то есть обмотка U имеет два вывода: U1 и U2, обмотка V – V1 и V2, а обмотка W – W1 и W2.

Однако до сих пор ещё в эксплуатации находятся старые асинхронные двигатели, сделанные во времена СССР и имеющие старую советскую систему маркировки. В них начала обмоток обозначаются C1, C2, C3, а концы — C4, C5, C6. Значит, первая обмотка имеет выводы C1 и C4, вторая — C2 и C5, а третья — C3 и C6.

Обмотки трёхфазных электродвигателей можно подключать по двум различным схемам: звездой (Y) или треугольником (Δ).

Подключение электродвигателя по схеме звезда

Название схемы подключения обусловлено тем, что при соединении обмоток по данной схеме (см. рисунок справа), визуально это напоминает трёхлучевую звезду.

Как видно из схемы подключения электродвигателя, все три обмотки своим одним концом соединены вместе. При таком подключении (сеть 220/380 В), к каждой обмотке отдельно подходит напряжение 220 В, а к двум обмоткам, соединённым последовательно, – напряжение 380 В.

Основным преимуществом подключения электродвигателя по схеме звезда являются небольшие пусковые токи, так как напряжение питания 380 В (межфазное) потребляют сразу 2 обмотки, в отличие от схемы «треугольник». Но при таком подключении мощность питаемого электродвигателя ограничена (главным образом из экономических соображений): обычно по звезде включают относительно слабые электродвигатели.

Подключение электродвигателя по схеме треугольник

Название этой схемы также идёт от графического изображения (см. правый рисунок):

Как видно из схемы подключения электродвигателя – «треугольник», обмотки подключаются последовательно друг к другу: конец первой обмотки соединяется с началом второй и так далее.

То есть к каждой обмотке будет приложено напряжение 380 В (при использовании сети 220/380 В). В этом случае по обмоткам течёт больший ток, по треугольнику обычно включают двигатели большей мощности, чем при соединении по звезде (от 7,5 кВт и выше).

Подключение электродвигателя к трёхфазной сети на 380 В

Последовательность действий такова:

1. Для начала выясняем, на какое напряжение рассчитана наша сеть.
2. Далее смотрим на табличку, которая есть на электродвигателе, она может выглядеть так (звезда Y /треугольник Δ):

(~ 1, 220В)


220В/380В (220/380, Δ / Y)

(~ 3, Y, 380В)

Двигатель для трехфазной сети
(380В / 660В (Δ / Y, 380В / 660В)

3. После идентификации параметров сети и параметров электрического подключения электродвигателя (звезда Y /треугольник Δ), переходим к физическому электрическому подключению электродвигателя.
4. Чтобы включить трёхфазный электродвигатель, нужно одновременно подать напряжение на все 3 фазы.
Достаточно частая причина выхода из строя электродвигателя – работа на двух фазах. Это может произойти из-за неисправного пускателя, или при перекосе фаз (когда напряжение в одной из фаз сильно меньше, чем в двух других).

Есть 2 способа подключения электродвигателя:
— использование автоматического выключателя или автомата защиты электродвигателя

Эти устройства при включении подают напряжение сразу на все 3 фазы. Мы рекомендуем ставить именно автомат защиты электродвигателя серии MS, так как его можно настроить в точности на рабочий ток электродвигателя, и он будет чутко отслеживать его повышение в случае перегрузки. Это устройство в момент пуска даёт возможность некоторое время работать на повышенном (пусковом) токе, не отключая двигатель.
Обычный же автомат защиты требуется ставить с превышением номинального тока электродвигателя, с учётом пускового тока (в 2-3 раза выше номинала).
Такой автомат может отключить двигатель только в случае КЗ или его заклинивания, что часто не обеспечивает нужной защиты.

Использование пускателя

Пускатель представляет собой электромеханический контактор, который замыкает каждую фазу с соответствующей обмоткой электродвигателя.
Привод механизма контактора осуществляется с помощью электромагнита (соленоида).

Устройство электромагнитного пускателя:

Магнитный пускатель устроен достаточно просто и состоит из следующих частей:

(1) Катушка электромагнита
(2) Пружина
(3) Подвижная рама с контактами (4) для подключения питания сети (или обмоток)
(5) Контакты неподвижные для подключения обмоток электродвигателя (сети питания).

При подаче питания на катушку, рама (3) с контактами (4) опускается и замыкает свои контакты на соответствующие неподвижные контакты (5).

Типовая схема подключения электродвигателя с использованием пускателя:


При выборе пускателя следует обращать внимание на напряжение питания катушки магнитного пускателя и покупать его в соответствии с возможностью подключения к конкретной сети (например, если у вас есть только 3 провода и сеть на 380 В, то катушку нужно брать на 380 В, если у вас сеть 220/380 В, то катушка может быть и на 220 В).

5. Проконтролировать, в правильную ли сторону крутится вал.
Если требуется изменить направление вращения вала электродвигателя, то нужно просто поменять местами любые 2 фазы. Это особенно важно при запитывании центробежных электронасосов, имеющих строго определённое направление вращения рабочего колеса

Как подключить поплавковый выключатель к трёхфазному насосу

Из всего вышеописанного становится понятно, что для управления трёхфазным электродвигателем насоса в автоматическом режиме с использованием поплавкового выключателя НЕЛЬЗЯ просто разрывать одну фазу, как это делается с монофазными двигателями в однофазной сети.

Самый простой способ – использовать для автоматизации магнитный пускатель.
В этом случае достаточно поплавковый выключатель встроить последовательно в цепь питания катушки пускателя. При замыкании цепи поплавком будет замыкаться цепь катушки пускателя, и включаться электродвигатель, при размыкании – будет отключаться питание электродвигателя.

Подключение электродвигателя к однофазной сети 220 В

Обычно для подключения к однофазной сети 220В используются специальные двигатели, предназначенные для подключения именно к такой сети, и вопросов с их питанием не возникает, т.к. для этого просто требуется вставить вилку (большинство бытовых насосов оснащены стандартной вилкой Шуко) в розетку

Иногда требуется подключение трехфазного электродвигателя к сети 220 В (если, например, нет возможности провести трехфазную сеть).

Максимально возможная мощность электродвигателя, который можно включить в однофазную сеть 220 В, составляет 2,2 кВт.

Самый простой способ – подключить электродвигатель через частотный преобразователь, рассчитанный на питание от сети 220 В.

Следует помнить, что частотный преобразователь на 220 В, выдает на выходе 3 фазы по 220 В. То есть подключить к нему можно только электродвигатель, который имеет напряжение питания на 220 В трёхфазной сети (обычно это двигатели с шестью контактами в распаячной коробке, обмотки которых можно подключить как по звезде, так и по треугольнику). В данном случае требуется подключение обмоток по треугольнику.

Возможно ещё более простое подключение трехфазного электродвигателя в сеть 220 В с использованием конденсатора, но такое подключение приведёт к потере мощности электродвигателя приблизительно на 30%. Третья обмотка запитывается через конденсатор от любой другой.

Данный тип подключения мы рассматривать не будем, так как нормально с насосами такой способ не работает (либо при старте двигатель не запускается, либо электродвигатель перегревается из-за снижения мощности).

Использование частотного преобразователя

В настоящее время достаточно активно все стали применять частотные преобразователи для управления частотой вращения (оборотами) электродвигателя.

Это позволяет не только экономить электроэнергию (например, при использовании частотного регулирования насосов для подачи воды), но и управлять подачей насосов объёмного типа, превращая их в дозировочные (любые насосы объёмного принципа действия).

Но очень часто при использовании частотных преобразователей не обращают внимания на некоторые нюансы их применения:

Регулировка частоты, без доработки электродвигателя, возможна в пределах регулировки частоты +/- 30% от рабочей (50 Гц),
— при увеличении частоты вращения более 65 Гц требуется замена подшипников на усиленные (сейчас с помощью ЧП возможно поднять частоту тока до 400 Гц, обычные подшипники просто разваливаются на таких скоростях),
— при уменьшении частоты вращения встроенный вентилятор электродвигателя начинает работать неэффективно, что приводит к перегреву обмоток.

Из-за того, что не обращают внимания при проектировании установок на такие «мелочи», очень часто электродвигатели выходят из строя.

Для работы на низкой частоте ОБЯЗАТЕЛЬНО требуется установка дополнительного вентилятора принудительного охлаждения электродвигателя.

Вместо крышки вентилятора устанавливается вентилятор принудительного охлаждения (см. фото). В этом случае, даже при снижении оборотов вала основного двигателя,
дополнительный вентилятор обеспечит надёжное охлаждение электродвигателя.

Мы имеем большой опыт модернизации электродвигателей для работы на низкой частоте.
На фото можно видеть винтовые насосы с дополнительными вентиляторами на электродвигателях.

Данные насосы используются в качестве дозирующих насосов на пищевом производстве.

Надеемся, что данная статья поможет вам правильно подключить электродвигатель к сети самостоятельно (ну или хотя бы понять, что перед вами не электрик, а «специалист широкого профиля»).

Технический директор
ООО «Насосы Ампика»
Моисеев Юрий.


Трехфазный двигатель в однофазной сети

Трехфазные асинхронные электродвигатели не требуют дополнительных устройств для запуска и работы. Нужны лишь контакторы или иные устройства подачи трехфазного напряжения. Однако при включении двигателя в однофазную сеть используются другие способы запуска.

Фазосдвигающий конденсатор

Существует простой способ, позволяющий запитать трехфазный двигатель от бытовой однофазной сети с напряжением 220 В. Трехфазное напряжение получают путем сдвига фаз с помощью фазосдвигающего конденсатора. Делается это так.

В однофазной сети имеются два провода (фаза и ноль), между которыми существует сдвиг фаз 180 градусов. Для включения трехфазного двигателя нужны три проводника, напряжения на которых должны иметь сдвиг фаз 120 градусов. Поэтому, если подключить один из выводов двигателя к фазному проводнику напрямую, а другой – через фазосдвигающий конденсатор, то в совокупности с нулевым проводником и обмотками такая система будет трехфазной. Другими словами, будет обеспечен нужный режим питания.

Для расчета номинала фазосдвигающего конденсатора можно воспользоваться приближенной формулой:

С = k*I / U,

где k – коэффициент, равный 4800 для схемы подключения «треугольник», 2800 – для «звезды», I – номинальный ток двигателя (указывается на шильдике), U – фазное напряжение (в нашем случае – 220 В).

Рабочее напряжение конденсатора следует выбирать не менее 400 В, при этом желательно использовать специальные конденсаторы для электродвигателей, на частоту 50 – 60 Гц.

Пусковой конденсатор

Приведенная выше формула справедлива для номинального тока. Но двигатель работает не только на номинале. При пуске его ток может превышать номинальное значение в 5-7 раз, а при работе – быть ниже в 2-3 раза (холостой ход). В результате момент на валу при включении будет мал, и двигатель будет разгоняться очень долго либо вообще не сможет запуститься. Поэтому для запуска используют дополнительный пусковой конденсатор, который подключают к рабочему (фазосдвигающему) на время разгона (3-5 секунд). Обычно емкость пускового конденсатора выбирают в 2-5 раз больше, в зависимости от требуемого момента при пуске и времени разгона.

Для подключения пускового конденсатора используют специальные ручные пускатели, в которых время пуска равно времени нажатия на двухпозиционную кнопку «Пуск». Пока оператор держит «Пуск» в позиции без фиксации, подключаются рабочий и пусковой конденсаторы. Как только оператор отпускает кнопку, она переходит в фиксированную позицию, и в схеме остается лишь рабочий конденсатор. Остановка двигателя производится кнопкой «Стоп». Кроме ручных пускателей могут использоваться релейные и электронные схемы.

Данный способ не применяется на практике для двигателей более 2,2 кВт из-за низкого КПД и большой емкости конденсаторов.

Двигатель с пусковой обмоткой

Конденсатор также используется в случае, когда двигатель имеет две обмотки – рабочую и пусковую. Рабочая обмотка подключается к питающему однофазному напряжению (220 В) напрямую. Пусковая обмотка имеет меньший ток и подключается через фазосдвигающей конденсатор. Совместно обе обмотки имеют такую конфигурацию, что формируют внутри статора вращающееся магнитное поле.

Емкость фазосдвигающего конденсатора обычно указывается на шильдике двигателя. На время пуска и разгона может применяться дополнительный конденсатор. Такой двигатель называют конденсаторным, и он предназначен для работы только в однофазной сети.

Трехфазный двигатель в однофазной сети не запускается. Подключение трёхфазного двигателя к однофазной сети

Схемы подключения трехфазного двигателя — двигатели, рассчитанные на работу от трехфазной сети, имеют производительность гораздо выше, чем однофазные моторы на 220 вольт. Поэтому, если в рабочем помещении проведены три фазы переменного тока, то оборудование необходимо монтировать с учетом подключения к трем фазам. В итоге, трехфазный двигатель, подключенный к сети, дает экономию энергии, стабильную эксплуатацию устройства. Не нужно подключать дополнительные элементы для запуска. Единственным условием хорошей работы устройства является безошибочное подключение и монтаж схемы, с соблюдением правил.

Схемы подключения трехфазного двигателя
Из множества созданных схем специалистами для монтажа асинхронного двигателя практически используют два метода:
  • Схема звезды.
  • Схема треугольника.

Названия схем даны по методу подключения обмоток в питающую сеть. Чтобы на электродвигателе определить, по какой схеме он подключен, необходимо посмотреть указанные данные на металлической табличке, которая установлена на корпусе двигателя.

Даже на старых образцах моторов можно определить метод соединения статорных обмоток, а также напряжение сети. Эта информация будет верна, если двигатель уже был в эксплуатации, и никаких проблем в работе нет. Но иногда нужно произвести электрические измерения.

Схемы подключения трехфазного двигателя звездой дают возможность плавного запуска мотора, но мощность оказывается меньше номинального значения на 30%. Поэтому по мощности схема треугольника остается в выигрыше. Существует особенность по нагрузке тока. Сила тока резко увеличивается при запуске, это отрицательно сказывается на обмотке статора. Возрастает выделяемое тепло, которое губительно воздействует на изоляцию обмотки. Это приводит к нарушению изоляции, и поломке электродвигателя.

Много европейских устройств, поставленных на отечественный рынок, имеют в комплекте европейские электродвигатели, действующие с напряжением от 400 до 690 В. Такие 3-фазные моторы необходимо монтировать в сеть 380 вольт отечественного напряжения только по треугольной схеме обмоток статора. В противном случае моторы сразу будут выходить из строя. Российские моторы на три фазы подключаются по звезде. Изредка производится монтаж схемы треугольника для получения от двигателя наибольшей мощности, применяемой в специальных видах промышленного оборудования.

Изготовители сегодня дают возможность подключать трехфазные электромоторы по любой схеме. Если в монтажной коробке три конца, то произведена заводская схема звезды. А если есть шесть выводов, то мотор можно подключать по любой схеме. При монтаже по звезде нужно три вывода начал обмоток объединить в один узел. Остальные три вывода подать на фазное питание напряжением 380 вольт. В схеме треугольника концы обмоток соединяют последовательно по порядку между собой. Фазное питание подсоединяется к точкам узлов концов обмоток.

Проверка схемы подключения мотора

Представим худший вариант выполненного подключения обмоток, когда на заводе не обозначены выводы проводов, сборка схемы проведена во внутренней части корпуса мотора, и наружу выведен один кабель. В этом случае необходимо разобрать электродвигатель, снять крышки, разобрать внутреннюю часть, разобраться с проводами.

Метод определения фаз статора

После разъединения выводных концов проводов применяют мультиметр для измерения сопротивления. Один щуп подключают к любому проводу, другой подносят по очереди ко всем выводам проводов, пока не найдется вывод, принадлежащий к обмотке первого провода. Аналогично поступают на остальных выводах. Нужно помнить, что обязательна маркировка проводов, любым способом.

Если в наличии нет мультиметра или другого прибора, то используют самодельные пробники, сделанные из лампочки, проводов и батарейки.

Полярность обмоток
Чтобы найти и определить полярность обмоток, необходимо применить некоторые приемы:
  • Подключить импульсный постоянный ток.
  • Подключить переменный источник тока.

Оба способа действуют по принципу подачи напряжения на одну катушку и его трансформации по магнитопроводу сердечника.

Как проверить полярность обмоток батарейкой и тестером

На контакты одной обмотки подключают вольтметр с повышенной чувствительностью, который может отреагировать на импульс. К другой катушке быстро присоединяют напряжение одним полюсом. В момент подключения контролируют отклонение стрелки вольтметра. Если стрелка двигается к плюсу, то полярность совпала с другой обмоткой. При размыкании контакта стрелка пойдет к минусу. Для 3-й обмотки опыт повторяют.

Путем изменения выводов на другую обмотку при включении батарейки определяют, насколько правильно сделана маркировка концов обмоток статора.

Проверка переменным током

Две любые обмотки включают параллельно концами к мультиметру. На третью обмотку включают напряжение. Смотрят, что показывает вольтметр: если полярность обеих обмоток совпадает, то вольтметр покажет величину напряжения, если полярности разные, то покажет ноль.

Полярность 3-й фазы определяют путем переключения вольтметра, изменения положения трансформатора на другую обмотку. Далее, производят контрольные измерения.

Схема звезды

Этот тип схемы подключения трехфазного двигателя образуется путем соединения обмоток в разные цепи, объединенные нейтралью и общей точкой фазы.

Такую схему создают после того, как проверена полярность обмоток статора в электромоторе. Однофазное напряжение на 220В через автомат подают фазу на начала 2-х обмоток. К одной врезают в разрыв конденсаторы: рабочие и пусковые. На третий конец звезды подводят нулевой провод питания.

Величину емкости конденсаторов (рабочих) определяют по эмпирической формуле:

С = (2800 · I) / U

Для схемы запуска емкость повышают в 3 раза. В работе мотора при нагрузке нужно контролировать величину токов обмоток измерениями, корректировать емкость конденсаторов по средней нагрузке привода механизма. В противном случае произойдет, перегрев устройства, пробой изоляции.

Подключение мотора в работу хорошо делать через выключатель ПНВС, как показано на рисунке.

В нем уже сделана пара контактов замыкания, которые вместе подают напряжение на 2 схемы путем кнопки «Пуск». Во время отпускания кнопки цепь разрывается. Такой контакт применяют для запуска цепи. Полное отключение питания делают, нажав на «Стоп».

Схема треугольника

Схемы подключения трехфазного двигателя треугольником является повтором прошлого варианта в запуске, но имеет отличие методом включения обмоток статора.

Токи, проходящие в них, больше значений цепи звезды. Рабочие емкости конденсаторов нуждаются в повышенных номинальных емкостях. Они рассчитываются по формуле:

С = (4800 · I) / U

Правильность выбора емкостей также вычисляют по отношению токов в катушках статора путем измерения с нагрузкой.

Двигатель с магнитным пускателем

Трехфазный электродвигатель работает через по аналогичной схеме с автоматическим выключателем. Такая схема имеет дополнительно блок включения и выключения, с кнопками Пуск и Стоп.

Одна фаза, нормально замкнутая, соединенная с мотором, подключается к кнопке Пуск. При ее нажатии контакты замыкаются, ток идет к электромотору. Необходимо учитывать, что при отпускании кнопки Пуск, клеммы разомкнутся, питание отключится. Чтобы такой ситуации не произошло, магнитный пускатель дополнительно оборудуют вспомогательными контактами, которые называют самоподхватом. Они блокируют цепь, не дают ей разорваться при отпущенной кнопке Пуск. Выключить питание можно кнопкой Стоп.

В результате, 3-фазный электромотор можно подключать к сети трехфазного напряжения совершенно разными методами, которые выбираются по модели и типу устройства, условиям эксплуатации.

Подключение мотора от автомата
Общий вариант такой схемы подключения выглядит как на рисунке:

Здесь показан автомат защиты, который выключает напряжение питания электромотора при чрезмерной нагрузке по току, и по короткому замыканию. Автоматический защитный выключатель – это простой 3-полюсный выключатель с тепловой автоматической характеристикой нагруженности.

Для примерного расчета и оценки нужного тока тепловой защиты, необходимо мощность по номиналу двигателя, рассчитанного на работу от трех фаз, увеличить в два раза. Номинальная мощность указывается на металлической табличке на корпусе мотора.

Такие схемы подключения трехфазного двигателя вполне могут работать, если нет других вариантов подключения. Длительность работы нельзя прогнозировать. Это тоже самое, если скрутить алюминиевый провод с медным. Никогда не знаешь, через какое время скрутка сгорит.

При применении схемы подключения трехфазного двигателя нужно аккуратно выбрать ток для автомата, который должен быть на 20% больше тока работы мотора. Свойства тепловой защиты выбрать с запасом, чтобы при запуске не сработала блокировка.

Если для примера, двигатель на 1,5 киловатта, наибольший ток 3 ампера, то автомат нужен минимум на 4 ампера. Преимуществом этой схемы соединения мотора является низкая стоимость, простое исполнение и техобслуживание.

Если электродвигатель в одном числе, и работает полную смену, то есть следующие недостатки:
  • Нельзя отрегулировать тепловой ток сработки автоматического выключателя. Чтобы защитить электромотор, ток защитного отключения автомата устанавливают на 20% больше рабочего тока по номиналу мотора. Ток электродвигателя нужно через определенное время замерять клещами, настраивать ток тепловой защиты. Но у простого автоматического выключателя нет возможности настроить ток.
  • Нельзя дистанционно выключить и включить электродвигатель.
Содержание:

Многие хозяева, особенно владельцы частных домов или дач, используют оборудование с двигателями на 380 В, работающими от трехфазной сети. Если к участку подведена соответствующая схема питания, то никаких сложностей с их подключением не возникает. Однако довольно часто возникает ситуация, когда питание участка осуществляется только одной фазой, то есть подведено лишь два провода — фазный и нулевой. В таких случаях приходится решать вопрос, как подключить трехфазный двигатель к сети 220 вольт. Это можно сделать различными способами, однако следует помнить, что подобное вмешательство и попытки изменить параметры, приведет к падению мощности и снижению общей эффективности работы электродвигателя.

Подключение 3х фазного двигателя на 220 без конденсаторов

Как правило, схемы без конденсаторов применяются для запуска в однофазной сети трехфазных двигателей малой мощности — от 0,5 до 2,2 киловатта. Времени на запуск тратится примерно столько же, как и при работе в трехфазном режиме.

В этих схемах применяются , под управлением импульсов с различной полярностью. Здесь же присутствуют симметричные динисторы, подающие сигналы управления в поток всех полупериодов, имеющихся в питающем напряжении.

Существует два варианта подключения и запуска. Первый вариант используется для электродвигателей, с частотой оборотов менее чем 1500 в минуту. Соединение обмоток выполнено треугольником. В качестве фазосдвигающего устройства используется специальная цепочка. Путем изменения сопротивления, на конденсаторе образуется напряжение, сдвинутое на определенный угол относительно основного напряжения. При достижении в конденсаторе уровня напряжения необходимого для переключения, происходит срабатывание динистора и симистора, вызывающее активацию силового двунаправленного ключа.

Второй вариант используется при запуске двигателей, частота вращения которых составляет 3000 об/мин. В эту же категорию входят устройства, установленные на механизмах, требующих большого момента сопротивления во время запуска. В этом случае необходимо обеспечение большого пускового момента. С этой целью в предыдущую схему были внесены изменения, и конденсаторы, необходимые для сдвига фаз, были заменены двумя электронными ключами. Первый ключ последовательно соединяется с фазной обмоткой, приводя к индуктивному сдвигу тока в ней. Подключение второго ключа — параллельное фазной обмотке, что способствует образованию в ней опережающего емкостного сдвига тока.

Данная схема подключения учитывает обмотки двигателя, смещенные в пространстве между собой на 120 0 С. При настройке определяется оптимальный угол сдвига тока в обмотках фаз, обеспечивающий надежный пуск устройства. При выполнении этого действия вполне возможно обойтись без каких-либо специальных приборов.

Подключение электродвигателя 380в на 220в через конденсатор

Для нормального подключения следует знать принцип действия трехфазного двигателя. При включении в сеть, по его обмоткам в разные моменты времени поочередно начинает идти ток. То есть в определенный отрезок времени ток проходит через полюса каждой фазы, создавая так же поочередно магнитное поле вращения. Он оказывает влияние на обмотку ротора, вызывая вращение путем подталкивания в разных плоскостях в определенные моменты времени.

При включении такого двигателя в однофазную сеть, в создании вращающегося момента будет участвовать только одна обмотка и воздействие на ротор в этом случае происходит только в одной плоскости. Такого усилия совершенно недостаточно для сдвига и вращения ротора. Поэтому для того чтобы сдвинуть фазу полюсного тока, необходимо воспользоваться фазосдвигающими конденсаторами. Нормальная работа трехфазного электродвигателя во многом зависит от правильного выбора конденсатора.

Расчет конденсатора для трехфазного двигателя в однофазной сети:

  • При мощности электродвигателя не более 1,5 кВт в схеме будет достаточно одного рабочего конденсатора.
  • Если же мощность двигателя свыше 1,5 кВт или он испытывает большие нагрузки во время запуска, в этом случае выполняется установка сразу двух конденсаторов — рабочего и пускового. Их подключение осуществляется параллельно, причем пусковой конденсатор нужен только для запуска, после чего происходит его автоматическое отключение.
  • Управление работой схемы производится кнопкой ПУСК и тумблером отключения питания. Для запуска двигателя нажимается пусковая кнопка и удерживается до тех пор, пока не произойдет полное включение.

В случае необходимости обеспечить вращение в разные стороны, выполняется установка дополнительного тумблера, переключающего направление вращения ротора. Первый основной выход тумблера подключается к конденсатору, второй — к нулевому, а третий — к фазному проводу. Если подобная схема способствует или слабому набору оборотов, в этом случае может потребоваться установка дополнительного пускового конденсатора.

Подключение 3х фазного двигателя на 220 без потери мощности

Наиболее простым и эффективным способом считается подключение трехфазного двигателя в однофазную сеть путем подключения третьего контакта, соединенного с фазосдвигающим конденсатором.

Наибольшая выходная мощность, которую возможно получить в бытовых условиях, составляет до 70% от номинальной. Такие результаты получаются в случае использования схемы «треугольник». Два контакта в распределительной коробке напрямую соединяются с проводами однофазной сети. Соединение третьего контакта выполняется через рабочий конденсатор с любым из первых двух контактов или проводов сети.

При отсутствии нагрузок, трехфазный двигатель возможно запускать с помощью только рабочего конденсатора. Однако при наличии даже небольшой нагрузки, обороты будут набираться очень медленно, или двигатель вообще не запустится. В этом случае потребуется дополнительное подключение пускового конденсатора. Он включается буквально на 2-3 секунды, чтобы обороты двигателя могли достигнуть 70% от номинальных. После этого конденсатор сразу же отключается и разряжается.

Таким образом, при решении вопроса как подключить трехфазный двигатель к сети 220 вольт, необходимо учитывать все факторы. Особое внимание следует уделить конденсаторам, поскольку от их действия зависит работа всей системы.

Есть 2 типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Их различие в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это нужно потому, что после разгона она снижает КПД.

В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная, они смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

Схема подключения однофазного двигателя через конденсатор

При подключении однофазного конденсаторного двигателя есть несколько вариантов схем подключения. Без конденсаторов электромотор гудит, но не запускается.

  • 1 схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже.
  • 3 схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском, а с рабочим конденсором — если нужны хорошие рабочие характеристики.
  • 2 схема — подключения однофазного двигателя — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и используется чаще всего. Она на втором рисунке. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Схема подключения трёхфазного двигателя через конденсатор

Здесь напряжение 220 вольт распределяется на 2 последовательно соединенные обмотки, где каждая рассчитана на такое напряжение. Поэтому теряется мощность почти в два раза, но использовать такой двигатель можно во многих маломощных устройствах.

Максимальной мощности двигателя на 380 В в сети 220 В можно достичь используя соединение типа треугольник. Кроме минимальных потерь по мощности, неизменным остается и число оборотов двигателя. Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность.

Важно помнить: трехфазные электродвигатели обладают более высокой эффективностью, чем однофазные на 220 В . Поэтому если есть ввод на 380 В — обязательно подключайте к нему — это обеспечит более стабильную и экономичную работу устройств. Для пуска мотора не понадобятся различные пусковики и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к сети 380 В.

Онлайн расчет емкости конденсатора мотора

Есть специальная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись онлайн калькулятором или рекомендациями, которые выведены на основании многих опытов:

Рабочий конденсатор берут из расчета 0,8 мкФ на 1 кВт мощности двигателя;
Пусковой подбирается в 2-3 раза больше.

Конденсаторы должны быть неполярными, то есть не электролитическими. Рабочее напряжение этих конденсаторов должно быть минимум в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 350 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting.


Пусковые конденсаторы для моторов

Эти конденсаторы можно подбирать методом от меньшего к большему. Так подобрав среднюю емкость, можно постепенно добавлять и следить за режимом работы двигателя, чтобы он не перегревался и имел достаточно мощности на валу. Также и пусковой конденсатор подбирают добавляя, пока он не будет запускаться плавно без задержек.

При нормальной работе трехфазных асинхронных электродвигателей с конденсаторным пуском, включенных в однофазную сеть предполагается изменение (уменьшение) емкости конденсатора с увеличением частоты вращения вала. В момент пуска асинхронных двигателей (особенно, с нагрузкой на валу) в сети 220 В требуется повышенная емкость фазосдвигающего конденсатора.

Реверс направления движения двигателя

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Такую операцию может делать двухпозиционный переключатель, на центральный контакт которого подключается вывод от конденсатора, а на два крайних вывода от «фазы» и «нуля».

1. Подключение трехфазного электродвигателя – общая схема

Когда электрик устраивается работать на любое промышленное предприятие, он должен понимать, что ему придётся иметь дело с большим количеством трехфазных электродвигателей. И любой уважающий себя электрик (я не говорю о тех, кто делает проводку в квартире) должен чётко знать схему подключения трёхфазного двигателя.

Сразу приношу извинения, что в данной статье я часто контактор называю пускателем, хотя подробно объяснял уже, что . Что поделать, приелось это название.

В статье пойдёт речь о схемах подключения наиболее распространенного асинхронного электродвигателя через магнитный пускатель. Но не только. Расскажу также от способах и принципах защиты двигателя от перегрева и перегрузки.

Будут рассмотрены различные схемы подключения электродвигателей , их плюсы и минусы. От простого к сложному. Схемы, которые могут быть использованы в реальной жизни, обозначены: ПРАКТИЧЕСКАЯ СХЕМА. Итак, начинаем.

Подключение трехфазного двигателя

Имеется ввиду асинхронный электродвигатель, соединение обмоток – звезда или треугольник, подключение к сети 380В.

Для работы двигателя рабочий нулевой проводник N (Neutral) не нужен, а вот защитный (PE, Protect Earth) в целях безопасности должен быть подключен обязательно.

В самом общем случае схема будет выглядеть таким образом, как показано в начале статьи. Действительно, почему бы двигатель не включить как обычную лампочку, только выключатель будет “трехклавишный”?

2. Подключение двигателя через рубильник или выключатель

Но даже лампочку никто не включает просто так, сеть освещения и вообще любая нагрузка всегда включается только через защитные автоматы.

Схема подключения трехфазного двигателя в сеть через автоматический выключатель

Поэтому более подробно общий случай будет выглядеть так:

3. Подключение двигателя через автоматический выключатель. ПРАКТИЧЕСКАЯ СХЕМА

На схеме 3 показан защитный автомат, который защищает двигатель от перегрузки по току (“прямоугольный” изгиб питающих линий) и от короткого замыкания (“круглые” изгибы). Под защитным автоматом я подразумеваю обычный трехполюсный автомат с тепловой характеристикой нагрузки С или D.

Напомню, чтобы ориентировочно выбрать (оценить) необходимый тепловой ток уставки тепловой защиты, надо номинальную мощность трехфазного двигателя (указана на шильдике) умножить на 2.

Защитный автомат для включения электродвигателя. Ток 10А, через такой можно включать двигатель мощностью 4 кВт. Не больше и не меньше.

Схема 3 имеет право на жизнь (по бедности или незнанию местных электриков).

Она прекрасно работает, так же, как по многу лет . И в один “прекрасный” день сгорит скрутка. Или сгорит двигатель.

Если уж использовать такую схему, надо тщательно подобрать ток автомата, чтобы он был на 10-20% больше рабочего тока двигателя. И характеристику теплового расцепителя выбирать D, чтобы при тяжелом пуске автомат не срабатывал.

Например, движок 1,5 кВт. Прикидываем максимальный рабочий ток – 3А (реальный рабочий может быть меньше, надо измерять). Значит, трехполюсный автомат надо ставить на 3 или 4А, в зависимости от пускового тока.

Плюс этой схемы подключения двигателя – цена и простота исполнения и обслуживания. Например, там, где один двигатель, и его включают вручную на всю смену. Минусы такой схемы с включением через автомат –

А что там свежего в группе ВК СамЭлектрик.ру ?

Подписывайся, и читай статью дальше:

  1. Невозможность регулировать тепловой ток срабатывания автомата. Для того, чтобы надежно защитить двигатель, ток отключения защитного автомата должен быть на 10-20% больше номинального рабочего тока двигателя. Ток двигателя надо периодически измерять клещами и при необходимости подстраивать ток срабатывания тепловой защиты. А возможности подстройки у обычного автомата нет(.
  2. Невозможность дистанционного и автоматического включения/выключения двигателя.

Эти недостатки можно устранить, в схемах ниже будет показано как.

Ручной пускатель, или мотор-автомат – более совершенное устройство. На нём есть кнопки “Пуск” и “Стоп”, либо ручка “Вкл-Выкл”. Его плюс – он специально разработан для пуска и защиты двигателя. Пуск по-прежнему ручной, а вот ток срабатывания можно регулировать в некоторых пределах.

4. Подключение двигателя через ручной пускатель. ПРАКТИЧЕСКАЯ СХЕМА

Поскольку у двигателей обычно , то у автоматов защиты двигателей (мотор-автоматов), как правило, характеристика тепловой защиты типа D. Т.е. он выдерживает кратковременные (пусковые) перегрузки примерно в 10 раз больше от номинала.

Вот что у него на боковой стенке:

Автомат защиты двигателя – характеристики на боковой стенке

Ток уставки (тепловой) – от 17 до 23 А, устанавливается вручную. Ток отсечки (срабатывание при КЗ) – 297 А.

В принципе, ручной пускатель и мотор-автомат – это одно и то же устройство. Но пускателем, показанным на фото, можно коммутировать питание двигателя. А мотор-автомат постоянно подает питание (три фазы) на контактор, который, в свою очередь, коммутирует питание двигателя. Короче, разница – в схеме подключения.

Плюс схемы – можно регулировать уставку теплового тока. Минус – тот же, что и в предыдущей схеме, нет дистанционного включения.

Схема подключения двигателя через магнитный пускатель

Этой схеме подключения трехфазного двигателя надо уделить самое пристальное внимание. Она наиболее распространена во всем промышленном оборудовании, выпускавшемся примерно до 2000-х годов. А в новых китайских простеньких станках используется и по сей день.

Электрик, который её не знает – как хирург, не умеющий отличить артерию от вены; как юрист, не знающий 1-ю статью Конституции РФ; так танцор, не отличающий вальс от тектоника.

Три фазы на двигатель идут в этой схеме не через автомат, а через пускатель. А включение/выключение пускателя осуществляется кнопками “Пуск ” и “Стоп ” , которые могут быть вынесены на пульт управления через 3 провода любой длины.

5. Схема подключения двигателя через пускатель с кнопками пуск стоп

Здесь питание цепи управления поступает с фазы L1 (провод 1 ) через нормально замкнутую (НЗ) кнопку “Стоп” (провод 2 ).

Если теперь нажать на кнопку “Пуск”, то цепь питания катушки электромагнитного пускателя КМ замкнется (провод 3 ), его контакты замкнутся, и три фазы поступят на двигатель. Но в таких схемах кроме трёх “силовых” контактов у пускателя есть ещё один дополнительный контакт. Его называют “блокировочным” или “контактом самоподхвата”.

Когда электромагнитный пускатель включается нажатием кнопки SB1 “Пуск”, замыкается и контакт самоподхвата. А если он замкнулся, то даже если кнопка “Пуск” будет отжата, цепь питания катушки пускателя всё равно останется замкнутой. И двигатель продолжит работать, пока не будет нажата кнопка “Стоп”.

Поскольку тема с магнитными пускателями очень обширная, она вынесена в отдельную статью . Статья существенно расширена и дополнена. Там рассмотрено всё – подключение различных нагрузок, защита (тепловая и от кз), реверсивные схемы, управление от разных точек, и т.д. Нумерация схем сохранена. Рекомендую.

Подключение трехфазного двигателя через электронные устройства

Все способы пуска двигателя, описанные выше, называются Пуск прямой подачей напряжения. Часто, в мощных приводах, такой пуск является тяжелым испытанием для оборудования – горят ремни, ломаются подшипники и крепления, и т.д.

Поэтому, статья была бы неполной, если бы я не упомянул современные тенденции. Теперь всё чаще для подключения трехфазного двигателя вместо электромагнитных пускателей применяют электронные силовые устройства. Под этим я подразумеваю:

  1. Твердотельные реле (solid state relay) – в них силовыми элементами являются тиристоры (симисторы), которые управляются входным сигналом с кнопки либо с контроллера. Бывают как однофазные, так и трехфазные. .
  2. Мягкие (плавные) пускатели (soft starter, устройства плавного пуска) – усовершенствованные твердотелки. Можно устанавливать ток защиты, время разгона/замедления, включать реверс, и др. И на эту тему . Практическое применение устройств плавного пуска – .

    Старый специфический способ подключения двухскоростных двигателей описан в статье . Ключевые слова – Раритет, Ретро, СССР.

    На этом заканчиваю, спасибо за внимание, всего охватить не удалось, пишите вопросы в комментариях!

    Широко применяемые на производствах электродвигатели асинхронные соединяют «треугольником» или «звездой». Первый тип в основном используют для моторов продолжительного пуска и работы. Совместное подключение применяют для пуска высокомощных электродвигателей. Подключение «звезда» используют в начале пуска, переходя затем на «треугольник». Применяется также схема подключения трехфазного электродвигателя на 220 вольт.

    Разновидностей моторов много, но для всех, главной характеристикой является напряжение, подаваемое на механизмы, и мощность самих двигателей.

    При подключении к 220в на мотор действуют высокие пусковые токи, снижающие его срок эксплуатации. В промышленности редко используют соединение треугольником Мощные электродвигатели подключают «звездой».

    Для перехода со схемы подключения электродвигателя 380 на 220 есть несколько вариантов, каждый из которых отличается преимуществами и недостатками.

    Очень важно понимать, как подключается трехфазный электродвигатель к сети 220в. Чтобы трехфазный двигатель подключить к 220в, заметим, что у него есть шесть выводов, что соответствует трем обмоткам. При помощи тестера провода прозванивают, чтобы найти катушки. Их концы соединяем по два – получается соединение «треугольник» (и три конца).

    Для начала, два конца сетевого провода (220 в) подключаем к любым двум концам нашего «треугольника». Оставшийся конец (оставшаяся пара скрученных проводов катушки) подсоединяется к концу конденсатора, а оставшийся провод конденсатора также соединяется с одним из концов сетевого провода и катушек.

    От того, выберем мы один или другой, будет зависеть в какую сторону начнет вращаться двигатель. Проделав все указанные действия, запускаем двигатель, подав на него 220 в.

    Электромотор должен заработать. Если этого не произошло, или он не вышел на требуемую мощность, необходимо вернуться на первый этап, чтобы поменять местами провода, т.е. переподключить обмотки.

    Если при включении, мотор гудит, но не крутиться, требуется дополнительно установить (через кнопку) конденсатор. Он будет в момент пуска давать двигателю толчок, заставляя крутиться.

    Видео: Как подключить электродвигатель с 380 на 220

    Прозванивание, т.е. измерение сопротивления, проводится тестером. Если такой отсутствует, воспользоваться можно батарейкой и обычной лампой для фонарика: в цепь, последовательно с лампой, подсоединяют определяемые провода. Если концы одной обмотки найдены – лампа загорается.

    Труднее гораздо найти определить начало и концы обмоток. Без вольтметра со стрелкой не обойтись.

    Подсоединить потребуется к обмотке батарейку, а к другой — вольтметр.

    Разрывая контакт провода с батарейкой, наблюдают, отклоняется ли стрелка и в какую сторону. Те же действия проводят с оставшимися обмотками, изменяя, если нужно, полярность. Добиваются чтобы отклонялась стрелка в ту же сторону, что при первом измерении.

    Схема звезда-треугольник

    В отечественных моторах часто «звезда» собрана уже, а треугольник требуется реализовать, т.е. подключить три фазы, а из оставшихся шести концов обмотки собрать звезду. Ниже дан чертеж, чтобы разобраться было легче.

    Главным плюсом соединения трехфазной цепи звездой считают то, что мотор вырабатывает наибольшую мощность.

    Тем не менее, подобное соединение «любят» любители, но не часто применяют на производствах, поскольку схема подключения сложная.

    Чтобы она работала необходимо три пускателя:

    К первому из них –К1 с одной стороны подключается обмотка статора, с другой – ток. Оставшиеся концы статора соединяют с пускателями К2 и К3, а затем для получения «треугольника» к фазам подключаются и обмотка с К2.

    Подключив в фазу К3, незначительно укорачивают оставшиеся концы для получения схемы «звезда».

    Важно: недопустимо одновременно включать К3 и К2, чтобы не произошло короткое замыкание, которое может приводить к отключению автомата мотора электрического. Во избежание этого, применяют электроблокировку. Работает это так: при включении одного из пускателей, другой отключается, т.е. его контакты размыкаются.

    Как работает схема

    При включении К1 с помощью реле времени включается К3. Мотор трехфазный, включенный по схеме «звезда» работает с большей мощностью, чем обычно. После некоторого времени, размыкаются контакты реле К3, но запускается К2. Теперь схема работы мотора — «треугольник», а мощность его становится меньше.

    Когда требуется отключение питания, запускается К1. Схема повторяется при последующих циклах.

    Очень сложное соединение требует навыков и не рекомендуется к реализации новичками.

    Другие подключения электродвигателя

    Схем несколько:

    1. Более часто, чем вариант описанный, применяется схема с конденсатором, который поможет значительно уменьшить мощность. Одни из контактов рабочего конденсатора подключается к нулю, второй – к третьему выходу мотора электрического. В результате имеем агрегат малой мощности (1,5 Вт). При большой мощности двигателя, в схему потребуется внесение пускового конденсатора. При однофазном подключении он просто компенсирует третий выход.
    2. Асинхронный мотор несложно соединить звездой или треугольником при переходе с 380в на 220. У таких моторов обмоток три. Чтобы изменить напряжение, необходимо выходы, идущие к вершинам соединений, поменять местами.
    3. При подключении электромоторов, важно тщательно изучить паспорта, сертификаты и инструкции, потому что в импортных моделях встречается часто «треугольник», адаптированный под наши 220В. Такие моторы при игнорировании этого и включении «звездой, просто сгорают. Если мощность более 3 кВт, к бытовой сети мотор нельзя. Чревато это коротким замыканием и даже выход из строя автомата УЗО.

    Включение трехфазного двигателя в однофазную сеть

    Ротор, подключенного к трехфазной цепи трехфазного двигателя, вращается благодаря магнитному полю, создаваемом током, идущим в разное время по разным обмоткам. Но, при подключении такого двигателя к цепи однофазной, не возникает вращающий момент, который мог бы вращать ротор. Наиболее простым способом подключения двигателей трехфазных к однофазной цепи является подсоединение его третьего контакта через фазосдвигающий конденсатор.

    Включенные в однофазную сеть такой мотор имеет такую же частоту вращения, как при работе от трехфазной сети. Но о мощности нельзя сказать этого: ее потери значительны и зависят они от емкости конденсатора фазосдвигающего, условия работы мотора, выбранной схемы подключения. Потери на ориентировочно достигают 30-50%.

    Цепи могут быть двух — , трех-, шестифазными, но наиболее применяемыми являются трехфазные. Под трехфазной цепью понимают совокупность цепей электрических с одинаковой частотой синусоидальной ЭДС, которые отличаются по фазе, но создаются общим источником энергии.

    Если нагрузка в фазах одинакова, цепь является симметричной. У трехфазных несимметричных цепей – она разная. Полная мощность складывается из активной мощности трехфазной цепи и реактивной.

    Хотя большинство двигателей справляется с работой от однофазной сети, но хорошо работать могут не все. Лучше других в этом смысле двигатели асинхронные, которые рассчитаны на напряжение 380/220 В (первое — для звезды, второе – треугольника).

    Это рабочее напряжение всегда указывают в паспорте и на прикрепленной к двигателю табличке. Также там указана схема подключения и варианты ее изменения.

    Если присутствует «А», это свидетельствует о том, что использоваться может как схема «треугольник», так и «звезда». «Б» сообщает о том, что подключены обмотки «звездой» и не могут быть соединены по – другому.

    Получится в результате должно: при разрыве контактов обмотки с батареей, электрический потенциал той же полярности (т.е. отклонение стрелки происходит в ту же сторону) должен появляться на двух оставшихся обмотках. Выводы начала (А1, В1, С1) и конца (А2, В2, С2) помечают и подсоединяют по схеме.

    Использование магнитного пускателя

    Применение схемы подключения электродвигателя 380 через пускатель хорошо тем, что пуск производить можно дистанционно. Преимущество пускателя перед рубильником (или другим устройством) в том, что пускатель можно разместить в шкафу, а в рабочую зону вынести элементы управления, напряжение и токи при этом минимальны, следовательно, провода подойдут меньшего сечения.

    Помимо этого, подключение с использованием пускателя обеспечивает безопасность в случае, если «пропадает» напряжение, поскольку при этом происходит размыкание силовых контактов, когда же напряжение вновь появится, пускатель без нажатия пусковой кнопки его не подаст на оборудование.

    Схема подключения пускателя асинхронного двигателя электрического 380в:

    На контактах 1,2,3 и пусковой кнопке 1 (разомкнутой) напряжение присутствует в начальный момент. Затем оно подается через замкнутые контакты этой кнопки (при нажатии на «Пуск») на контакты пускателя К2 катушки, замыкая ее. Катушкой создается магнитное поле, сердечник притягивается, контакты пускателя замыкаются, приводя в движение мотор.

    Одновременно с этим происходит замыкание контакта NO, с которого подается фаза на катушку через кнопку «Стоп». Получается, что, когда отпускают кнопку «Пуск», цепь катушки остается замкнутой, как и силовые контакты.

    Нажав «Стоп», цепь разрывают, возвращая размыкая силовые контакты. С питающих двигатель проводников и NO исчезает напряжение.

    Видео: Подключение асинхронного двигателя. Определение типа двигателя.

Как подключить трехфазный двигатель к однофазной сети

Как подключить трехфазный двигатель к однофазной сети 220 Вольт

Благодаря простой конструкции и надежности, асинхронные двигатели широко применяются в промышленности, там, где 380 Вольт. Попадая же в руки к домашнему мастеру, трехфазные двигатели требуют переделки и подключения к однофазной сети с напряжением в 220 Вольт.

Асинхронные двигатели широко применяются для изготовления станков, дровоколов, при обработке древесины, и даже для измельчения зерна. Любой трехфазный двигатель можно заставить работать только от одной фазы. Как это сделать правильно, читайте дальше, в этой статье сайта «Электрик САМ» elektriksam.ru.

Как устроен трехфазный асинхронный двигатель

В большинстве случаев асинхронные двигатели используют конденсаторный запуск, однако бывают и другие способы пуска. В трехфазных электродвигателях в отличие от однофазных имеется три обмотки статора, которые сдвинуты под определённым углом. Угол намотки обмоток статора трехфазного двигателя — 120 градусов, что позволяет создавать вокруг ротора мощное магнитное поле.

Конструкция статора трехфазного электродвигателя состоит из таких элементов:

  • Корпуса;
  • Магнитопровода и сердечника с обмотками;
  • Клеммной коробки.

Стандартное соединение обмоток трехфазного электродвигателя выполнено по схеме «звезда». Также существует менее распространённым способ соединения обмоток трехфазного двигателя, а именно — «треугольник». В любом случае, каждая обмотка статора имеет определённое направление, а также, начало и конец.

Для нумерации обмоток статора электродвигателя используются арабские цифры: 1, 2, 3. Концы обмоток обозначаются буквой и цифрой: К1, К2, К3, а их начало — Н1, Н2, Н3. В некоторых типах электродвигателей маркировка обмоток статора может иметь другое обозначение, например: С1, С2, С3 и С4, С5, С6.

Подключение трехфазного двигателя к 220 вольт через конденсатор

Чтобы эффективно использовать трехфазный электродвигатель в однофазной сети, обмотки статора нужно правильно подсоединить. Если подать напряжение всего лишь на одну обмотку статора из трех, то электродвигатель будет работать не на полную мощность, а его эффективность снизиться на треть.

Существует достаточно большое количество схем подключения трехфазного двигателя к сети 220 Вольт. Наиболее эффективная схема подсоединения трехфазного двигателя (поскольку его мощность упадёт менее всего), является способ с использованием фазосдвигающего конденсатора. Данный конденсатор подсоединяется к третьему контакту статора.

При подключении трехфазного двигателя через конденсатор практически не теряется частота вращения ротора. Этого нельзя сказать о мощности трехфазного двигателя, которая в любом случае падает при его подключении в однофазную сеть, и с этим приходится мириться.

Как подключить трехфазный двигатель к однофазной сети

Чтобы подключить трехфазный электродвигатель к сети 220 Вольт, сначала понадобится определиться с выводами статора. Если обмотки двигателя уже подсоединены в распределительной коробке по схеме «треугольник», то всё что останется сделать, так это подключить пусковой и рабочий конденсатор с токопроводящими проводами к клеммам двигателя согласно схеме подключения.

Если трехфазный двигатель подсоединён по схеме «звезда» и его можно переподключить на схему «треугольник», то при подсоединении к однофазной сети нужно сначала сделать именно так, используя для этих целей перемычки. Наиболее сложно с подключением трехфазного двигателя в том случае, когда провода статора не имеют никакой маркировки.

В таком случае приходится делать следующее:

  • Искать модель двигателя в интернете и схему его подключения;
  • Найти самостоятельным путём начало и конец обмоток статора;
  • Определять пары проводов, которые относятся к одной обмотки из трех.

В подключении трехфазного двигателя к однофазной сети 220 вольт нет ничего сложного. Тем не менее, если вы в чем-то неуверенны, то лучшим вариантом будет более подробно изучить инструкцию или же обратиться за помощью к хорошему электрику.

Как подключить трехфазный двигатель в однофазную сеть?

Недавно делал проект, в котором целесообразнее было бы применить сегодняшнюю тему блога. Но, тот момент проще было сделать так, как потребовал эксперт. Рассмотрим, в каких случаях может потребоваться подключение трехфазного двигателя в однофазную сеть.


В основном вопросы с подключением трехфазных двигателей в однофазную сеть возникают у бытовых пользователей. У кого-то есть станок, наждак или еще что-то, которые нужно подключить в розетку. Если бы у всех была трехфазная сеть, подобных вопросов не возникало.

Не так давно делал мини-проект мини-котельной =) Согласно нормативным документам, в мини-котельной на газу должна быть предусмотрена (в некоторых случаях) аварийная вентиляция. В этой котельной поставили взрывозащищенный трехфазный вентилятор мощностью 0,12кВт. В соответствии с ТНПА данный вентилятор нужно было подключить по первой категории электроснабжения. В здании ее, разумеется, на оказалось. По требованию эксперта для этого вентилятора я поставил источник бесперебойного питания.

Все бы ничего, да дело в том, что трехфазных ИБП малой мощности не выпускают. Самый маленький промышленный ИБП я нашел на 5кВА, хотя в основном распространены на 10кВА. Не факт, что его смогут купить в РБ.

Для меня 5 мин работы поставить тот или иной ИБП, а вот для заказчика такое удовольствие обойдется не дешево для бесперебойного питания вентилятора мощностью 0,12кВт.

Я просил, чтобы заменили трехфазный вентилятор на однофазный, но мне сказали, что во взрывозащищенном исполнении их не существует, хотя очень сильно сомневаюсь…

А теперь рассмотрим схему экономии средств заказчика =)

Суть заключается в подключении трехфазного двигателя в однофазную сеть с выбором однофазного ИБП соответствующей мощности и емкостью батареи.

Считается наиболее эффективный способ пуска трехфазного двигателя в однофазной сети – подключение третьей обмотки двигателя через фазосдвигающий конденсатор.

Для нормальной работы двигателя с конденсаторным пуском, емкость конденсатора должна меняться в зависимости от числа оборотов. На практике данное условие трудно выполнимо, поэтому используют схему с  двухступенчатым переключением. Запуск трехфазного двигателя производится через пусковой конденсатор. После его разгона пусковой конденсатор отключается, и в работу включается рабочий конденсатор.

Ниже представлены две схемы управления трехфазным двигателем в однофазной сети: а – по схеме «звезда», б – по схеме «треугольник».

Схемы управления трехфазным двигателем в однофазной сети

Теперь нужно посчитать и выбрать все компоненты схемы.

Рабочая емкость конденсатора (в микрофорадах) определяется по формулам:

Ср(звезда)=2800*I/U, Ср(треугольник)=4800*I/U

I – потребляемый ток двигателем;

U – напряжение сети.

Пусковой конденсатор Сп нужно подобрать так, чтобы он был в 1,5-2 раза больше рабочего Ср. Рабочее напряжение конденсатора должно быть в 1,5 раза больше напряжения сети. Конденсаторы можно взять типа МБГО, МБГП и др.

Предложенные схемы позволяют делать реверс двигателя при помощи переключателя В1. В2 – пусковая кнопка.

Примерно так можно собрать схему включения трехфазного двигателя в однофазную сеть.

Схема соединения

Стоит иметь ввиду, что при таком включении мощность, развиваемая двигателем, на 30-50% уменьшается по сравнению с номинальной мощностью. При работе электродвигателя на холостом ходу по обмотке, подключенной через конденсатор, протекает ток на 20-40% больше номинального. Поэтому при работе двигателя с недогрузкой нужно уменьшить рабочую емкость.

Советую почитать:

Подключение 3-х фазного двигателя в однофазную сеть. Трехфазный двигатель в однофазной сети без конденсаторов. Магнитный пускатель

В работе электриков распространенная задача — подключить двигатель, рассчитанный на три фазы, в однофазную сеть.Выполнить эту, на первый взгляд, непростую задачу без помощи дополнительных устройств сложно. Устройства, позволяющие двигателю с тремя фазами работать в сетях 220 В, являются различными фазосдвигающими элементами. Из их коллекторов чаще всего для этих целей выбирают емкость. Правильно подобрать конденсатор для трехфазного двигателя по схемам и простым формулам.

Асинхронные электродвигатели с тремя обмотками на статоре преобладают в различных отраслях сельского хозяйства.Применяются для привода вентиляционных устройств, уборки навоза, приготовления пищи, водоснабжения. Популярность таких моторов обусловлена ​​рядом преимуществ:

Подключить трехфазный двигатель к 220В можно попробовать, зная отличия в схемах подключения обмоток. Количество фаз, на которые рассчитан двигатель, можно определить по количеству клемм в его клеммной коробке: трехфазных в нем будет 6 выводов, а в однофазных — двух или четырех.

Обмотки двигателя с тремя фазами соединяются по заданной схеме, называемой «звезда» или «треугольник».У каждого из них есть свои достоинства и недостатки. При подключении в звезду обмотки подключаются. В клеммной коробке эта составная схема будет отображаться с помощью двух перемычек между зажимами с обозначениями «C6», «C4», «C5». Если обмотка двигателя соединена с треугольником, то начало соединяется с каждым концом. В клеммной коробке будут использоваться три перемычки, которые соединят зажимы «C1» и «C6», «C2» и «C4», «C3» и «C5».

Потребность в элементах фазовращателя

При подключении трехфазного электродвигателя к сети 220 В пускового момента не возникает.Следовательно, возникает необходимость подключения пусковых устройств. Они создают фазовый сдвиг, позволяющий двигателю долго работать и работать под нагрузкой.

В качестве фазовращающих элементов можно использовать:

  • сопротивление;
  • индуктивность;
  • Вместимость
  • .

Из-за подключения трехфазного двигателя через конденсатор вала он начинает вращаться при подаче напряжения. Присоединение контейнера гарантирует не только запуск мотора, но и долгое удержание нагрузки.

Подключить трехфазный электродвигатель к сети 220 В. Можно только после изучения схемы подключения обмотки и назначения устройства, которое она будет активировать.

Присоединение конденсатора к обмоткам двигателя необходимо производить, соблюдая некоторые правила. Подключение трехфазного двигателя к однофазной сети выполняется по одной из двух стандартных схем: «Звезда» или «Треугольник».

В двигателях средней и большой мощности необходимо два бака — рабочий и пусковой.Рабочий конденсатор КП необходим для возникновения кругового поля при номинальном режиме работы. Пусковой конденсатор СП нужен для создания кругового поля при пуске с номинальной нагрузкой на валу.

Порядок подключения в «Звезде»:

Порядок подключения по схеме треугольник:

  • Подключите выводы обмоток двигателя в клеммной коробке, установив три перемычки между зажимами C1 и C6, C2 и C4, C6 и C5.
  • Присоедините конденсаторы к началу и концу одной и той же фазы (C1, C4 или C2, C5 или C3, C6).
  • Подвести ноль к клемме перемычки, свободной от емкости, а фазу — к любому другому зажиму.

Чтобы изменить направление вращения вала, вам потребуется либо напряжение, либо конденсаторы для подключения к другой фазе двигателя.

При выборе конденсатора необходимо предотвратить ситуацию, при которой фазный ток превышает номинальное значение.Поэтому подходить к расчетам нужно очень внимательно — неверные результаты могут привести не только к поломке конденсатора, но и обмотки обмоток двигателя.

На практике для запуска двигателей малой мощности мы используем упрощенный выбор, исходя из соображений, что на каждые 100 Вт мощности двигателя требуется 7 мкФ бака при подключении к треугольнику. Когда обмотка соединена в звезду, это значение увеличивается вдвое. Если однофазная сеть присоединена к однофазной сети мощностью 1 кВт, то конденсатор заряжается зарядом 70-72 мкФ при соединении обмоток треугольником, и 36 мкФ в случае соединения звездой.

Расчет необходимого значения трудоспособности производится по формулам.

При соединении звездой:

Если обмотки образуют треугольник:

I — Номинальный ток двигателя. Если по каким-то причинам его значение неизвестно, необходимо использовать формулу для расчета:

В данном случае подключено U = 220 В звездой, U = 380 В — треугольник.

P — мощность, измеренная в ваттах.

При запуске двигателя, при значительной нагрузке на вал, параллельно с рабочим объемом необходимо разрешить запуск.

Его значение рассчитывается по формуле:

СП = (2,5 ÷ 3,0) ср

Пусковая установка должна превышать значение рабочего в 2,5 — 3 раза.

Очень важен правильный выбор значений напряжения для конденсатора. Этот параметр, как и емкость, влияет на цену и габариты устройства. Если сетевое напряжение больше номинала конденсатора, пусковое устройство выйдет из строя.

Но и пользоваться аппаратурой с завышенным напряжением тоже не стоит.Ведь это приведет к неэффективному увеличению габаритов конденсаторной батареи.

Оптимальным считается значение напряжения конденсатора в 1,15 раза превышающее значение напряжения сети: UK = 1,15 U с.

Очень часто при включении двигателя с тремя обмотками в однофазную сеть используются конденсаторы КГБ-МН или БГТ (термостойкие). Они сделаны из бумаги. Металлический корпус полностью герметичен. Имеет прямоугольный вид. Необходимо учитывать, что допустимые значения напряжения и емкости, указанные на приборе, указаны для постоянного тока.Поэтому при работе на переменном токе необходимо в 2 раза снизить показатели напряжения конденсатора.

Выбрать схему подключения

Обмотки одного двигателя могут быть соединены звездой или треугольником. Вам нужно выбрать схему подключения по нагрузке. Если трехфазный двигатель в однофазной сети будет приводить в движение какой-либо маломощный механизм, то можно выбрать схему подключения «звезда». При этом рабочий ток будет небольшим, но значительно уменьшатся габариты и цена конденсаторной батареи.

В случае большой нагрузки при работе или в момент запуска обмотка двигателя должна быть включена по схеме «Треугольник». Это обеспечит достаточный ток для длительной работы. К недостаткам можно отнести значительную цену и габариты конденсаторов.

Если после подключения конденсаторов и подачи напряжения двигатель гудит, но не запускается, причины могут быть разными:

Громкий неприятный шум при включении двигателя и вращении вала свидетельствует о превышении емкости конденсатора.

Неплохо будет работать трехфазный двигатель в однофазной сети. Недостатком будет только развивающая мощность — не 100%, а 60-80% от номинала. Если мощность используется только для запуска, полезная мощность двигателя не будет превышать 60% от его номинальной мощности.


В различных любительских электромеханических машинах и устройствах в большинстве случаев используются трехфазные асинхронные двигатели с короткозамкнутым ротором. Увы, трехфазное использование в быту — явление очень редкое, ведь для своего питания от обычной электросети любители используют фазосдвигающий конденсатор, что позволяет в полной мере воплотить силовые и пусковые свойства мотора. .

Асинхронные трехфазные электродвигатели, а именно их, в результате широкого распространения, часто приходится применять, состоят из неподвижного статора и подвижного ротора. В пазах статора с угловым расстоянием 120 электрических градусов в распределительной коробке убираются проводники обмоток, начало и концы которых уложены (С1, С2, С3, С4, С5 и С6).

Подключение «Треугольник» (на 220 вольт)

Коннект «Звезда» (на 380 вольт)

Распределительная коробка трехфазного двигателя с положением перемычки для подключения звездообразной схемы

Когда трехфазный двигатель включается в трехфазную сеть по его обмоткам в разное время, в свою очередь, начинает течь ток, создавая вращающееся магнитное поле, которое приводит к ротору, заставляя его вращать его. .Когда двигатель подключен к однофазной сети, крутящий момент, который может перемещать ротор, не создается.

Если можно подключить двигатель сбоку к трехфазной сети, то мощность не тяжелая. В разрыв одной из фаз ставим амперметр. Бег. Показания амперметра Умножьте на фазное напряжение.

В хорошей сети это 380. Получаем мощность P = I * U. Взято% 10-12 по КПД. Получите действительно верный результат.

Для измерения оборотов есть меховые приборы.Хотя по слухам тоже можно определить.

Среди различных способов включения трехфазных электродвигателей в однофазную сеть наиболее распространенным является включение третьего контакта через фазосдвигающий конденсатор.

Подключение трехфазного двигателя к однофазной сети

Скорость вращения трехфазного двигателя, работающего от однофазной сети, остается почти такой же, как и при его подключении к трехфазной сети.Увы, заявить мощность, потери которой достигают значительных значений, невозможно. Четкие значения потери силы зависят от схемы включения, условий работы двигателя, величины емкости фазирующего конденсатора. Примерно трехфазный двигатель в однофазной сети теряет до 30-50% собственной мощности.

Не многие трехфазные электродвигатели готовы хорошо работать в однофазных сетях, но большинство из них справились с этой задачей вполне удовлетворительно — если не считать потерь мощности.В основном для работы в однофазных сетях используются асинхронные двигатели с короткозамкнутым ротором (А, АО2, АОЛ, АПН и др.).

Асинхронные трехфазные двигатели рассчитаны на 2 номинальных напряжения сети — 220/127, 380/220 и т. Д., Электродвигатели с рабочим напряжением обмоток 380/220 В (380 В — для «Звезд», 220 — для «треугольник»). Наибольшее напряжение у «звезды», наименьшее — у «треугольника». В паспорте и на знаке двигателей, не считая других характеристик, указывают рабочее напряжение обмоток, схему их подключения и вероятность его изменения.

Таблетки трехфазных электродвигателей

Обозначение на табличке А говорит о том, что обмотки двигателя могут быть соединены как «треугольником» (на 220В), так и «звездой» (на 380В). При подключении трехфазного двигателя в одноименную сеть лучше использовать схему «треугольник», так как в этом случае двигатель имеет меньшую мощность, чем при включении «звезды».

Название В информирует, что обмотки двигателя соединены по схеме «звезда», и вероятность их переключения на «треугольник» не учитывается (выходов не более 3-х) в разветвительной коробке.В этом случае остается либо посоревноваться с большой потерей мощности, подключив двигатель по схеме «Звезда», либо, заложив в обмотку электродвигателя, попытаться вывести недостающие концы, чтобы соединить обмотки по схеме схема треугольника.

В случае, если рабочее напряжение мотора 220 / 127В, то подключать к однофазной сети к двигателю 220В можно только по схеме «Звезда». При включении 220В по схеме «Треугольник» двигатель горит.

Пусков и концов обмоток (разные варианты)

Вероятно, основная сложность включения трехфазного двигателя в однофазную сеть состоит в том, чтобы понять электрические трубопроводы, выходящие на распределительную коробку или, если последняя является пенистой, просто производными от двигателя, направленного наружу.

Самый распространенный вариант, когда обмотка уже подключена по «треугольнику» в имеющемся двигателе на 380 / 220В. В этом случае необходимо просто подключить токовые электрические трубки и рабочий и пусковой конденсаторы к клеммам двигателя согласно схеме подключения.

Если заводной двигатель подключен «звездой», и есть шанс поменять его на «треугольник», то такой случай тоже можно отнести к трудоемким. Необходимо просто поменять схему поворота обмоток на «треугольник», используя для этого перемычку.

Определение начала и конца обмоток. Ситуация усложняется, если в распределительной коробке выводится 6 проводов без указания их принадлежности к конкретной обмотке и обозначения начала и окончания.В данном случае дело сводится к решению 2-х задач (хотя надо попробовать поискать какую-то документацию на электродвигатель в сети. Можно описать, к чему относятся электрические трубы разных цветов :):

определение пары проводов, относящихся к одной обмотке;

нахождение начала и конца обмоток.

1-я задача решается «прозвищем» всех проводов тестером (измерение сопротивления). Когда устройства нет, можно решить это лампочкой от фонарика и батареек, подключив имеющиеся электрические трубы в цепь поочередно с лампочкой.Если последний загорается, это означает, что два проверенных конца принадлежат одной обмотке. Этот метод определяет 3 пары проводов (A, B и C на рисунке ниже) с соотношением 3 обмоток.

Определение пары проводов, относящихся к одной обмотке

Вторая задача, нужно определить начала и окончания обмоток, она будет несколько сложнее и потребуется наличие батарейки и стрелочного вольтметра. Цифровой для этой задачи не подходит по инерции.Порядок определения концов и начала обмоток приведен на схемах 1И 2.

Нахождение начала и конца обмоток

К концам одной обмотки (например, а) подключается аккумулятор, к концам других (например, б) — стрелочный вольтметр. Теперь при обрыве контакта проводов и с аккумулятором стрелка вольтметра поплыла в какую-то сторону. Затем нужно подключить вольтметр к обмотке С и произвести такую ​​же операцию с разрывом контактов аккумулятора.При необходимости, изменяя полярность обмотки с (меняя концы С1 и С2), необходимо следить за тем, чтобы стрелка стрелы поворачивалась в том же направлении, что и в случае обмотки В. Таким же образом, обмотка А — с аккумулятором, подключенным к обмотке С или В.

В конечном итоге из всех манипуляций должно получиться следующее: при размыкании контактов АКБ хотя бы с некоторыми обмотками на 2-х других должен появиться электрический потенциал той же полярности (стрелка прибора качается в одну сторону).Выводы 1-й балки как начало (A1, B1, C1) осталось пометить (A1, B1, C1), а выводы другой — как концы (A2, B2, C2) и соединить их по Желаемая схема — «треугольник» либо «звезда» (при напряжении двигателя 220 / 127В).

Удаление отсутствия заканчивается. Наверное, самый сложный вариант — когда у двигателя сращивание обмоток по схеме «Звезда», и нет возможности переключить его на «треугольник» (в распределительной коробке выводится не более 3-х трубок — начало обмоток С1, С2, С3).

В этом случае для включения двигателя по схеме «Треугольник» необходимо вывести недостающие концы обмоток С4, С5, С6.

Цепи включения трехфазного двигателя в однофазной сети

Включить по схеме «Треугольник». В случае домашней сети, исходя из убеждения в получении большей выходной мощности, более целесообразным считается однофазное включение трехфазных двигателей по схеме «Треугольник». При этом их мощность имеет возможность достигать 70% от номинальной.2 контакта в разветвительной коробке подключены непосредственно к электропроводам однофазной сети (220В), а 3-тоесть — через рабочий конденсатор СР хотя бы к некоторым из 2-х контактов или электрических проводов сети.

Обеспечить запуск. Работа трехфазного двигателя без нагрузки может осуществляться от рабочего конденсатора (подробнее ниже), но если электронное письмо имеет некоторую нагрузку, оно либо не запускается, либо становится очень медленным. Тогда для быстрого пуска понадобится вспомогательный рабочий конденсатор СП (расчет емкостной емкости описан ниже).Пусковые конденсаторы работают только во время пуска двигателя (2-3 секунды, оборот не выполняется примерно на 70% от номинала), затем пусковой конденсатор необходимо выключить и разрядить.

Трехфазный двигатель удобно запускать специальным выключателем, одна пара которого замыкается при нажатии кнопки. При отпускании одни контакты блокируются, остальные остаются включенными — кнопка «Стоп» не нажимается.

Выключатель для пуска электродвигателей

Реверс.Направление вращения двигателя зависит от того, к какому контакту подключена третья фазная обмотка («фаза»).

Направление вращения можно контролировать, подключив последний через конденсатор к двухпозиционному переключателю, соединенному двумя контактами с первой и второй обмотками. В зависимости от положения переключателя двигатель повернется в ту или иную сторону.

На рисунке ниже представлена ​​схема с пусковым и рабочим конденсатором и ключом реверса, позволяющим комфортно управлять трехфазным двигателем.

Подключение трехфазного двигателя к однофазной сети, с реверсом и кнопкой подключения пускового конденсатора

Подключение по схеме «Звезда». Такая схема подключения трехфазного двигателя к сети напряжением 220В применяется для электродвигателей, у которых обмотки рассчитаны на напряжение 220 / 127В.


Конденсаторы. Требуемая емкость рабочих конденсаторов для работы трехфазного двигателя в однофазной сети зависит от схемы включения на обмотках двигателя и других характеристик.Для подключения «звезды» емкость рассчитывается по формуле:

CP = 2800 I / U

Для треугольного соединения:

CP = 4800 I / U

Где CP — емкость рабочего конденсатора в МКФ, I — ток в А, U — напряжение сети в В. Ток рассчитывается по формуле:

I = p / (1,73 un cosf)

где P — мощность электрического двигатель кВт; n — КПД двигателя; COSF — коэффициент мощности, 1,73 — коэффициент, определяющий соответствие между линейным и фазным токами.КПД и коэффициент мощности указаны в паспорте и на табличке двигателя. Традиционно их значение находится в диапазоне 0,8-0,9.

На практике значение емкости рабочего конденсатора при подключении «треугольника» можно рассматривать по упрощенной формуле С = 70 PN, где PN — номинальная мощность электродвигателя в кВт. Согласно этой формуле на каждые 100 Вт необходимо порядка 7 мкФ рабочей емкости конденсатора.

Правильность подбора емкости конденсатора проверяется по результатам работы двигателя.В том случае, если его значение больше чем, это будет необходимо в этих условиях эксплуатации, двигатель будет иметь перевес. Если емкость требуется меньше, выходная мощность электродвигателя станет очень низкой. Есть повод искать конденсатор для трехфазного двигателя, начиная с небольшой мощности и постепенно увеличивая его значение до рационального. Если это возможно, гораздо лучше выбрать емкость для измерения тока в электрических трубопроводах, подключенных к сети и к рабочему конденсатору, например, с помощью токоизмерительных клещей.Текущее значение должно быть ближе. Измерения следует проводить в том режиме, в котором будет работать двигатель.

При определении пусковой мощности в первую очередь исходят из требований создания желаемой стартовой точки. Не путайте стартовую емкость с емкостью контейнера. На приведенных схемах пусковая емкость равна сумме емкостей рабочего (СР) и пускового (СП) конденсаторов.

В том случае, если в рабочих условиях пуск электродвигателя происходит без нагрузки, пусковая мощность традиционно принимается такой же рабочей, то есть пусковой конденсатор не нужен.В этом случае схема подключения упрощается и сокращается. Для такого упрощения и главным снижения схемы, можно организовать вероятность того, чтобы выключить нагрузку, например, что позволяет быстро и удобно менять положение двигателя уронить ременную передачу, или решений снятие прижимного ролика, например, как у ременной муфты мотоблока.

Запуск под нагрузкой требует наличия достаточной мощности (SP) подключенного временного запуска двигателя.Увеличение отключенного контейнера приводит к увеличению начальной точки, и при определенном конкретном значении его значение достигает своего наибольшего значения. Дальнейшее увеличение емкости приводит к обратному эффекту: начальная точка начинает уменьшаться.

Зачистка из условия запуска двигателя при нагрузке, наиболее близкой к номинальной, пусковая емкость обязана быть в 2-3 раза больше рабочей, то есть если емкость рабочего конденсатора 80 мкФ, то емкость пускового конденсатора требуется 80-160 мкФ, что обеспечит пусковую емкость (сумма емкостей рабочего и пускового конденсаторов) 160-240 мкФ.Хотя, если двигатель при запуске имеет небольшую нагрузку, емкость пускового конденсатора может быть для него меньше или вообще необходима.

Пусковые конденсаторы срабатывают кратковременно (всего несколько секунд на весь период подключения). Это дает возможность использовать при запуске двигателя более дешевые ключевые электролитические конденсаторы, специально созданные для этой цели.

Обратите внимание, что двигатель, подключенный к однофазной сети через конденсатор, работающий при отсутствии нагрузки, на обмотке, питаемой через конденсатор, имеет на 20-30% больше номинала.Следовательно, в случае использования двигателя в режиме короткого замыкания емкость рабочего конденсатора должна быть минимизирована. Но тогда, если двигатель запустился без пускового конденсатора, последний может потребоваться.

Намного лучше применить не 1 большой конденсатор, а несколько гораздо меньшего размера, частично из-за возможности выбора хорошей мощности, подключения добавленных или отключения неадекватных, последние используются как пусковая. Требуемое количество микрофарад набирается параллельно соединению нескольких конденсаторов, отталкиваясь от того, что общая емкость при параллельном включении рассчитывается по формуле:

Определение начала и конца фазных обмоток асинхронного электродвигателя









Асинхронные трехфазные двигатели распространены в производстве и быту.Особенность в том, что их можно подключать как к трехфазной, так и к однофазной сети. В случае с однофазными моторами это невозможно: они работают только при питании от 220В. А какие есть способы подключения двигателя 380 вольт? Рассмотрим, как соединить обмотки статора в зависимости от количества фаз в электросети, с помощью иллюстраций и обучающего видео.

Базовых схем две (видео и схемы в следующем разделе статьи):

Преимущество подключения треугольник — работа на максимальной мощности.Но при включении электродвигателя в обмотках возникают большие пусковые токи, опасные для техники. Когда звезда подключена, двигатель запускается плавно, так как токи низкие. Но добиться максимальной мощности не получается.

В связи с вышесказанным двигатели при питании от 380 вольт подключаются только звездой. В противном случае высокое напряжение при включении треугольника способно развить такие пусковые установки, что блок выйдет из строя. Но при высокой нагрузке выходной мощности может не хватить.Тогда прибегайте к хитростям: запустите звезду звезды, чтобы она благополучно включилась, а затем переключитесь с этой схемы на треугольник для набора большой мощности.

Треугольник и звезда

Прежде чем рассматривать эти схемы, договариваемся:

  • Статор имеет 3 обмотки, каждая из которых по 1 в начале и 1 в конце. Они выводятся в виде контактов. Поэтому для каждой обмотки их 2. Обозначим: обмотку — о, конец — к, начало — N. На схеме ниже 6 контактов пронумерованы от 1 до 6.Для первой обмотки начало — 1, конец — 4. Согласно принятым обозначениям это NO1 и K4. Для второй обмотки — NO2 и KO5, для третьей — but3 и CO6.
  • В электросети 380 вольт 3 фазы: A, B и C. Их условное обозначение оставим прежним.

При соединении обмоток электродвигателя звездой сначала подключают все пуски: бут1, бут2 и н3. Тогда K4, KO5 и CO6 соответственно получают питание от A, B и C.

При соединении асинхронного электродвигателя треугольником каждое начало соединяется с концом обмотки.Выбирайте порядковый номер обмоток произвольно. Может получиться: no1-ko5-n2-ko6-n3-ko2.

Соединения звезды и треугольника выглядят так:

Бывают в жизни ситуации, когда нужно включить какое-то промышленное оборудование в обычную домашнюю сеть электроснабжения. Сразу возникает проблема с количеством проводов. В машинах, предназначенных для эксплуатации на предприятиях, выводов, как правило, три, а иногда и четыре. Что с ними делать, где их подключать? Те, кто пробовал опробовать разные варианты, убедились, что моторы просто не хотят крутиться.Возможно ли вообще однофазное подключение трехфазного двигателя? Да, можно добиться вращения. К сожалению, в этом случае падение мощности неизбежно почти вдвое, но в некоторых ситуациях это единственный выход.

Напряжение и их соотношение

Чтобы понять, как подключить трехфазный двигатель к обычной розетке, следует разобраться, как соотносятся напряжения в промышленной сети. Напряжения хорошо известны — 220 и 380 вольт. Раньше еще было 127 Б, но в пятидесятые по этому параметру больше отказались.Откуда взялись эти «магические числа»? Почему не 100, 200 или 300? Кажется, что круглые числа считаются проще.

Большая часть промышленного электрооборудования рассчитана на подключение к трехфазной сети, напряжение каждой фазы относительно нулевого провода составляет 220 вольт, как и в домашней розетке. Откуда берется 380 В? Это очень просто, достаточно рассмотреть равносторонний треугольник с углом 60, 30 и 30 градусов, который представляет собой векторную диаграмму напряжений. Длина самой длинной стороны будет равна длине бедра, умноженной на 30 ° COS.После нескоростных подсчетов можно убедиться, что 220 х Cos 30 ° = 380.

Устройство трехфазного двигателя

Не все типы промышленных двигателей могут работать от одной фазы. Наиболее распространены из них «рабочие лошадки», составляющие большую часть электромеханических на любом предприятии — асинхронные машины мощностью 1 — 1,5 кВА. Как такой трехфазный двигатель работает в трехфазной сети, для которой он предназначен?

Изобретателем этого революционного устройства был русский ученый Михаил Осипович Доливо-Добровольский.Эта выдающаяся электротехника была сторонником теории трехфазного электроснабжения, которая в наше время стала доминирующей. Трехфазный работает по принципу индукции токов от обмоток статора по замкнутым проводникам ротора. В результате их протекания на короткозамкнутых обмотках в каждой из них возникает магнитное поле, которое стыкуется, взаимодействуя с силовыми линиями статора. Таким образом получается крутящий момент, приводящий к круговому движению оси двигателя.

Обмотки расположены под углом 120 °, таким образом, вращающееся поле, создаваемое каждой фазой, последовательно толкает каждую намагниченную сторону ротора.

Треугольник или звезда?

Трехфазный двигатель в трехфазную сеть может быть включен двумя способами — с участием нулевого провода или без него. Первый способ называется «Звезда», в этом случае каждая из обмоток находится под (между фазой и нулем), равным 220 В. Схема подключения трехфазного двигателя «Треугольник» предполагает последовательное соединение трех обмоток и подавать на узлы коммутации линейные (380 В) напряжения. Во втором случае двигатель выдаст большую примерно в полтора раза мощность.

Как включить мотор в обратном направлении?

Управление трехфазным двигателем может предполагать необходимость изменения направления вращения на противоположное, то есть на обратное. Для этого вам просто нужно поменять местами два провода из трех.

Для удобства изменения схемы в клеммной коробке двигателя предусмотрены перемычки, выполненные, как правило, из меди. Для включения «звезды» аккуратно соедините три обмотки выходного провода вместе. «Треугольник» получается немного посложнее, но с ним справятся любые электротехники.

Фазос-смещения контейнеров

Итак, иногда возникает вопрос, как подключить трехфазный двигатель в обычную домашнюю розетку. Если вы просто попытаетесь подключить к вилке два провода, она не будет вращаться. Для того, чтобы дело пошло, нужно смоделировать фазу, сдвинув подаваемое напряжение на какой-то угол (желательно 120 °). Добиться этого эффекта можно, если использовать элемент фазового сдвига. Теоретически это может быть и индуктивность, и даже сопротивление, но чаще всего трехфазный двигатель в однофазную сеть включают с помощью латинской электрической буквы S.

Что касается применения дросселей, то это затруднительно из-за сложности определения их значения (если оно не указано на корпусе прибора). Для измерения величины L требуется специальный прибор или собранная по этой схеме. Кроме того, выбор доступных дросселей обычно ограничен. Однако экспериментально подобрать любой элемент фазосдвига можно, но это хлопотно.

Что происходит при запуске двигателя? В одну из точек соединения подается ноль, в другую — фазу, а на третью — некоторое напряжение, смещенное на некоторый угол относительно фазы.Понятно и неспециалисту, что работа двигателя будет полной не из-за механической мощности на валу, а в некоторых случаях самого факта вращения. Однако при запуске могут возникнуть некоторые проблемы, например, отсутствие начального момента, способного сдвинуть ротор с места. Что делать в этом случае?

Пусковой конденсатор

Во время пуска вала требуются дополнительные усилия для преодоления сил инерции и трения. Для увеличения момента вращения необходимо установить дополнительный конденсатор, подключенный к схеме только на время пуска, а затем выключения.Для этих целей лучше всего использовать кнопку закрытия без фиксации положения. Подключение трехфазного двигателя с пусковым конденсатором показано ниже, это просто и понятно. В момент подачи напряжения нажмите кнопку «Пуск», и будет создан дополнительный фазовый сдвиг. После того, как двигатель наберет нужные обороты, кнопку можно (и даже нужно) отпустить, и на диаграмме останется только работоспособность.

Расчет величины резервуаров

Итак, мы выяснили, что для включения трехфазного двигателя в однофазную сеть требуется дополнительная схема подключения, в которой помимо кнопки пуска , два конденсатора включены.Вам нужно знать их величину, иначе система не сработает. Для начала определим величину электрического контейнера, необходимую для того, чтобы заставить ротор сдвинуться с места. При параллельном включении он представляет собой сумму:

С = от Арт + Ср, где:

С СТ — пуск дополнительного отключается после работоспособности;

С П — рабочий конденсатор, обеспечивающий вращение.

Нам еще нужно значение номинального тока I n (оно указано на табличке, прикрепленной к двигателю на заводе).Этот параметр также можно определить по простой формуле:

IH = p / (3 x U), где:

U — напряжение при подключении «звезды» — 220 В, а если «треугольник», то 380 В;

П — мощность трехфазного двигателя, иногда при потере тарелки определяются на глаз.

Итак, зависимости требуемой рабочей мощности рассчитываются по формулам:

С p = cp = 2800 i n / u — для «звезды»;

С p = 4800 i n / u — для «треугольника»;

Пусковой конденсатор должен работать в 2-3 раза больше.Единица измерения — микрофрейс.

Есть очень простой способ рассчитать емкость: C = P / 10, но эта формула дает скорее порядковые номера, чем его значение. Впрочем, верить придется в любом случае.

Зачем подходит

Приведенный выше метод расчета является приблизительным. Во-первых, номинал, указанный на корпусе электроконтейнера, может существенно отличаться от фактического. Во-вторых, в обиходе часто используются бумажные конденсаторы (вообще говоря, вещь не годная), и они, как и всякие другие предметы, подвержены старению, что приводит к еще большему отклонению от заданного параметра.В-третьих, ток, который будет потреблять двигатель, зависит от величины механической нагрузки на вал, поэтому оценить ее можно только экспериментально. Как это сделать?

Требуется немного терпения. В итоге получается довольно громоздкий набор конденсаторов, главное — после окончания работ все беременеет, чтобы припаянные концы от исходящих от мотора колебаний не отваливались. И тогда не лишним будет проанализировать результат и, возможно, упростить конструкцию.

Аккумуляторная сборка баков

Если в мастере нет специальных электролитических клещей, позволяющих измерять ток без размыкания цепей, то амперметр следует подключать последовательно к каждому проводу, который входит в трехфазный двигатель. В однофазной сети общее значение будет протекать, и при выборе конденсаторов следует стремиться к наиболее равномерной нагрузке обмоток. Следует помнить, что при последовательном подключении общая емкость уменьшается по закону:

Также нельзя забывать о таком важном параметре, как напряжение, на которое рассчитан конденсатор.Он должен быть не меньше номинала сети, а лучше с запасом.

Разрядный резистор

Трехфазная цепь двигателя, включенная между той же фазой и нулевым проводом, иногда дополняется сопротивлением. Он служит для того, чтобы заряд остался на пусковом конденсаторе, оставаясь после того, как машина уже выключена. Эта энергия может вызвать электрический удар, не опасный, но крайне неприятный. Чтобы обезопасить себя, необходимо подключить резистор с пусковой емкостью (электрики называют «оглушающими»).Величина его сопротивления велика — от половины мега до мега, а по размерам она мала, поэтому симпатична и наполовину насыщает мощность. Однако, если пользователь не боится быть «точным», то без этой детали вполне можно и обойтись.

Использование электролита

Как уже было сказано, пленочные или бумажные электрокары дорогие, и не так-то просто привезти их столько, сколько хотелось бы. Сделать однофазное подключение трехфазного двигателя можно с помощью недорогих и доступных электролитических конденсаторов.При этом совсем дешевыми они не будут, так как должны выдерживать 300 вольт постоянного тока. Для безопасности их стоит оглушить полупроводниковыми диодами (например, Д 245 или Д 248), но при этом стоит помнить, что при пробое этих устройств на электролит падает переменное напряжение, и он очень сильно нагревается. , а затем он взорвется, громко и эффективно. Поэтому без особой надобности лучше использовать конденсаторы бумажного типа, работающие от напряжения хотя бы постоянного, а то и переменного.Некоторые мастера полностью разрешают использование электролитов в пусковых цепях. Из-за кратковременного воздействия на них переменного напряжения они могут не успеть взорваться. Лучше не экспериментировать.

Если нет конденсаторов

Где обычные граждане, не имеющие доступа к использованию электрических и электронных деталей, их приобретают? На барахолках и «барахолках». Там они лежат, осторожно сброшенные кем-то (обычно пожилым) руками из старых стиральных машин, телевизоров и прочего строительного бытового и промышленного оборудования.Они очень много просят эту продукцию советского производства: продавцы знают, что если товар нужен, то купят, а если нет — и ничего не возьмут. Бывает, что как раз самого необходимого (в данном случае конденсатора) просто нет. И что делать? Без проблем! Придут резисторы и нужны только мощные, желательно керамические и глазурованные. Конечно, фаза идеального сопротивления (активная) не сдвигается, но в этом мире нет ничего идеального, и в нашем случае это хорошо. Каждое физическое тело имеет свою индуктивность, электрическую мощность и сопротивление, будь то крошечная пыль или огромная гора.Включение трехфазного двигателя в розетку становится возможным при замене его конденсатором с сопротивлением, номинал которого рассчитывается по формуле:

R = (0,86 х U) / ки, где:

ки — величина тока при трехфазном подключении, а;

У — наш верный 220 вольт.

Какие моторы подойдут?

Перед покупкой за немалые деньги мотор, который предполагается использовать в качестве привода круга для заточки, циркулярной пилы, сверлильного станка или другого полезного бытового устройства, не помешает задуматься о его применимости для этих целей.Не каждый трехфазный двигатель в однофазной сети вообще может работать. Например, серию МА (у него короткозамкнутый ротор с двойной ячейкой) следует исключить, чтобы не тащить значительный и бесполезный груз. В общем, лучше сначала поэкспериментировать или пригласить опытного человека, например электрика, и посоветоваться с ним перед покупкой. Асинхронный двигатель трехфазного ряда отходов, АПН, АО2, АО и, конечно же, А. Эти индексы указаны на заводских шильдиках.

В трехфазной сети обычно 4 провода (3 фазы и ноль). Может быть еще один отдельный провод «Земля». Но нулевого провода нет.

Как определить напряжение в сети?
Очень просто. Для этого измерьте напряжение между фазами и между нулем и фазой.

В сетях 220/380 напряжение между фазами (U1, U2 и U3) будет 380 В, а напряжение между шумом и фазой (U4, U5 и U6) будет 220 В.
В сетях 380/660 В напряжение между любыми фазами (U1, U2 и U3) будет равно 660 В, а напряжение между нулем и фазой (U4, U5 и U6) будет 380 В.

Возможные схемы обмоток двигателя

Асинхронные электродвигатели имеют три обмотки, каждая из которых имеет начало и конец и соответствует своей фазе. Системы обозначения обмоток могут быть разными. В современных электродвигателях принята система обозначения обмоток U, V и W, а их выводы обозначаются цифрой 1 начало обмотки и цифрой 2 — ее конец, то есть обмотка U имеет два вывода: U1 и U2, обмотка V — V1 и V2, а обмотка W — W1 и W2.

Однако старые асинхронные двигатели, произведенные в СССР и имеющие старую советскую маркировку, все еще работают. В них старты начинались С1, С2, С3, а концы — С4, С5, С6. Значит, первая обмотка имеет выводы С1 и С4, вторая — С2 и С5, а третья — С3 и С6.

Трехфазные электродвигатели могут подключаться по двум разным схемам: звезда (y) или треугольник (δ).

Подключение электродвигателя по схеме «звезда»

Название схемы подключения связано с тем, что при подключении обмоток по этой схеме (см. Рисунок справа) она визуально напоминает трехстороннюю звезду .

Как видно из схемы подключения электродвигателя, все три обмотки соединены между собой одним своим концом. При таком подключении (сеть 220/380 В) для каждой обмотки отдельно подходит напряжение 220 В, а для двух последовательно соединенных обмоток — напряжение 380 В.

Главное преимущество подключения электродвигателя по схеме звезды малые пусковые токи, так как напряжение питания 380 В (межфазное) потребляет сразу 2 обмотки, в отличие от схемы «Треугольник».Но при таком подключении мощность поставляемого электродвигателя ограничена (в основном из экономических соображений): обычно в звезду входят относительно слабые электродвигатели.

Подключение электродвигателя по схеме треугольника

Название этой схемы также происходит от графического изображения (см. Рисунок справа):

Как видно из схемы подключения электродвигателя — «Треугольник», обмотки соединены между собой последовательно: конец первой обмотки соединен с началом второй и так далее.

То есть на каждую обмотку будет напряжение 380 В (при использовании сети 220/380 В). В этом случае по обмоткам протекают большие токи, в треугольник обычно включаются двигатели большей мощности, чем при соединении звездой (от 7,5 кВт и выше).

Подключение электродвигателя к трехфазной сети на 380 В

Последовательность действий следующая:

1. Для начала выясняем, как рассчитывается наша сеть.
2. Позже посмотрим на пластину, которая находится на электродвигателе, она может выглядеть так (звезда Y / треугольник Δ):

(~ 1, 220 В)


220 В / 380 В (220/380, Δ / Y)

(~ 3, y, 380 В)

Двигатель для трехфазной сети
(380 В / 660 В (Δ / Y, 380 В / 660 В)

3. После определения параметров сети и параметров электрического подключения электродвигателя (звезда y / треугольник δ) переходите к физическому электрическому подключению электродвигателя.
4. Для включения трехфазного электродвигателя необходимо одновременно подать напряжение на все 3 фазы.
Достаточно частая причина выхода из строя электродвигателя — работа на двух фазах. Это может произойти из-за неисправного стартера или при перегрузке фазы (когда напряжение в одной из фаз намного меньше, чем в двух других).
Есть 2 метода подключения электродвигателя:
— Использование автоматического выключателя или устройства защиты двигателя

Эти устройства при включении подавали напряжение сразу на все 3 фазы. Мы рекомендуем вам поставить автомат защиты двигателя серии MS, так как он может быть настроен точно на рабочий ток электродвигателя, и он будет чувствительно отслеживать его в случае перегрузки. Это устройство на время пуска позволяет некоторое время работать на повышенном (пусковом) токе, не выключая двигатель.
Обычную защиту автоматику требуется ставить при превышении номинального тока электродвигателя с учетом пускового тока (в 2-3 раза выше номинального).
Такой автомат может заглушить двигатель только в случае КЗ или раскрутить его, что зачастую не обеспечивает желаемой защиты.

Использование стартера

Стартер — это электромеханический контактор, замыкающий каждую фазу с соответствующей обмоткой электродвигателя.
Привод контакторного механизма осуществляется с помощью электромагнита (соленоида).

Устройство электромагнитного пуска:

Магнитный пускатель прост и состоит из следующих частей:

(1) катушка электромагнита
(2) Пружина
(3) Мобильная рама с контактами (4) для подключения питания сети (или обмотки)
(5) Контакты еще для подключения обмоток двигателя (питание).

При питании катушки, рамка (3) с контактами (4), она опускается и замыкает свои контакты на соответствующие неподвижные контакты (5).

Типовая схема подключения электродвигателя с помощью стартера:


При выборе стартера следует обратить внимание на напряжение питания катушки магнитного пускателя и купить его в соответствии с возможностью подключения к конкретной сети (например, если у вас всего 3 провода и сеть 380 В, то катушку нужно брать на 380 В, если у вас Сеть 220/380 В, то катушка может быть 220 В).

5. Контроль, в правильном направлении вал вращается.
Если вы хотите изменить направление вращения вала электродвигателя, то вам просто нужно поменять местами любые 2 фазы. Это особенно важно при питании от центробежных электронасосов со строго определенным направлением вращения рабочего колеса

Как подключить поплавковый выключатель к трехфазному насосу

Из вышеописанного становится ясно, что для управления трехфазным электродвигателем насоса в автоматическом режиме с помощью поплавкового выключателя невозможно просто разорвать одну и ту же фазу, как это делается с однофазными двигателями в однофазном режиме. фазовая сеть.

Проще всего использовать магнитный пускатель для автоматизации.
В данном случае поплавковый выключатель должен последовательно интегрироваться в цепь питания катушки стартера. При замыкании цепи цепь катушки стартера будет замкнута, а электродвигатель включен, при размыкании — питание электродвигателя будет отключено.

Подключение электродвигателя к однофазной сети 220 В

Обычно используются специальные двигатели для подключения к однофазной сети 220В, которая используется для подключения к такой сети, и их питание не происходит.Для этого достаточно просто вставить вилку (большинство бытовых насосов оснащено стандартной вилкой Шукука) в розетку

Иногда требуется подключить трехфазный электродвигатель к сети 220 В (если, например нельзя провести трехфазную сеть).

Максимально возможная мощность электродвигателя, который может быть включен в однофазную сеть 220 В, составляет 2,2 кВт.

Проще всего подключить электродвигатель через преобразователь частоты, рассчитанный на питание от сети 220 В.

Следует помнить, что преобразователь частоты на 220 В, он дает на выходе 3 фазы 220 В. То есть в трехфазную сеть можно подключить только электродвигатель, имеющий напряжение питания 220 В ( обычно двигатели с шестью контактами в распиленной коробке, обмотки которых можно соединять как звездой, так и треугольником). В этом случае нужно соединить обмотки треугольника.

Возможно, еще проще подключить трехфазный электродвигатель в сеть 220 В с помощью конденсатора, но такое подключение приведет к выходу электродвигателя из строя примерно на 30%.Третья обмотка запитана через конденсатор от любой другой.

Мы не будем рассматривать этот тип подключения, так как это нормально для насосов, этот способ не работает (либо при стартере двигатель не запускается, либо электродвигатель перегревается из-за снижения мощности).

Использование преобразователя частоты

В настоящее время преобразователи частоты достаточно активно используются для регулирования частоты вращения (оборотов) электродвигателя.

Это позволяет не только экономить электроэнергию (например, при использовании частотного регулирования насосов для водоснабжения), но и контролировать подачу объемных насосных насосов, переводя их в дозирующие (любые насосы объемного принципа работы).

Но очень часто при использовании преобразователей частоты не обращают внимания на некоторые нюансы их применения:

Регулировка частоты, без доработки электродвигателя, возможна в пределах регулировки частоты +/- 30% от рабочей. (50 Гц),
— при увеличении частоты вращения более 65 Гц требуется замена подшипников на усиленные (сейчас с помощью ПЭ можно поднять частоту тока до 400 Гц, обычные подшипники при таких скоростей),
— При уменьшении скорости вращения встроенный электродвигатель вентилятора начинает работать неэффективно, что приводит к перегреву обмоток.

Из-за того, что не обращают внимания на конструкцию установок на такие «мелочи», очень часто выходят из строя электродвигатели.

Для работы на низкой частоте необходимо установить дополнительный вентилятор принудительного охлаждения электродвигателя.

Вместо кожуха вентилятора установлен вентилятор принудительного охлаждения (см. Фото). В этом случае даже при уменьшении основного вала двигателя
дополнительный вентилятор обеспечит надежное охлаждение электродвигателя.

Имеем большой опыт модернизации электродвигателей для работы на низкой частоте.
На фото винтовые насосы с дополнительными вентиляторами на электродвигателях.

Эти насосы используются в качестве дозирующих насосов в пищевом производстве.

Надеемся, что данная статья поможет вам самостоятельно правильно подключить электродвигатель к сети (ну или хотя бы понять, что вы не электрик, а «специалист широкого профиля»).

Технический директор
ООО «Насосы ампика»
Моисей Юрий Васильевич.


(PDF) Новый метод пуска трехфазного асинхронного двигателя с одной фазой, отключенной от источника питания

30

4 ЗАКЛЮЧЕНИЕ

Новый и простой метод пуска трехфазного асинхронного двигателя при одиночном

Условие фазирования

предлагается путем подключения нейтрали питания к открытой клемме

двигателя. Выражение для пускового момента также было получено для предложенного метода

. Для запуска в однофазном режиме не требуется дополнительной сети статического фазовращателя

.Хотя соединение нейтрали

обеспечивает низкий пусковой момент в однофазном режиме,

ток превышает номинальное значение даже на холостом ходу, если двигатель

может непрерывно работать при номинальном напряжении. Поэтому предлагается использовать новый метод

только для получения пускового момента. Двигатель

должен работать с двумя исправными проводами и удаленным нейтралью

сразу после запуска.

ССЫЛКИ

[1] Habermann, R., «Однофазный режим работы трехфазного двигателя с простым статическим преобразователем фаз

», Транз. Американский институт инженеров-электриков, 73, pt. 3 (1954)

[2] Браун, Дж. Э. и Джа, С. С., «Запуск трехфазного асинхронного двигателя, подключенного к единой системе питания

фаз», Proc. IEE, 106A (1959)

[3] Jha, C. S., «Запуск однофазного асинхронного двигателя с асимметричными обмотками статора

не в квадратуре», Proc. IEE, 109A, стр.47–58 (февраль 1962 г.)

[4] Мукерджи, П. К. и Шарма, К. Л., «Преобразователь фазы для трехфазного асинхронного двигателя

через однофазное питание», J.I.E. (Индия), 51, стр. 383–387 (август 1971 г.)

[5] Краузе П. К. Анализ электрических машин, McGraw-Hill, гл. 9 (1987)

[6] Мурти С.С., «Обобщенная рабочая эквивалентная схема асинхронных машин для

переходных / динамических исследований в различных рабочих условиях», PEDES New Delhi (Индия),

1, стр.622–630 (1996)

РЕФЕРАТЫ — ФРАНЦУЗСКИЙ, НЕМЕЦКИЙ, ИСПАНСКИЙ

Une nouvelle me

´thode de

´marrage d’un moteur asynchrone triphase

´avec une phase coupe

‘alimentation

La connexion du Neutre de l’alimentation a

‘ la borne ouverte d’un moteur triphase

´sous alimentation

monophase

´e produit la di ff e

´ etre de phase require ле пара де

де

´ брак.Связь с нейтралью использует

для

«marrer et non permanence, autrement

le courant exce

« de la valeur nominale me

€ me a

»vide.

Eine Neue Methode, Einen 3-phasigen Induktionsmotor Bei Ausfall етег дер Stromversorgungsphasen

цу starten

Verbindung де Vorsorgungsnulleiters мит дер о ФФ ENEN Klemme Эйнес Drehstrominduktions-

моторы унтер einphasigen Bedingungen erzeugt ден erforderlichen Phasenunterschied Zwischen

Wicklungsspannungen, унд ES entsteht Anlaufmoment.Verbindung des Nulleiters wird nur zum

Starten und nicht zum Laufen verwendet. Andererseits u

¨bersteigt der Strom den Nennwert selbst

ohne Belastung.

Me

´todo novedoso para el arranque de un motor de индукcio

´n trifa

´sico con una fase fuera de la fuente

de alimentacio

´n

La conexio al terminal abierto de un motor de индукция

´n trifa

´sico bajo la condicio

´n

de fase simple product la differencia de fase necesaria entre los devanados del motor y el par de

arranque inicial.La conexio

´n del Neutro es utilizada solo para el arranque inicial y no para el

re

´gimen permanente. De lo contrario la corriente excederı

´a los valores nominales incluso sin carga.

Преимущества трехфазной системы перед однофазной

Преимущества трехфазной системы питания перед однофазной системой питания

Трехфазная система выработки, передачи и распределения электроэнергии очень распространена во всем мире из-за существенных преимуществ перед однофазной и другими системами. многофазные системы.

Однофазная система

Синусоидальное переменное напряжение , имеющее определенный период времени и частоту, генерируемое однообмоточным генератором переменного тока в качестве напряжения источника, известно как однофазная система питания . Цепь, питаемая этими напряжениями, называется однофазной цепью переменного тока. Другими словами, цепь A содержит один переменный ток, а напряжение идентифицируется как цепь 1-Φ.

Трехфазная система

Система содержит более одной фазы, известную как многофазная или многофазная система .Система 3-Ф содержит три фазы , имеющие одинаковую частоту, где существует фиксированный угол 120 ° между напряжениями источника, генерируемыми генератором переменного тока, имеющим три обмотки. Точно так же существует разность углов 90 ° между двумя фазами в двухфазной системе питания.

Основные преимущества системы 3-Φ перед системой 1-Φ

Многофазный или трехфазный источник питания имеет следующие преимущества перед однофазной системой питания.

  1. Для передачи определенной мощности на определенное расстояние при заданном номинальном напряжении трехфазной системе требуется меньше проводникового материала по сравнению с однофазной системой.
  2. Размер машины, работающей от трехфазной системы, меньше, чем размер машины, работающей от однофазного напряжения и имеющей такую ​​же номинальную выходную мощность.
  3. В трехфазной системе питания меньшее падение напряжения происходит от источника к точкам нагрузки,
  4. Трехфазное питание создает однородное вращающееся магнитное поле, поэтому трехфазные двигатели проще по конструкции, имеют небольшие размеры и могут запускаться автоматически с плавной работой.
  5. Многофазная система вырабатывает мощность с постоянной скоростью в нагрузке.
  6. Трехфазная система может передавать больше мощности по сравнению с однофазной системой.
  7. КПД устройств и приборов с трехфазным питанием выше, чем у машин с однофазным питанием.
  8. Трехфазные машины дешевле и эффективнее.
  9. Трехфазная система обеспечивает постоянную мощность, в то время как однофазная система обеспечивает пульсирующую мощность, что приводит к плавной и безвибрационной работе машины 3-Φ по сравнению с машинами 1-Φ с шумом и вибрацией.
  10. Номинальную мощность машин можно увеличить, увеличив количество фаз в системе.
  11. Трехфазная машина с таким же номиналом занимает меньше места по сравнению с однофазной машиной.
  12. Однофазное питание может быть получено от трехфазного источника для работы однофазных машин. Трехфазная машина не может работать от однофазного напряжения питания.
  13. Трехфазный источник питания может быть легко преобразован в однофазный источник питания, в то время как для преобразования однофазного источника питания в трехфазное питание требуется сложная система. выключить.В случае трехфазного повреждения одной линии, две другие линии обеспечивают питание других подключенных к ним точек однофазной нагрузки.
  14. Многофазный или трехфазный двигатель обеспечивает равномерный крутящий момент, в то время как однофазные двигатели (кроме коллекторных двигателей) обеспечивают пульсирующий крутящий момент.
  15. Трехфазные двигатели запускаются автоматически, а однофазные двигатели не запускаются автоматически.
  16. Если размер рамы трехфазного генератора переменного тока, двигателя или трансформатора такой же, как у однофазного двигателя, генератора переменного тока или трансформатора, мощность трехфазных машин будет выше, чем у однофазных машин.
  17. Многофазный генератор переменного тока может быть легко соединен в пару и работать в параллельном режиме по сравнению с однофазными генераторами переменного тока, имеющими пульсирующую реакцию якоря.
  18. Коэффициент пульсаций выпрямленного напряжения постоянного тока от источника 3-Ф составляет 4%, в то время как коэффициент пульсаций выпрямленного напряжения постоянного тока от источника 1-Ф составляет 48%. Следовательно, стоимость преобразователя для выпрямленного постоянного тока из источника 3-Ф меньше, чем у преобразователя, используемого для выпрямленного постоянного напряжения из источника 1-Ф, из-за меньшего количества фильтров, используемых в выпрямлении системы питания 3-Ф.
  19. Трехфазные двигатели имеют лучший коэффициент мощности по сравнению с однофазными двигателями.

Связанное сообщение: Разница между однофазным и трехфазным асинхронным двигателем

На следующих рисунках показана однородная мощность, вырабатываемая при единичном коэффициенте мощности трехфазным источником питания, когда мощность, производимая однофазной машиной, пульсирует .

Приведенное выше объяснение показывает, почему трехфазная система электроснабжения более эффективна, удобна, экономична и надежна по сравнению с однофазной системой электроснабжения.Из-за вышеупомянутых преимуществ трехфазной системы перед однофазной, большинство стран мира выбрали ее вместо однофазной или других многофазных систем.

Похожие сообщения:

Разница между однофазной и трехфазной энергосистемой

Однофазное электричество

Однофазная система является наиболее распространенной и в основном используется в домах, тогда как трехфазная система распространена в промышленных или коммерческих зданиях, где требуются большие мощности.

Однофазные системы используют электроэнергию переменного тока (AC), в которой напряжение и ток меняются по величине и направлению циклически, обычно от 50 до 60 раз в секунду. В Великобритании однофазное напряжение составляет 230 вольт.

В электротехнике однофазная электроэнергия относится к распределению с использованием системы, в которой все напряжения источника питания изменяются в унисон.

Проще говоря, однофазное электричество можно рассматривать как каноэ для одного человека.Лопатка входит в воду для передачи энергии, а затем покидает воду до того, как вторая лопасть снова войдет в воду, чтобы передать больше мощности, что приведет к изменению мощности.

Иногда будет нулевая выходная мощность, а в цикле будет два пиковых выхода мощности, см. Диаграмму ниже.

Рисунок 9: График однофазной мощности

Однофазное распределение используется, когда нагрузки, в основном, освещают и обогревают, с небольшим количеством крупных электродвигателей. Однофазный источник питания, подключенный к электродвигателю переменного тока, не создает вращающегося магнитного поля; Однофазные двигатели нуждаются в дополнительных цепях для запуска, и такие двигатели редко встречаются с номинальной мощностью более 10 или 20 кВт.

Специальные однофазные тяговые электрические сети могут работать на частоте 16,67 Гц или других частотах для питания электрических железных дорог.

Трехфазное электричество

Проще говоря, трехфазное электричество можно рассматривать как три однофазных источника электроэнергии, которые подают свою пиковую мощность на расстоянии 120 ° друг от друга.

В качестве аналогии рассмотрим каноэ с тремя гребцами на байдарках, которые гребут на каноэ поочередно. В отличие от одного каноиста, всегда есть выходная мощность и никогда не бывает нулевой выходной мощности, что делает этот источник питания более подходящим для промышленных двигателей и оборудования.

Рисунок 10: График трехфазной мощности

Трехфазный источник — обзор

7.2.3 Метод модуляции прямого матричного преобразователя

В этом разделе представлена ​​матрица рабочего цикла для управления каждым переключателем трехфазного прямого матричного преобразователя и метод модуляции трехфазного преобразователя. будет описан преобразователь прямой матрицы, использующий матрицу рабочего цикла. Напряжение на входе и ток на выходе прямого матричного преобразователя даны как независимые переменные в формуле.(7.12).

(7.12) vi = vsavsbvsc = Vimcosωitcosωit − 2π / 3cosωit + 2π / 3, io = ioAioBioC = Iomcosωot − ϕocosωot − ϕo − 2π / 3cosωot − ϕo + 2π / 3.

В этом случае предположим, что операция генерирует выходное фазное напряжение и входной фазный ток в формуле. (7.13) контролем.

(7,13) vo = voAvoBvoC = Vomcosωotcosωot − 2π / 3cosωot + 2π / 3, ii = isaisbisc = Iimcosωit − ϕicosωit − ϕi − 2π / 3cosωit − ϕi + 2π / 3,

, где cos (

    67 ϕ ) и cos ( ϕ i ) — коэффициенты мощности нагрузки и входного каскада, соответственно, а ω i и ω o — входная и выходная угловые частоты, соответственно.Опорный потенциал выходного фазного напряжения v oA , v oB и v oC является нейтральной точкой трехфазного источника напряжения входного каскада, как показано на рис. 7.3 .

    Входная мощность прямого матричного преобразователя должна быть равна выходной мощности. Следовательно, уравнение. (7.14) определяется из v i T i i = v o T i o .

    (7.14) VimIimcosϕi = VomIomcosϕo.

    Когда коэффициент усиления по напряжению прямого матричного преобразователя определяется как q = V om / V im , уравнение. (7.15) определяется как

    (7.15) Vom = qVim, Iim = qIomcosϕocosϕi.

    Когда уравнения. (7.12), (7.13) подставляются в уравнение. (7.10) матрица заполнения T , которая удовлетворяет ограниченному условию продолжительности включения, как в уравнении. (7.11) рассчитывается с использованием уравнения. (7.16).

    (7.16) T = dAadAbdAcdBadBbdBcdCadCbdCc = p13d1d2d3d3d1d2d2d3d1 + p23d1′d2′d3′d2′d3′d1′d3′d1′d2 ′,

    , где d1′d3′d1′d2 ′,

    , где 8 d

  1. d
  2. 909,
  3. 909 , d 1 ‘, d 2 ‘ и d 3 ‘выражены в уравнении. (7.17).

    (7.17) d1 = 1 + 2qcosω1t, d2 = 1 + 2qcosω1t + 2π3, d3 = 1 + 2qcosω1t − 2π3, d1 ′ = 1 + 2qcosω2t, d2 ′ = 1 + 2qcosω2t − 2π3, d3 ′ = 1 + 2qcosω2t + 2π3,

    , где ω 1 и ω 2 составляют ω o ω i и ω o + ω

    24 i 909, соответственно p 1 и p 2 являются переменными управления коэффициентом мощности положительного и отрицательного направления, соответственно, которые выражены в формуле.(7.18).

    (7,18) p1 = 121 + p, p2 = 121 − p, p = tanϕitanϕo.

    Из уравнения. (7.18), p 1 + p 2 = 1 и p 1 p 2 = p . Кроме того, p — это коэффициент передачи фазы между входом и выходом прямого матричного преобразователя. Среди переменных, которые определяют p , ϕ o определяется характеристиками нагрузки, а ϕ i определяется желаемым значением команды.

    Если входной каскад матричного преобразователя работает с единичным коэффициентом мощности ( ϕ i = 0), уравнение. (7.16) можно просто переписать, как это дает Ур. (7.19).

    (7,19) djk = 131 + 2vojvskVim2j = ABCk = abc.

    На рис. 7.10 показан диапазон значений трехфазного входного напряжения источника и выходного фазного напряжения прямого матричного преобразователя. Трехфазное выходное фазное напряжение не может выходить за пределы диапазона входного фазного напряжения, поскольку выходное фазное напряжение прямого матричного преобразователя синтезируется из входного напряжения.Следовательно, максимальная величина выходного фазного напряжения ограничена 50% от входного фазного напряжения. Другими словами, максимальное значение параметра управления q составляет 0,5 в матрице заполнения уравнения. (7.16).

    Рис. 7.10. Входное напряжение и выходное фазное напряжение ( q макс. = 0,5).

    На рис. 7.11 показан способ получения большего выходного фазного напряжения, чем выходное фазное напряжение на рис. 7.10, путем добавления синфазного напряжения к выходному фазному напряжению по формуле.(7.13). Как упоминалось ранее, синфазное напряжение, приложенное к выходному фазному напряжению, не влияет на линейное напряжение выходного каскада прямого матричного преобразователя, поскольку опорные потенциалы выходного фазного напряжения v oA , v oB и v oC являются нейтральными точками трехфазного источника напряжения входного каскада.

    Рис. 7.11. Входное напряжение и выходное фазное напряжение ( q макс. = 0.866) с использованием синфазного напряжения в модуляции.

    Следовательно, фазные напряжения на выходе выражаются в формуле. (7.20) как

    (7.20) vo = voAvoBvoC = Vomcosωot + vcmtcosωot − 2π / 3 + vcmtcosωot + 2π / 3 + vcmt,

    , где v cm — синфазное напряжение и выражается в уравнении . (7.21) как

    (7.21) vcmt = −16cos3ωot + 36cos3ωit.

    В результате максимальное значение q увеличивается до √ 3/2 (= 0,866). Кроме того, q max = 0.866 — это уникальная характеристика прямого матричного преобразователя, которая определяется независимо от метода модуляции управления прямого матричного преобразователя.

    Если выходное фазное напряжение уравнения. (7.20) вместо уравнения. (7.13) окончательное решение обычно выражается комплексным уравнением, полученным с помощью оптимального метода Вентурини. Кроме того, этот метод необходим для многих расчетов в реальном приложении. Однако, если входной каскад прямого матричного преобразователя работает с единичным коэффициентом мощности ( ϕ i = 0), окончательное решение может быть легко реализовано, как показано в уравнении.(7.22).

    (7.22) djk = 131 + 2vojvskVim2 + 4q33sinωit + βksin3ωit, j = A, B, C, k = a, b, c, βa = 0, βb = −2π / 3, βc = 2π / 3.

    В зависимости от оптимального метода анализа Вентурини, соотношение между передаточным отношением фазы на входе и выходе p прямого матричного преобразователя и коэффициентом усиления напряжения q выбирается из уравнения. (7.23).

    (7,23) 2qp⋅1 − signλ3 + sgnλ3≤1,

    , где λ и sgn ( λ ) выражаются следующим образом в уравнении. (7.24).

    (7.24) λ = 2q31 − p, signλ = 1, λ≥0−1, λ <0.

    На рис. 7.12 показано изменение максимального усиления по напряжению q max в зависимости от значения p . Если p контролируется для управления коэффициентом мощности входного каскада прямого матричного преобразователя, необходимо соблюдать осторожность, поскольку максимальное усиление напряжения q max изменяется, как показано на рис. 7.12.

    Рис. 7.12. Максимальное усиление напряжения q max в зависимости от значения p .

    Если требуется, чтобы q max было> 0,5, диапазон p должен быть ограничен в диапазоне — 1 < p <1. Кроме того, в диапазоне - 1 < p <1, диапазон регулировки угла коэффициента мощности входного каскада ограничен как - | ϕ o | < ϕ i <| ϕ o | из уравнения. (7.18).

    На рис. 7.13 показан пример метода, который генерирует стробирующие сигналы, которые являются функцией присутствия переключателя ( S jk ), с использованием каждого матричного элемента ( d jk ) матрицы заполнения Т преобразователя матриц.Стробирующие сигналы переключателей S Aa , S Ab и S Ac , подключенных к выходному каскаду фазы A, определяются путем сравнения несущего сигнала v tri треугольного форма с d Aa и ( d Aa + d Ab ) мгновенно. Кроме того, они выражаются следующим образом в формуле. (7.25):

    Рис. 7.13. Формирование стробирующих сигналов из дежурного сигнала (переключение фазы А).

    (7.25) sAasAbsAc = 100,0≤vtri

    , где s ij = 0 представляет состояние выключения переключателя и s ij = 1 представляет состояние включения. Методы, которые генерируют стробирующие сигналы переключателей ( S Ba , S Bb и S Bc ), подключенных к выходному каскаду фазы B и переключателям ( S Ca , S Cb и S Cc ), подключенные к выходному каскаду C-фазы, аналогичны методу для переключателей, подключенных к выходному каскаду A-фазы.

    Трехфазное питание: объяснение треугольника и звезды

    Электричество используется для питания множества устройств, которые предназначены для удобства и необходимости людей и процессов по всему миру. Трехфазное питание играет ключевую роль в проектировании электрических систем, а трехфазные фильтры электромагнитных помех являются важной частью электрических устройств на различных рынках, в первую очередь в тяжелых промышленных приложениях. Большинству устройств в промышленных приложениях требуется большая мощность для обеспечения достаточного количества электроэнергии для поддержки больших двигателей, систем обогрева, инверторов, выпрямителей, источника питания и индукционных цепей.Из-за этого высокомощное оборудование обычно проектируется для трехфазного или многофазного переменного тока, в котором общая потребляемая мощность делится между многими фазами, оптимизируя систему энергоснабжения (генерацию и распределение) и конструкцию оборудования.

    В трехфазной системе есть три проводника, по которым протекает переменный ток. Они называются фазами и обычно обозначаются как A, B и C. Каждая фаза настроена на одну и ту же частоту и амплитуду напряжения, но сдвинута по фазе на 120 °, обеспечивая постоянную передачу мощности во время электрических циклов.

    Трехфазные конфигурации электропитания особенно важны, потому что они могут поддерживать в три раза больше мощности, используя всего в 1 ½ — 2 раза больше проводов, чем конфигурация с однофазным питанием. Это может помочь снизить стоимость и количество материалов, необходимых для проектирования системы. Это также может упростить конструкцию двигателя, исключив необходимость в пусковых конденсаторах.

    Однако преобразование большой мощности (инвертирование, выпрямление) генерирует шум с чрезмерно высокими частотами (EMI), который обычно представляет собой гармоники высшего порядка различных частот переключения.

    По этой причине 3-фазные фильтры электромагнитных помех становятся особенно важными в трехфазных приложениях, поскольку они уменьшают количество электромагнитных помех, предотвращают нарушения в работе оборудования и помогают компаниям соблюдать правила электромагнитной совместимости.

    Различия между Delta и WYE

    Трехфазные системы могут быть сконфигурированы двумя различными способами для поддержания равных нагрузок; они известны как конфигурации Delta и WYE. Названия «Дельта» и «WYE» представляют собой специфические индикаторы форм, на которые напоминают провода после соединения друг с другом.«Дельта» происходит от греческого символа «Δ», а «WYE» напоминает букву «Y» и также известна как «звездная» цепь. Обе конфигурации, Delta и WYE, обладают гибкостью для подачи питания по трем проводам, но основные различия между ними основаны на количестве проводов, доступных в каждой конфигурации, и текущем потоке. Конфигурация WYE приобрела популярность в последние годы, потому что она имеет нейтральный провод, который позволяет подключать как фазу к нейтрали (однофазное), так и линейное (2/3 фазы).

    Что такое трехфазные фильтры линии питания?

    Трехфазные фильтры электромагнитных помех

    разработаны в соответствии со строгими требованиями нормативов электромагнитной совместимости для промышленных приложений. Правила определяют максимально допустимые уровни шума (в дБ), допустимые на линиях электропередач. Общие требования к конструкции 3-фазного фильтра электромагнитных помех включают входные токи, линейное напряжение, ограничение размера и требуемые вносимые потери. В дополнение к этому, конфигурация 3-фазного фильтра электромагнитных помех играет важную роль в конструкции.

    Delta 3-фазный фильтр электромагнитных помех

    3-фазные фильтры электромагнитных помех

    Delta предназначены для уменьшения электромагнитных помех в устройствах, подключенных к трехфазному питанию, подключенному по схеме «треугольник». Конфигурация Delta состоит из четырех проводов; три токопроводящих жилы и один заземляющий провод. Фазовые нагрузки (например, обмотки двигателя) соединены друг с другом в форме треугольника, где соединение выполняется от одного конца обмотки к начальному концу другого, образуя замкнутую цепь.

    В этой конфигурации нет нейтрального провода, но он может питаться от трехфазной сети WYE, если нейтральная линия опущена / заземлена.Дельта-система используется для передачи энергии из-за более низкой стоимости из-за отсутствия нейтрального кабеля. Он также используется в приложениях, требующих высокого пускового момента.

    Из-за отсутствия нейтрального провода конденсаторы, используемые в трехфазных фильтрах электромагнитных помех Delta, должны быть рассчитаны на линейное (междуфазное) напряжение, что может увеличить размер, вес и стоимость. Однако отсутствие нейтрального провода позволяет получить более высокие номинальные токи, чем WYE, и лучшую производительность при том же заданном кубическом объеме.

    Проектирование и трехфазный дельта-фильтр электромагнитных помех
    1. Определите максимальную мощность, требуемую нагрузкой.
    2. Разделите максимальную мощность, требуемую нагрузкой, на 3, чтобы получить мощность на каждую фазу.
    3. Разделите ответ на линейное напряжение.
    4. Умножьте предыдущий ответ на квадратный корень из 3.
    Преимущества дельта-конфигурации
    • Дельта-конфигурации обычно могут быть разработаны для работы с более высоким током и более эффективны.
    • Защита для дельта-конфигураций может быть простой.
    • Конфигурации
    • Delta обычно устанавливаются для тяжелых условий эксплуатации и предпочтительны для выработки и передачи электроэнергии.

    WYE 3-фазный фильтр для защиты от электромагнитных помех

    Фильтры EMI

    WYE предназначены для фильтрации типичных устройств преобразования мощности в режиме переключения и других приложений, требующих нейтрального подключения. Эта конфигурация состоит из пяти проводов; три провода под напряжением, нейтраль и земля.В конфигурации WYE фазные нагрузки подключаются в единственной (нейтральной) точке, где подключается нейтральный провод.

    Когда нагрузки конфигурации WYE полностью сбалансированы, через нейтральный провод ток не течет. Когда нагрузки неуравновешены, через нейтральный провод проходит ток. Эта конфигурация позволяет использовать в фильтре конденсаторы более низкого напряжения (120 В переменного тока в системе 208 В переменного тока и 277 В переменного тока в системе 480 В переменного тока), что может привести к экономии затрат, веса и объема.

    Во многих случаях нейтральный провод можно оставить плавающим.Однако, как упоминалось ранее, конфигурация WYE обеспечивает гибкость для подключения нагрузок в цепи между фазой и нейтралью или между фазами. В отличие от Delta, эта конфигурация может использоваться как четырехпроводная схема или пятипроводная схема. Конфигурации WYE обычно используются в сетях распределения электроэнергии. Это в первую очередь требуется в приложениях, требующих меньшего пускового тока и перемещаемых на большие расстояния.

    Проектирование и трехфазный фильтр электромагнитных помех WYE
    1. Определите максимальную мощность, требуемую нагрузкой.
    2. Разделите максимальную мощность, требуемую нагрузкой, на 3, чтобы получить мощность на каждую фазу.
    3. Разделите ответ на напряжение фаза-нейтраль / земля.
    Преимущества конфигураций WYE
    • Предпочтительно для распределения электроэнергии, поскольку он может поддерживать однофазные (фаза-нейтраль), 2-фазные (междуфазные) и трехфазные нагрузки.
    • Точка звезды обычно заземлена, что делает ее идеальной для несимметричных нагрузок.
    • Для такой же поддержки напряжения требуется меньшая изоляция.

    Стоимость трехфазных фильтров линии питания Delta по сравнению с WYE

    Конфигурация трехфазного дельта-фильтра электромагнитных помех может быть технически более рентабельной, чем конфигурации WYE, поскольку для нее требуется только трехжильный кабель вместо четырех, что снижает стоимость материалов для изготовления блоков. Однако некоторые из этих рентабельности могут быть компенсированы необходимостью в компонентах, рассчитанных на высокое напряжение.

    Astrodyne TDI Трехфазный фильтр электромагнитных помех Дельта- и WYE-конфигурации

    Astrodyne TDI предлагает 3-фазные фильтры электромагнитных помех в конфигурациях Delta и WYE, чтобы помочь снизить электромагнитные помехи в различных приложениях и обеспечить соответствие международным стандартам излучения.Наши трехфазные фильтры электромагнитных помех находятся в диапазоне от 480 В / 520 В до 600 В переменного тока с номинальным током до 2500 А. Сетевые фильтры предлагаются в одно-, двух- и многоступенчатом исполнении, с более высокими значениями тока и напряжения, доступными по запросу.

    Благодаря нашему обширному ассортименту фильтров и сильным конструкторским возможностям наша команда инженеров может гарантировать, что найдет наиболее эффективное решение для трехфазного фильтра электромагнитных помех, соответствующее любой спецификации и самым сложным приложениям.

    Просмотрите нашу подборку трехфазных фильтров электромагнитных помех или свяжитесь с нашей командой, чтобы узнать больше о продукте, который поможет удовлетворить ваши требования.

    Причины, последствия и методы защиты

    Для правильной работы любого трехфазного асинхронного двигателя он должен быть подключен к трехфазному источнику питания переменного тока с номинальным напряжением и нагрузкой. После запуска эти трехфазные двигатели будут продолжать работать, даже если одна из трехфазных линий питания отключится. Потеря тока через одну из этих фаз питания описывается как однофазная.

    Корабль оснащен сотнями двигателей, которые отвечают за работу различных насосов, механизмов и систем.К критически важным механизмам, таким как рулевое управление, главный двигатель, генератор, котел и т. Д., Прикреплены трехфазные двигатели, которые запускают ту или иную основную или вспомогательную систему.

    Дополнительная литература: Электродвигательная установка для кораблей

    Трехфазный двигатель на 440 В, как правило, представляет собой индукционный двигатель стандартной рамы с короткозамкнутым ротором, предназначенный для трехфазного переменного тока 440 В и частотой 60 Гц. Только двигатели небольшой мощности 0,4 кВт или меньше, в основном используемые для освещения и других систем малой мощности, являются однофазными двигателями 220 В 60 Гц.

    Дополнительная литература: Понимание важности морского навигационного освещения

    Причины однофазности

    Однофазный режим — это электрическая неисправность, связанная с источником питания, в случае асинхронного двигателя. Это происходит при размыкании одной из 3-х фазных цепей в трехфазном двигателе; следовательно, в остальных цепях присутствует избыточный ток. Это состояние однофазного режима обычно возникает, когда: —

    — Один или несколько из трех предохранителей перегорели (или плавкий провод плавкого предохранителя, если предохранитель проволочного типа)

    — В цепи двигателя есть контакторы, которые подают ток.Один из контакторов разомкнут.

    — Неправильная или неправильная настройка любого из защитных устройств, предусмотренных на двигателе, также может привести к однофазной фазе

    — Если процедуры контактора не выполняются регулярно, они могут быть покрыты или покрыты слоем окисления, что приведет к однофазной работе.

    — Контакты реле двигателя повреждены или сломаны

    — Обрыв одного провода в цепи двигателя

    — Из-за отказа оборудования системы питания

    — Из-за короткого замыкания в одной фазе двигателя, соединенного звездой или треугольником

    Дополнительная литература: Панели запуска двигателей на кораблях: техническое обслуживание и процедуры

    — Перегорел предохранитель фидера или трансформатора

    Эффект однофазного режима

    Как упоминалось ранее, трехфазный двигатель — это двигатель переменного тока, который рассчитан на работу от трехфазного источника питания.Конструкция обоих типов двигателей схожа, поскольку у них обоих есть статор и вращатель. Однофазный двигатель не имеет вращающегося поля, а имеет поле, которое меняет направление на 180 градусов. Обычно однофазные двигатели не запускаются автоматически. Для этого используются дополнительные средства, например, отключение пусковой обмотки или конденсатора.

    Проблема однофазности в трехфазном асинхронном двигателе будет иметь следующие последствия:

    — Если двигатель остановлен, его нельзя запустить, поскольку однофазный двигатель не может быть самозапускаемым (как объяснено выше), а также из-за системы безопасности, предусмотренной в трехфазном двигателе для защиты его от перегрева

    — Если однофазные неисправности возникают во время работы двигателя, он будет продолжать работать (если это не предусмотрено дополнительной системой защитного отключения) из-за крутящего момента, создаваемого двумя оставшимися фазами, который создается в соответствии с требованиями нагрузки.

    — Поскольку оставшиеся две фазы выполняют дополнительную работу по сравнению с одной фазой по умолчанию, они будут перегреваться, что может привести к критическому повреждению обмоток.

    — Однофазное переключение приведет к увеличению тока на 2.В 4 раза больше среднего значения тока в оставшихся двух фазах

    Дополнительная литература: 10 способов достижения энергоэффективности в судовой электрической системе

    — Однофазный режим снижает скорость двигателя, и его частота вращения будет колебаться

    — Шум и вибрация двигателя будут ненормальными. Это результат неравномерного крутящего момента, создаваемого двумя оставшимися фазами

    — Почти вся двигательная система на корабле имеет резервное устройство.Если двигатель выбран в режиме ожидания, с проблемой однофазности — он не запустится, что приведет к выходу из строя соответствующей системы

    — Если проблема не устранена и двигатель продолжает работу, обмотки оплавятся из-за перегрева, что может привести к короткому замыканию или заземлению.

    Связанное чтение: Как найти замыкание на землю на борту судов?

    — В таких условиях, если экипаж корабля соприкасается с двигателем, он получит удар электрическим током, который может быть даже смертельным.Перегрев обмотки происходит в первую очередь из-за протекания тока обратной последовательности.

    — Это может вызвать перегрузку силовой установки, то есть вспомогательного двигателя, и его генератора.

    Как защитить двигатель от повреждений из-за однофазного режима?

    Такое состояние требует, чтобы двигатель был снабжен защитой, которая отключит его от системы до того, как двигатель будет необратимо поврежден.

    Все двигатели мощностью более 500 кВт должны быть оснащены защитными устройствами или оборудованием для предотвращения любого повреждения из-за однофазного включения.

    Указанное выше правило не распространяется на двигатели системы рулевого управления, установленные на судне. Только при обнаружении одиночной фазы прозвучит сигнал тревоги; однако двигатель не остановится, поскольку непрерывная работа двигателя рулевого управления имеет важное значение для безопасности или движения судна, особенно когда судно находится в заторах или при маневрировании.

    Ссылки для чтения: 8 общих проблем, обнаруженных в системе рулевого механизма судов

    Наиболее часто используемые защитные устройства для однофазной сети: —

    1) Устройство электромагнитной защиты от перегрузки

    В этом устройстве все три фазы двигателя оснащены реле перегрузки.Если есть увеличение значения тока, то это реле активируется автоматически, и двигатель отключается.

    Это устройство работает по принципу электромагнитного воздействия, создаваемого током.

    По мере увеличения значения тока электромагнит в катушке также увеличивается, что приводит в действие реле и активирует реле отключения, и двигатель останавливается.

    Дополнительная литература: Техническое обслуживание электрического реле на судовой электрической цепи

    В этой системе предусмотрена временная задержка, потому что при запуске двигатель потребляет много токов, которые могут привести к его отключению.

    2) Термисторы

    Кредит: Викимедиа

    Термисторы — это небольшие тепловые устройства, которые используются вместе с электромагнитным реле перегрузки. Термисторы вставлены в три обмотки двигателя. Любое увеличение тока вызовет нагрев обмоток, что обнаруживается термисторами, посылающими сигналы на усилитель.

    Связанное чтение: Схема усилителя или операционный усилитель, используемый на корабле

    Усилитель подключен к электромагнитному реле.Как только от термистора поступает сигнал о перегреве, этот усилитель увеличивает значение тока в катушке электромагнитного реле, которое активирует отключение, и двигатель останавливается или отключается.

    3) Биметаллическая полоса

    Кредит: Викимедиа

    В этом методе биметаллическая полоса размещается таким образом, чтобы обнаруживать перегрев в цепи. Как только обнаруживается перегрев, эта биметаллическая полоса пытается расшириться из-за использования двух разных металлов и из-за того, что они имеют разный коэффициент расширения.Полоса пытается изогнуться в сторону металла, имеющего высокий коэффициент расширения, и, наконец, замыкает цепь отключения, и двигатель отключается.

    4) Стандартная защита пускателя двигателя от перегрузки

    Предусмотрен трехфазный двигатель для работы в однофазном режиме. На всех фазах предусмотрены нагреватели от перегрузки, которые обнаруживают любую перегрузку в фазе, и если нагрузка намного превышает допустимую для двигателя, нагреватели отключают стартер до того, как обмотка двигателя будет повреждена.

    Как обнаружить однофазное повреждение?

    Экипажу корабля жизненно важно знать, перешел ли двигатель в однофазный режим. Трехфазный асинхронный двигатель обычно снабжен устройством обнаружения перегрузки для однофазного обнаружения. Тем не менее, машина может выйти из строя в любой момент, и, как опытный судовой инженер, он / она должны знать, как обычно звучит, на ощупь или работает двигатель.

    Дополнительная литература: 10 инженеров-электриков, которые должны знать судовые инженеры на борту судов

    При проверке двигателя судна важно сохранять бдительность, чтобы выявить проблемы, связанные с однофазным режимом:

    — Необычный гудящий шум от двигателя

    — Двигатель вибрирует с большей частотой, чем обычно

    — Запах раскаленной и обгоревшей меди (изоляция) (Узнайте, как проверка изоляции с помощью мегомметра помогает предотвратить несчастные случаи)

    — Видимый легкий дым / дым из корпуса двигателя

    Чтобы устранить неисправность и снова запустить двигатель с однофазного на трехфазный, немедленно остановите двигатель и переключитесь на резервный двигатель.Проверьте параметры двигателя, указанные на табличке, прикрепленной к корпусу, и устраните неисправность двигателя.

    Проведите надлежащий визуальный осмотр обмотки двигателя и проверьте целостность и сопротивление заземления. Также выполняется проверка источника питания двигателя для выявления проблемы, если неисправность не диагностируется двигателем.

    Дополнительная литература: Как ремонтировать двигатели на кораблях

    Как только проблема будет обнаружена и устранена, поместите двигатель в коробку. Перед подключением двигателя к нагрузке включите органы управления двигателем и выполните пробный запуск двигателя по всем важным параметрам (например,грамм. напряжение, ток, частота вращения, температура и т. д.) и сравните со значениями, указанными на табличке.

    Убедитесь, что все размеры соответствуют характеристикам, указанным на паспортной табличке. Как только тестовый запуск двигателя на холостом ходу будет удовлетворен, включите нагрузку и проверьте характеристики двигателя, чтобы убедиться, что проблема устранена и двигатель теперь работает эффективно в 3-х фазном режиме.

    Заявление об ограничении ответственности: Мнения авторов, выраженные в этой статье, не обязательно отражают точку зрения Marine Insight. Данные и диаграммы, если они используются в статье, были получены из доступной информации и не были подтверждены каким-либо установленным законом органом. Автор и компания «Марин Инсайт» не заявляют об их точности и не берут на себя ответственность за них. Взгляды представляют собой только мнения и не представляют собой каких-либо руководящих принципов или рекомендаций относительно какого-либо курса действий, которым должен следовать читатель.

    Данная статья или изображения не могут быть воспроизведены, скопированы, переданы или использованы в любой форме без разрешения автора и Marine Insight.

    .
Опубликовано в категории: Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *