Типовые узлы деревянной стропильной системы: Узлы деревянных крыш, инструкции на фото и видео

Узлы деревянных крыш, инструкции на фото и видео

Термины, используемые при строительстве деревянных ферм

  • Стропила является несущей кровельной частью, в которой задействованы наслонные стропильные ноги, подкосы и вертикальные стойки, опорой которым служит мауэрлат.
  • Стропильная нога – часть стропилины.
  • Мауэрлат представлен в виде опоры для нескольких стропил или, по-другому, горизонтального бруса, укладываемого поверх стен для распределения по ним равномерной нагрузки крыши, важно понимать, зачем нужен мауэрдат.
  • Затяжка – балка, укладываемая горизонтально для соединения стропил и снижающая горизонтальное воздействие на них с целью придания устойчивости крыше, также используется как крепеж для балок.
  • Бабка – укрепляет стропила, кладется: нижняя часть — к затяжке; верхняя – как опора для стропил.
  • Распорка – брус, закрепляемый в качестве соединительного элемента между бревнами.
  • Подкос имеет вид наклонного бруса, используемого для того, чтобы поддержать балки перекрытия из дерева, опирающегося к горизонтальным деталям (стойкам и колоннам).
  • Конек – горизонтально расположенная балка на стыке кровельных скатов.
деревянная крыша узлы

В строительстве узлы деревянной кровли можно распределить на несколько групп:

  1. узел, соединяющий ноги с мауэрлатом;
  2. узел, соединяющий ноги и элементы деревянной фермы для крыши, что делает конструкцию жестче и прочнее;
  3. узел, где стыкуются части стропил, удлиняющиеся за счет него.

В зависимости от желаемого результата, стропила соединяются с мауэрлатом жестким, либо скользящим узлом. Следует помнить, что в некоторых случаях жесткий узел может даже разрушить конструкцию, как на фото, например, погодные условия способствуют сжиманию и разжиманию древесины, а из-за жесткого соединения наслонной системы могут деформироваться несущие стены, подвергаемые большим распорным нагрузкам.

Особенности жестких узлов

Образуется жесткий узел деревянной кровли следующим образом:

  1. На стропильной ноге выполняется врубка на глубину до 1/3 части доски. Затем стропило нужно закрепить к мауэрлату при помощи гвоздей так, чтобы два из них был вбит под небольшим углом друг к другу по бокам стропила, а один – в вертикальном направлении.
  2. К стропильной ноге нашивается подпорный брус длиной 1 м в качестве опоры к мауэрлату, по бокам стропильной ноги для фиксации ее в одном положении вкручиваются металлические уголки.

Особенности скользящих узлов

Соединение элементов наслонной системы выполняется при помощи скользящих узлов. Применение висячих стропил целесообразно при строительстве крыши домов из оцилиндрованных бревен, где в качестве опоры для стропил применяется коньковый прогон, а распорных нагрузок от несущих стен  не возникает.

Только что сооруженные деревянные наслонные фермы будут оседать на протяжении нескольких лет, поэтому использование жестких креплений для постоянно двигающейся фермы приведется к деформации стен. Чтобы избежать подобных проблем, деревянные кровли – узлы стропильной системы которых должны фиксироваться с учетом свободного движения, строятся следующим образом. узел деревянной кровли

Стропильная нога при помощи сделанного ранее запила упирается в мауэрлат и прибивается гвоздями (два по бокам, третий – вертикально).

  1. К опущенному за пределы стены стропилу крепятся металлические уголки, соединяющие его с мауэрлатом.
  2. Металлические конструкции крепятся методом «салазки» (прочтите: «Ферма металлическая, минусы и преимущества»).
  3. Опора стропильной ноги в мауэрлат должна производиться с учетом обеспечения движения этих систем по отношению друг к другу.
  4. Чтобы в случае штормового ветра наслонные крыши не были повреждены, выполняется крепление подкосов, бабок и распорок к висячим стропилам при помощи хомутов и скоб; вокруг ног также закручивают проволочные скрутки.

Как соединяются стропильные ноги

Если кровельные пролеты достаточно большие, то особого внимания требуют не только узлы деревянной кровли, но и стропильные ноги, которые придется удлинять до нужных размеров одним из предложенных методов.

  1. Косой прируб. Выполняется сращивание торцов стропильных досок под углом 45 градусов при помощи болта диаметром 14 мм.
    узлы деревянных крыш устройство
  2. Стык встык. Стропильные доски с торцов подпиливаются под 90 градусов, куда на гвозди или саморезы крепятся накладки досок.
  3. Внахлест. Доски с торцов подпиливаются (угол спила – любой) и крепятся между собой внахлест.

Как правильно соединить наслонные стропила в конструкции

Особое внимание застройщики уделяют коньковому способу соединения сверху.

  1. Соединяющиеся между собой доски нужно обрезать так, чтобы получилась плотная, надежная конструкция, и прибить с обеих сторон (детальнее: «Как соединить стропила между собой»).
  2. Крепление ног производится непосредственно к коньку при помощи торцевого запила.
  3. Соединяются ноги внахлест к коньку на гвозди или металлические саморезы.
    деревянная крыша узлы
  4. Возводится деревянная кровля — узлы которой могут быть подвижными или жесткими, с любым видом крепления, но нужно укрепить всю конструкцию на металлические пластины или доски.
  5. В случае больших нагрузок висячие стропила рекомендуется зафиксировать при помощи одинарного или двойного зуба, либо «в шип».

Основные узлы соединений стропильной системы, детально на видео:

Отличие соединения зубом и «в шип»

  1. Благодаря высокой прочности соединение «в шип» отлично подходит для строительства из дерева. Шип представляет собой выступающую на бревне часть, которая соединяется с гнездом, шпунтом или проушиной другого бревна. По размеру и форме эти два элемента должны совпадать друг с другом.
  2. Соединение зубом выполняется при помощи ступеньки, вырубленной в одном бревне, и выемки – в другом. Так же, как и в случае с предыдущим способом, для плотного прилегания деревянных конструкций крыши нужно соблюдать пропорции их размеров и формы.
Если застройщиком собирается деревянная кровля — узлы ног при соединении с кровельными элементами должны крепиться болтами, шурупами, скобами и саморезами. Диаметр отверстия должен быть меньше на 1-2 мм самого крепежа, крепление скоб выполняется по обе стороны элементов.

При коньковом способе соединения стропильных ног используется ригель, располагаемый вверху конструкции, а вырубка паза выполняется на половину толщины бревна. Только при соблюдении данных требований будет обеспечено плотное прилегание бревен между собой. На следующем этапе узел крепится на болты и специальные скобы.

узел деревянной кровли Ровной получится деревянная крыша — узлы могут быть любой конструкции, только при одинаковых стропильных ногах. Опытные строители рекомендуют создать шаблон, чтобы все врезки и запилы были одной величины (почитайте: «Устройство деревянной крыши — особенности покрытия»).

Узлы соединения стропильных конструкций — Всё о кровле

Разновидности наслонных стропил: конструкция и узлы

Помимо декоративных особенностей, кровля любых строений должна иметь качественный тип конструкции и быть высокопрочной. Эти факторы имеют первостепенное значение для надежности крыши, они достигаются при помощи монтажа стропил и каркаса, передающих необходимое давление на стены постройки.

В строительстве домов с опорными стенами необходимо применять узлы стропил наслонного типа.

В строениях с наличием опорных стен применяются узлы стропил наслонного типа.

Они подразделяются на несколько видов, особенности которых рассмотрены ниже.

Узлы соединения стропильных конструкций

Основное преимущество таких стропил – это долгий срок службы, поскольку они размещаются в местах, где происходит постоянный воздухообмен. Это обстоятельство не позволяет сырости сохраняться в древесной структуре элементов конструкции, таким образом защищая их от гниения и разрушения. Наслонные стропила имеют простейшую конструкцию, поэтому их устройство не вызывает каких-либо проблем.

Схема узлов соединения стропильной системы.

Узлы соединения стропильной системы включают в себя следующие детали:

  • опорное основание;
  • части, размещающиеся под стропилами;
  • каркас.

Конструктивные особенности наслонных несущих для односкатного типа кровли оснащаются дополнительными опорами, боковая часть которых размещается на противоположных сторонах стен здания. Для двухскатного типа кровли дополнительно используются двойные стропильные ноги с уклоном. Их нижняя часть размещается в упор к стене, а верхняя часть опирается на прогон, поддерживаемый при помощи специальных стоек.

Если расстояние прохода увеличить, есть риск сгибания, поломки и дальнейшего прихода в неисправность стропильной ноги. Это можно предотвратить при помощи несущих частей, размещающихся под стропилами. Они состоят из специальных стоек и подпорок из досок, которые размещаются во время соединения опор. Такой подход позволяет укрепить наслонную конструкцию, придав ей больше надежности.

Опорные системы делятся на 2 основных типа: безраспорная и распорная.

Несущие узлы и метод крепления стропильного основания позволяют определить, создается ли распор на несущие стены.

Безраспорные наслонные стропила

Схема расположения наслонных стропил для двухскатных крыш.

В этой конструкции опорное основание монтируется на изгиб, оно не перераспределяет распирающее усиление на несущие стены. Обустройство безраспорной системы предполагает 3 различных вариации.

В первом случае внизу опорного основания закрепляется несущий брус или создается выемка и соединяется с мауэрлатом. В верхней части опоры создается выемка с большим размером и небольшим уклоном. Это нужно для предотвращения упора в прогон краевой частью, так как возникнет вероятность оказания давления на стропила, что приведет к прогибу.

Учитывая, что на концах опоры прогиб стремится к нулевой отметке, его все равно можно подрезать, но с небольшой оговоркой. Во всех случаях размер подреза должен быть меньше величины сечения опоры. Если по определенным обстоятельствам не удается осуществить подрезку, принято производить наращивание при помощи стропильных обрезков. Они закрепляются строительными пластинами со всех сторон.

В процессе установки потребуется создать наибольшую степень горизонтальности для покрытия верхней выемки. Изменив тип несущей опоры, существует вероятность образования распорной наслонной системы.

Во 2-ом случае нижняя часть опорной основы размещается на ползуне. Этот метод является самым популярным. Верхняя часть крепится на болтовом соединении или гвоздях. Крепление также делается путем упора стропил друг в друга, они соединяются при помощи монтажных пластин или древесных накладок.

Схема узла крепления стропил на ползуне.

Данный метод подразумевает закрепление опоры к мауэрлату с учетом задуманного интервала. Соединение можно создать посредством 2-х гвоздей, забивающихся под определенным наклоном в краевое покрытие, или при помощи 1-го, прибитого в верхнюю часть. Кроме того, можно воспользоваться любой пластиной смягченного типа.

В 3-м случае создается крепкое защемление конька. Если верхняя часть закрепляется таким образом, а нижняя размещается на ползуне, удается избежать возникновения распора на стены. Этот метод подразумевает образование повышенного давления на изгиб, но вместе с тем опорное основание больше защищено от прогиба. Крепкое защемление верхней части стропил позволяет обеспечить резервную надежность, увеличивающую несущую способность опоры.

Вышеперечисленные методы конструкции наслонных стропил имеют единый принцип построения: одна сторона опоры крепится на шарнире, а другая размещается на ползуне, что позволяет осуществлять поворот.

Схема вариантов крепления стропил к стене.

Закрепление на скользящих опорах осуществляется несколькими способами:

  • забиванием гвоздей;
  • строительными скобами;
  • укрепляющими пластинами.

Все методы наделяют конструкцию неподвижностью при оказании неровного давления и при различной степени уклона кровли. Для этого потребуется опереть коньковый прогон краями на стенные фронтоны. Если упор будет сделан на стойки, то неподвижность не гарантируется.

2 и 3 методы обеспечивают неподвижность посредством равномерного давления на 2 ската кровли, а также идентичности степени их уклона. Практика показывает, что абсолютно равномерного давления на кровельные скаты не бывает. Это обусловлено атмосферными и погодными явлениями, так как растаявший снег и ветер оказывают различную степень нагрузки на каждый из скатов.

Первый метод позволяет создавать различную степень уклона кровельных скатов, отлично справляясь с неравномерным давлением. Но для этого потребуется добиться абсолютной вертикальности стропил, которые поддерживают крышной конек.

Распорные наслонные стропила

Схема соединения распорных наслонных стропил.

Для получения распорной системы во всех 3-х методах необходимо поменять двойной уровень опоры на одинарный. 1-ый метод подразумевает крепкое закрепление верхних частей опорной основы на болты или гвозди, образуя несущую на основе шарнира.

Узлы соединения для распорной системы являются практически такими же, как и для безраспорной. Давление на изгиб и защемление остается неизменными, образуя распор, оказывающий нагрузку на стены здания. Эта система включает в свою конструкцию и наслонные, и висячие опоры, поэтому ее принято называть гибридной.

Распорная конструкция статична, устойчива ко всем возможным типам давления, но для этого необходимо хорошо закрепить мауэрлат на стене. Монтаж коньковых прогонов также уменьшает распор. Его надежность можно повысить посредством увеличения количества опор и поперечин. Эта система больше всего подходит для построек, возведенных на основе бревен, бруса и облегченного бетона. Здания на бетонной, кирпичной и панельной основе гораздо лучше справляются с распором.

Детали, размещающиеся под стропилами

Схема поперечной схватки стропил.

Для придания надежности конструкции необходимо оснастить ее поперечной схваткой. Этот метод слегка повышает устойчивость в узлах наслонных стропил. Закрепление схватки производится в пунктах пересечения опор, которые удерживают коньковый прогон. Она размещается на расстоянии 2 м от пола чердака, чтобы люди могли свободно перемещаться по нему. Если край стропила выносится за стену, надежность наслонной системы обеспечивается при любом типе давления.

Укрепляя поперечные схватки, необходимо высверливать идентичные с диаметром болтов отверстия или на 1 мм меньше. Если возникнет непредвиденная аварийная ситуация, схватка сработает моментально.

Повышение надежности наслонных стропил достигается при помощи дополнительного укрепления нижней части опор, удерживающих коньковый прогон. Однако это не всегда осуществимо, так как каждый чердак имеет свои особенности построения.

Если применяется подкос, стропила подпираются дополнительной стойкой, которая создает систему из 2-х пролетов. Он закрепляется под наклоном в 45° при помощи бруска или накладок.

Грамотный подбор системы наслонных стропил и ее конструктивных особенностей с учетом всех деталей обеспечит любую крышу высокой степенью прочности.

Стропильная система: узлы соединения

Древесные стропильные фермы строят или из наслонных, или из висячих стропилин, естественно, их вид зовется наслонным или висячим. Подбирая устройство того или другого вида конструкции крыши, руководствуются такими параметрами:

  1. климатические свойства региона,
  2. нагрузка на кровлю осадков атмосферы (талые и дождевые воды, ветер),
  3. практичность крыши,
  4. форма архитектуры подобранного хозяином проекта крыши.

Какой бы вид конструкции древесных ферм ни выбрали, высокопрофессиональные и крепкое устройство узлов конструкции гарантирует основательность и долговечность всей кровли. И поэтому устройство систем и узлов наслонных кровельных конструкций стоит поручить высококвалифицированным мастерам: их расчетная схема и высококачественная установка подвластна только профессионалам.

Коньковый вариант соединения наслонных стропильных ног между собой вверху при помощи ригеля выполняют вполдерева, когда у объединяемых меж собой бревен вырубают паз в полтолщины бревна и пазы бревен прекрасно входят один в иной.

Важные термины

  • Стропилины — несущая часть кровли из наслонных стропильных ног, подкосов и стоек установленнных вертикально, которые опираются на мауэрлат.
  • Стропильная нога — одна стропилина.
  • Мауэрлат — опора для стропилин, горизонтальный брусок, расположенный на поверхности стен, распределяющий на них одинаковую нагрузку кровли с погодными осадками.
  • Затяжка — горизонтальная балка, объединяющая стропилины; освобождая их от действий в горизонтальном направлении силы, придаёт кровле стойкость.
  • Бабка — отвесная опорная деталь для упрочнения стропилин, нижней частью опирается на затяжку, верхняя — является опорой для стропилин.
  • Распорка — брусок, вставленный между бревнами, чтоб мешать их соединению.
  • Подкос — наклонный брусок, поддержует перекрытия и кровли (горизонтальные элементы балки), опираясь на детали стоящие вертикально (стойки и колонны).
  • Конек — верхняя горизонтальная балка, образовываемая соединением скатов крыши.

Узлы соединения системы кровли разделяют на три относительные группы:

  1. узел соединения ног и мауэрлата,
  2. узел соединения ног и компонентов древесной фермы чтобы придать жесткости и надежности систем,
  3. узел стыкования частей стропилин для их удлинения.

Вариант соединения стропилин и мауэрлата бывает твёрдым и скользящим.

Узел соединения систем нельзя делать жёстким абсолютно всегда: от условий погоды древесина может разжиматься и сжиматься, и при твёрдом соединении систем наслонных конструкций есть риск деформирования стен несущих из-за появления на них больших распорных нагрузок.

Чтобы получить твёрдый узел соединения, используют:

  1. устройство врубки на стропильной ноге: врубка изготавливается глубиной не больше 1/3 высоты дощечки; стропило упирается в мауэрлат и крепится гвоздками: 2-мя, вбитыми под угол друг к другу с боков стропилины, и одним гвоздем, вбитым вертикально.
  2. нашивка подпорного бруска на стропильную ногу: к стропильной ноге подшивается метровый брусок, и им нога упирается в мауэрлат, с боковой стороны, чтоб не сдвинуться в сторону, стропильная нога закрепляется уголками из металла.

Узлы опирания наслонных стропилин

Конструкция скользящих узлов соединения используют в системах наслонных стропилин. Висячие стропилины используют для строительства крыши строений из бревна оцилиндрованного, в каких стропилины имеют упор на коньковый прогон, несущие стены распорных нагрузок не несут, и поэтому и не просят скользящего крепежи.

После постройки систем древесных наслонных ферм крыша на протяжении пару лет оседает, ферма при этом располагается в многократном движении, и поэтому твёрдые крепежи могут деформировать стены. Перед соединением стропилин в узлах крепежи узел получает некую свободу движения такими вариантами.

На стропильной ноге делается упирающийся в мауэрлат запил. Дальше нога крепится гвоздками: два гвоздя наискось в мауэрлат с двух сторон стропилины и одним — в мауэрлат сверху вертикально (или пластинами из металла с отверстеями для гвоздей) и скобками.

  1. Стропило спускается за границы стены и уголками из металла крепится на мауэрлат.
  2. Использование конструкций из металла крепежи с названием «салазки».
  3. Стропильная нога упирается в мауэрлат абсолютно всегда, но и стропило, и мауэрлат могут перемещаться относительно друг друга, если появляется такого рода потребность.
  4. Для сокращения риска сноса наслонных кровель штормовым ветром подкосы, бабки и распорки соединяют с скобами стропилами и висячими хомутами, а ноги — проволочным скрутками.

Схема соединения стропильных ног

Узел опирания скользящим вариантом

При существенных пролетах крыши нужно удлинение систем стропильных ног такими вариантами соединения:

  1. косым прирубом: торцы стропильных дощечек соединяются сверху болтом с диаметром 12-14 мм под угол 45%,
  2. встык: торцы стропильных дощечек обрезаются под угол 90%, накладками дощечек соединения как в шахматах с двух сторон прибиваются гвоздками (ввинчиваются саморезами),
  3. внахлест: торцы дощечек обрезаются под любым углом, и дощечки ложатся друг на друга внахлест.

Соединительная система наслонных стропилин с другими конструкционными элементами

Коньковый вариант соединения сверху:

  1. Дощечки под угол обрезаются так, чтобы устройство их соединения между собой было крепким, и прибиваются гвоздками с 2-ух сторон.
  2. Ноги крепятся прямиком к коньку при помощи запила нужной формы на срезе стропилин.
  3. Ноги между собой соединяются внахлест в коньковый верх гвоздками или металлическими саморезами.
  4. Применяя любой вид крепежи, следует дополнительно подстраховаться — выполнить укрепление всех систем соединения пластинами из металла или дощечками.
  5. Висячие стропилины при больших нагрузках соединяют между собой одинарным или двойным зубом или «в шип» (см. сноску-примечание).

Примечания:

Важные узлы висячих стропилин

  1. Соединительная система в шип весьма крепкая, и поэтому часто используется в работе с деревом. Шип — выступающая часть на конце бревна, входящая в гнездо, шпунт или проушину другого бревна. Размер и форма шипа обязана совмещаться с формой и размером гнезда или проушины.
  2. соединение зубом: в конце одного бревна вырубается ступенька, в конце другого — углубление; ступенька и выемка должны отвечать друг другу по форме и размеру, тогда соединение бревен будет крепким.

Все узлы соединения ног с другими компонентами кровли для хорошей надежности настаивают добавочных систем крепежа: болтов, дюбелей, скобок или шурупов, при этом в дощечках отверстие изготавливается на 1 мм поменьше диаметра самореза, а скобки забиваются с 2-ух сторон объединяемых компонентов.

Коньковый вариант соединения наслонных стропильных ног между собой вверху при помощи ригеля выполняют вполдерева, когда у объединяемых меж собой бревен вырубают паз в полтолщины бревна и пазы бревен прекрасно входят один в иной. Потом узел крепят болтами и добавочными скобками.

Чтоб крыша была идеальной, стропильные ноги обязаны быть похожими. Для этого заблаговременно нужно сделать шаблон для врезок и запилов других стропилин. Так поступают специалисты.

Кажется, все не тяжело, если есть голова и руки. Но, как в каждом деле, требуется навык: кровля — солидная система, ни один любитель не изготовит конструкции узлов соединения древесной фермы лучше, чем специалист.

Устройство стропильной системы крыши

Чтобы отстроенный дом прослужил много лет, будучи крепким и надежным, ему нужен не только хороший фундамент. Не менее значимым элементом является стропильная система крыши, которая принимает на себя все превратности непогоды. И она с честью должна выдержать нагрузки в виде порывов ветра, обильных снегопадов и сильных ливней. Поговорим о том, как устроена и как правильно построить эту систему.

Требования предъявляемые к стропильной системе

Прежде всего, каждая деталь системы, а также места соединений обязаны быть жесткими, не деформируясь ни при усилии сдвига, ни при усилии распора. Основа всей конструкции – треугольник. Именно такую форму имеют рамы (фермы), которые закрепляются параллельно друг другу. Их жесткая фиксация обеспечивает крыше необходимую устойчивость. А вот если фермы получились подвижными, недалеко и до беды. Такая неполноценная крыша и сама может разрушиться, и стены обвалить.

Небольшой вес

Крыша не должна быть тяжелой, поэтому систему стропил, как правило, делают из дерева. Если же вес кровли солидный, то несущую основу делают из металла. Или берут хвойное дерево, не ниже первого сорта, с влажностью ниже 18 процентов. Использование антисептической обработки и применение антипиренов для защиты от огня – два обязательных условия. Тогда узлы крепления стропильной системы кровли будут прочными и крепкими.

Высокое качество материала

Дерево для стропил должно быть следующим:

  • Древесина берется 1 — 3 сорта. Трещин и сучков должно быть по минимуму. На метр может быть 3 сучка высотой не более 3 см. Трещины допустимы не по всей глубине, длиной до половины длины доски.
  • Несущие элементы делают из деревянных деталей толщиной от 5 см, площадью от 40 см 2 .
  • Хвойные доски могут быть длиной до 6,5 м, а лиственные – до 4,5 м.
  • Прогоны, подушки и мауэрлат делают из твердых лиственных пород дерева. Их обрабатывают антисептиком.

Основные части конструкции стропильной системы

Продумывая устройство стропильной системы крыши, необходимо знать, из каких деталей эта самая система состоит.

#1. Мауэрлат – это как бы фундамент всей системы. Он помогает равномерно распределить нагрузку на стены.

#2. Стропильная нога определяет угол наклона ската, а также общий вид кровли, жестко фиксируя отдельные элементы.

#3. Прогон – скрепляет ноги стропил. Коньковый прогон находится вверху, боковые прогоны – сбоку.

#4. Затяжка – не дает стропильным ногам разъезжаться, соединяя их внизу.

#5. Стойки и подкосы – дают ногам стропил дополнительную устойчивость. Они упираются в лежень (который лежит внизу параллельно коньку).

#6. Обрешетка — набивается перпендикулярно стропильным ногам и представляет собой обрезные бруски или доски. Она призвана передавать всю нагрузку от кровельного материала на стропильные ноги.

#7. Конек крыши — это место соединения двух скатов крыши. Вдоль конька набивается сплошная обрешетка для усиления данной части крыши.

#8. Кобылки — применяют для создания свеса в случае если длинна стропильных ног не достаточна.

#9. Свес крыши — это элемент предназначенный для защиты от попадания на стены избыточного количества осадков.

Теперь рассмотрим такой сложный узел как стропильная ферма. Она имеет плоскую форму, а входят в нее, кроме стропил, растяжки, стойки и раскосы. Их располагают так, что нагрузки на стены внутри дома не происходит. Лишь внешние его стены являются опорами, причем нагрузка идет вертикально. Расстояние между фермами определяется расчетами. Если пролет большой, то ферма состоит из нескольких деталей. У чердака нижний пояс фермы служит в качестве потолка.


Выше приведены примеры деревянных стропильных ферм, кроме этого в некоторых случаях применяют фермы сделанные из бетона и металла.

Формы крыш и стропильных систем

Односкатная крыша.

Самое простое устройство стропильной системы имеет крыша с одним скатом, который наклонен под углом от 14 до 26 °. Если дом маленький, а пролет его не превышает 5 м, то нужна система стропил наслонного типа. Опирается она на внешние стены, а также на стену внутри здания (если она есть). Когда пролет более 5 м, нужно использовать стропильные фермы.


Устройство стропил односкатной крыши.

Двускатная крыша

Крыша с двумя скатами также несложная, под ней располагается мансарда или чердак. Уклон ее от 14 до 60 °. Если внешние стены отстоят друг от друга менее чем на 6 метров, делают висячую стропильную систему. Наслонные стропила нужно использовать тогда, когда пролет велик и есть внутренние опоры.


Устройство висячих и наслонных стропиль двускатной крыши.

Четырехскатная крыша

Крыша с четырьмя скатами называется вальмовой или полувальмовой. Ее уклон бывает от 20 до 60 °, а пролет может составлять – до 12 м. При этом должны иметься внутренние опоры. Фронтонные стены в данном случае отсутствуют, что экономит материалы. Однако монтаж подобной крыши сложнее, чем двухскатной. Для такой конструкции крыш стропильные системы делаются либо наслонного типа, либо с применением стропильных ферм.


Особенности конструкции четырехскатной крыши.

Ломанная крыша

Крыша ломаная, или мансардная, внизу может иметь уклон до 60 °. А вот вверху она обычно более пологая. За счет этого площадь мансарды увеличивается. Такая крыша хороша для домов, где ширина не достигает 10 м. Как и в предыдущих случаях, можно применять наслонную систему стропил. Однако фермы использовать предпочтительнее.


Устройство ломанной крыши.

  • Выше перечислены наиболее распространенные, но далеко не все формы крыш, подробнее смотрите материал: Виды крыш частных домов по конструкции и геометрическим формам

Типы стропильных систем — чем они отличаются между собой

Выбирается тот или иной тип стропильной системы не спонтанно, а в зависимости от конструкции строящегося дома и его размеров. Далее о каждом виде стропильных систем.

Система с висячими стропилами

Они хороши для крыш с двумя скатами, где пролет не более 6 метров, а стен внутри не имеется. Внизу опорой стропил служит мауэрлат, а вверху – они опираются друг на друга. Еще имеется затяжка, уменьшающая распор стропил на стены дома. Балочные затяжки размещены в самом низу стропильных ног – они одновременно служат в качестве балок перекрытия. Кстати перекрытие верхнего этажа, выполненное из железобетона, тоже может играть роль затяжки. Если затяжку делают повыше, она уже называется ригелем. Если пролет между наружными стенами более 6 м необходимо применение опорных стоек и раскосов для поддержания стропильных ног. При этом длинна нижней части стропил т. е. части после подпорки, должна быть не более 4,5 м.

Перечислим несколько важных фактов об их конструкции:

  • Опирать свес крыши на низ стропильных ног, выведенных за пределы стены, не стоит. Гораздо лучше для опоры таких стропильных систем крыши подойдет кобылка (при этом ширину свеса делают до метра). И тогда нога будет всей плоскостью опираться на мауэрлат. Сечение кобылок обычно меньше сечения стропильных ног.
  • На скате нужно прибить ветровую доску, от конька к мауэрлату. Наклон делают от чердака. Это необходимо, чтобы крыша стала жесткой, не шаталась и не разрушалась ветром.
  • Если влажность деревянного стропильного материала более 18 %, готовьтесь к тому, что система стропил после высыхания дерева может стать шаткой. Поэтому соединяйте такое дерево не гвоздями, а болтами – их подтянуть можно в случае чего. А еще лучше использовать винты или ершенные гвозди.

Наслонные стропильные системы

Они подходят для крыш, где пролет составляет от 10 до 16 м. Уклон может быть любым, а внутри здания должны быть несущие стены или колонны. Вверху стропила опираются на коньковый прогон внизу — мауэрлат. Коньковый прогон поддерживается либо внутренней стеной (лежнем), либо стойками. Так как нагрузки имеются лишь вертикальные, то в затяжке потребности нет.

Когда пролет большой (до 16 м), можно заменить прогон конька двумя боковыми, которые будут опираться на стойки. Чтобы стропильные ноги не гнулись, нужны подкосы и ригели. Если изготавливают мансарду, опорой наслонных строил можно сделать стену, высота которой от 1 до 1,5 м. Ну, или применить ломаную мансардную крышу (с ломаными скатами).

На что необходимо обращать особое внимание:

  • Каждый из элементов данной системы не должен иметь толщину менее 5 см.
  • Гладкая прогаблеванная поверхность всех узлов стропильной системы – необходимое условие. Так они не прогниют и не так сильно будут подвержены грибку.
  • Добавление дополнительных узлов «от фонаря» в рассчитанную систему стропил запрещено. Иначе нагрузки могут возникнуть совсем не там, где нужно.
  • Мауэрлат (его подошва) обязан лечь строго горизонтально относительно стен. Требует горизонтальности и поверхность стыковки мауэрлата со стропильной ногой. Иначе может и опрокинуться опора.
  • Стойки и подкосы располагают максимально симметрично.
  • Чтобы стропила не мокли и не подгнили, делают хорошую вентиляцию. Для этого в крыше мансарды предусматривают щели, в крыше чердака – продухи.
  • Там, где стропильные узлы стыкуются с каменной кладкой, нужна гидроизоляция. А то конденсат испортит дерево.
  • Не имеющая опоры или подкоса, нога стропил, делается длинной не более 4,5 м.

Соединительные элементы

Чтобы крыша получилась надежной, узлы стропильной системы должны правильно соединяться. Нужно при этом учесть направление и силу нагрузок (как статических, так и динамических). А еще важно предусмотреть возможное растрескивание дерева от усушки, сделав так, чтобы узлы системы стропил при этом не перестали исправно работать.

Ранее все детали стропильной системы скрепляли между собой врубками. Это надежно, но не слишком экономно. Ведь для этого нужно, чтобы деревянные конструкции имели большие сечения, которые позволяли бы делать врубки безопасно ослабляя деревянные элементы.

Поэтому в нынешнее время узлы стропил скрепляют не врубками, а нагелями и болтами.


Способы крепления стропильных ног.

Популярно применение перфорированных стальных накладок, имеющих покрытие от коррозии. Закрепляют накладки гвоздями или пластинами с зубцами, утопленными в дерево. Такой крепеж для стропильной системы удобен тем, что:

  • Накладки уменьшают расход дерева на одну пятую, так как требуются элементы меньшего сечения, чем при врубке;
  • они могут монтироваться мастером с не очень большим опытом;
  • они закрепляются весьма быстро.


Перфорированные пластины использующиеся для крепления стропил.

На последок можете посмотреть полезное видео в котором рассказывается о всех самых важных моментах конструирования стропильной системы крыши.

Материал подготовлен авторами проекта SRBU.RU

Видео: Стропильная система крыши, что нужно знать для правильного конструирования

Источники: http://1poderevu.ru/vidy/naslonnye-stropila-konstrukciya-i-uzly.html, http://certainteed.by/articles/stropilnaja-sistema-uzly-soedinenija, http://srbu.ru/krysha/152-stropilnaya-sistema-kryshi-ustrojstvo.html

Стропильная система крыши — устройство, конструкция и составные узлы

Чтобы отстроенный дом прослужил много лет, будучи крепким и надежным, ему нужен не только хороший фундамент. Не менее значимым элементом является стропильная система крыши, которая принимает на себя все превратности непогоды. И она с честью должна выдержать нагрузки в виде порывов ветра, обильных снегопадов и сильных ливней. Поговорим о том, как устроена и как правильно построить эту систему.

Стропильная система крыши, ее устройство, разновидности и крепеж

Требования предъявляемые к стропильной системе

Жесткость

Прежде всего, каждая деталь системы, а также места соединений обязаны быть жесткими, не деформируясь ни при усилии сдвига, ни при усилии распора. Основа всей конструкции – треугольник. Именно такую форму имеют рамы (фермы), которые закрепляются параллельно друг другу. Их жесткая фиксация обеспечивает крыше необходимую устойчивость. А вот если фермы получились подвижными, недалеко и до беды. Такая неполноценная крыша и сама может разрушиться, и стены обвалить.

Небольшой вес

Крыша не должна быть тяжелой, поэтому систему стропил, как правило, делают из дерева. Если же вес кровли солидный, то несущую основу делают из металла. Или берут хвойное дерево, не ниже первого сорта, с влажностью ниже 18 процентов. Использование антисептической обработки и применение антипиренов для защиты от огня – два обязательных условия. Тогда узлы крепления стропильной системы кровли будут прочными и крепкими.

Высокое качество материала

Дерево для стропил должно быть следующим:

  • Древесина берется 1 — 3 сорта. Трещин и сучков должно быть по минимуму. На метр может быть 3 сучка высотой не более 3 см. Трещины допустимы не по всей глубине, длиной до половины длины доски.
  • Несущие элементы делают из деревянных деталей толщиной от 5 см, площадью от 40 см2.
  • Хвойные доски могут быть длиной до 6,5 м, а лиственные – до 4,5 м.
  • Прогоны, подушки и мауэрлат делают из твердых лиственных пород дерева. Их обрабатывают антисептиком.

Основные части конструкции стропильной системы

Продумывая устройство стропильной системы крыши, необходимо знать, из каких деталей эта самая система состоит.

#1. Мауэрлат – это как бы фундамент всей системы. Он помогает равномерно распределить нагрузку на стены.

#2. Стропильная нога определяет угол наклона ската, а также общий вид кровли, жестко фиксируя отдельные элементы.

#3. Прогон – скрепляет ноги стропил. Коньковый прогон находится вверху, боковые прогоны – сбоку.

#4. Затяжка – не дает стропильным ногам разъезжаться, соединяя их внизу.

#5. Стойки и подкосы – дают ногам стропил дополнительную устойчивость. Они упираются в лежень (который лежит внизу параллельно коньку).

#6. Обрешетка — набивается перпендикулярно стропильным ногам и представляет собой обрезные бруски или доски. Она призвана передавать всю нагрузку от кровельного материала на стропильные ноги. 

#7. Конек крыши — это место соединения двух скатов крыши. Вдоль конька набивается сплошная обрешетка для усиления данной части крыши.

#8. Кобылки — применяют для создания свеса в случае если длинна стропильных ног не достаточна.

#9. Свес крыши — это элемент предназначенный для защиты от попадания на стены избыточного количества осадков.

Составные части стропильной системы

Теперь рассмотрим такой сложный узел как стропильная ферма. Она имеет плоскую форму, а входят в нее, кроме стропил, растяжки, стойки и раскосы. Их располагают так, что нагрузки на стены внутри дома не происходит. Лишь внешние его стены являются опорами, причем нагрузка идет вертикально. Расстояние между фермами определяется расчетами. Если пролет большой, то ферма состоит из нескольких деталей. У чердака нижний пояс фермы служит в качестве потолка. 

Стропильная ферма
Выше приведены примеры деревянных стропильных ферм, кроме этого в некоторых случаях применяют фермы сделанные из бетона и металла.

Читайте также:

Формы крыш и стропильных систем

Односкатная крыша.

Самое простое устройство стропильной системы имеет крыша с одним скатом, который наклонен под углом от 14 до 26 °. Если дом маленький, а пролет его не превышает 5 м, то нужна система стропил наслонного типа. Опирается она на внешние стены, а также на стену внутри здания (если она есть). Когда пролет более 5 м, нужно использовать стропильные фермы.

Устройство односкатной крыши
Устройство стропил односкатной крыши.

Двускатная крыша

Крыша с двумя скатами также несложная, под ней располагается мансарда или чердак. Уклон ее от 14 до 60 °. Если внешние стены отстоят друг от друга менее чем на 6 метров, делают висячую стропильную систему. Наслонные стропила нужно использовать тогда, когда пролет велик и есть внутренние опоры.

Двускатная стропильная система
Устройство висячих и наслонных стропиль двускатной крыши.

Четырехскатная крыша

Крыша с четырьмя скатами называется вальмовой или полувальмовой. Ее уклон бывает от 20 до 60 °, а пролет может составлять – до 12 м. При этом должны иметься внутренние опоры. Фронтонные стены в данном случае отсутствуют, что экономит материалы. Однако монтаж подобной крыши сложнее, чем двухскатной. Для такой конструкции крыш стропильные системы делаются либо наслонного типа, либо с применением стропильных ферм.

Четырехскатная крыша
Особенности конструкции четырехскатной крыши.

Ломанная крыша

Крыша ломаная, или мансардная, внизу может иметь уклон до 60 °. А вот вверху она обычно более пологая. За счет этого площадь мансарды увеличивается. Такая крыша хороша для домов, где ширина не достигает 10 м. Как и в предыдущих случаях, можно применять наслонную систему стропил. Однако фермы использовать предпочтительнее.

Ломанная крыша
Устройство ломанной крыши.

Типы стропильных систем — чем они отличаются между собой

Выбирается тот или иной тип стропильной системы не спонтанно, а в зависимости от конструкции строящегося дома и его размеров. Далее о каждом виде стропильных систем.

Система с висячими стропилами

Они хороши для крыш с двумя скатами, где пролет не более 6 метров, а стен внутри не имеется. Внизу опорой стропил служит мауэрлат, а вверху – они опираются друг на друга. Еще имеется затяжка, уменьшающая распор стропил на стены дома. Балочные затяжки размещены в самом низу стропильных ног – они одновременно служат в качестве балок перекрытия. Кстати перекрытие верхнего этажа, выполненное из железобетона, тоже может играть роль затяжки. Если затяжку делают повыше, она уже называется ригелем. Если пролет между наружными стенами более 6 м необходимо применение опорных стоек и раскосов для поддержания стропильных ног. При этом длинна нижней части стропил т. е. части после подпорки, должна быть не более 4,5 м.

Примеры висячих стропил

Перечислим несколько важных фактов об их конструкции:

  • Опирать свес крыши на низ стропильных ног, выведенных за пределы стены, не стоит. Гораздо лучше для опоры таких стропильных систем крыши подойдет кобылка (при этом ширину свеса делают до метра). И тогда нога будет всей плоскостью опираться на мауэрлат. Сечение кобылок обычно меньше сечения стропильных ног.
  • На скате нужно прибить ветровую доску, от конька к мауэрлату. Наклон делают от чердака. Это необходимо, чтобы крыша стала жесткой, не шаталась и не разрушалась ветром.
  • Если влажность деревянного стропильного материала более 18 %, готовьтесь к тому, что система стропил после высыхания дерева может стать шаткой. Поэтому соединяйте такое дерево не гвоздями, а болтами – их подтянуть можно в случае чего. А еще лучше использовать винты или ершенные гвозди.

Читайте также:

Наслонные стропильные системы

Они подходят для крыш, где пролет составляет от 10 до 16 м. Уклон может быть любым, а внутри здания должны быть несущие стены или колонны. Вверху стропила опираются на коньковый прогон внизу — мауэрлат. Коньковый прогон поддерживается либо внутренней стеной (лежнем), либо стойками. Так как нагрузки имеются лишь вертикальные, то в затяжке потребности нет.

Когда пролет большой (до 16 м), можно заменить прогон конька двумя боковыми, которые будут опираться на стойки. Чтобы стропильные ноги не гнулись, нужны подкосы и ригели. Если изготавливают мансарду, опорой наслонных строил можно сделать стену, высота которой от 1 до 1,5 м. Ну, или применить ломаную мансардную крышу (с ломаными скатами).

Примеры наслонных стропильных систем

На что необходимо обращать особое внимание:

  • Каждый из элементов данной системы не должен иметь толщину менее 5 см.
  • Гладкая прогаблеванная поверхность всех узлов стропильной системы – необходимое условие. Так они не прогниют и не так сильно будут подвержены грибку.
  • Добавление дополнительных узлов «от фонаря» в рассчитанную систему стропил запрещено. Иначе нагрузки могут возникнуть совсем не там, где нужно.
  • Мауэрлат (его подошва) обязан лечь строго горизонтально относительно стен. Требует горизонтальности и поверхность стыковки мауэрлата со стропильной ногой. Иначе может и опрокинуться опора.
  • Стойки и подкосы располагают максимально симметрично.
  • Чтобы стропила не мокли и не подгнили, делают хорошую вентиляцию. Для этого в крыше мансарды предусматривают щели, в крыше чердака – продухи.
  • Там, где стропильные узлы стыкуются с каменной кладкой, нужна гидроизоляция. А то конденсат испортит дерево.
  • Не имеющая опоры или подкоса, нога стропил, делается длинной не более 4,5 м.

Соединительные элементы

Чтобы крыша получилась надежной, узлы стропильной системы должны правильно соединяться. Нужно при этом учесть направление и силу нагрузок (как статических, так и динамических). А еще важно предусмотреть возможное растрескивание дерева от усушки, сделав так, чтобы узлы системы стропил при этом не перестали исправно работать.

Ранее все детали стропильной системы скрепляли между собой врубками. Это надежно, но не слишком экономно. Ведь для этого нужно, чтобы деревянные конструкции имели большие сечения, которые позволяли бы делать врубки безопасно ослабляя деревянные элементы.

Поэтому в нынешнее время узлы стропил скрепляют не врубками, а нагелями и болтами.

Способы крепления стропил
Способы крепления стропильных ног.

Популярно применение перфорированных стальных накладок, имеющих покрытие от коррозии. Закрепляют накладки гвоздями или пластинами с зубцами, утопленными в дерево. Такой крепеж для стропильной системы удобен тем, что:

  • Накладки уменьшают расход дерева на одну пятую, так как требуются элементы меньшего сечения, чем при врубке;
  • они могут монтироваться мастером с не очень большим опытом;
  • они закрепляются весьма быстро.

Крепежные пластины для стропил
Перфорированные пластины использующиеся для крепления стропил.

На последок можете посмотреть полезное видео в котором рассказывается о всех самых важных моментах конструирования стропильной системы крыши.

Видео. Стропильная система крыши, что нужно знать для правильного конструирования

Если вы заметили ошибку, не рабочее видео или ссылку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

для маленьких и больших домов. Соединение стропил с коньковым прогоном

Для долговечной и надежной кровли важно качественно сделать все узлы стропильной системы. Что это значит, мы и разберем прямо сейчас.

Стропила – это скелет кровли, на котором держатся внутренняя и внешняя обшивка, утеплитель, гидроизоляция и иные элементы. Также очень часто именно их используют в качестве основы под коммуникации. На крышу и, соответственно, стропила приходятся огромные нагрузки, которые могут достигать 200 кг/м 2 . Это вес строительных материалов, снега с листвой и прочего мусора. А чего стоят порывы ветра?

Стропила кровли как основа под коммуникации

При проведении ремонтных работ эта система должна выдержать не только вес человека, но и необходимого оборудования. При этом все эти параметры строго индивидуальны и зависят от ряда факторов, начиная от конфигурации и заканчивая климатической зоной. Однако в любом случае кровля и все ее элементы должны быть достаточно надежными, и только тогда мы сможем себя чувствовать действительно защищенно.

Для начала необходимо ознакомиться с терминологией. Фундаментом всей системы по праву можно назвать мауэрлат. Он представляет собой балку, на которой и крепится конструкция. Его главная функция – равномерное распределение нагрузок на стены. А вот балка, на которой фиксируется обрешетка, называется стропильной ногой. Это важнейший элемент, определяющий угол наклона ската и общий вид кровли. Между собой стропильные ноги скрепляет прогон. Он располагается как сверху, так и сбоку. В зависимости от этого бывают коньковые и боковые прогоны. В нижней части ноги фиксируются при помощи затяжки.

Мауэрлат для крепления стропильной конструкции

Благодаря подкосам и стойкам стропильные балки располагаются максимально устойчиво. Перпендикулярно ногам набиваются обрезные доски – обрешетка. Она служит основой для кровельного материала. А место соединения скатов кровли принято называть коньком. На нем набивается сплошная обрешетка, чтобы сделать эту часть крыши максимально надежной. Продолжение стропильных ног – кобылки. Они располагаются под свесом, защищающим стены от осадков. Очень часто первыми начинают гнить именно эти конструктивные элементы, так как они наиболее подвержены негативному влиянию погоды, при этом сами ноги могут служить еще очень долго. Надежность всей конструкции зависит от того, насколько качественным будет абсолютно каждый узел крепления . О них мы и поговорим более подробно.

Это понятие объединяет в себе ряд конструктивных элементов, так как они состоят из обрешетки, стоек и раскосов . По сути, эта жесткая конструкция и есть скелет кровли. В зависимости от размеров и личных пожеланий выделяют четыре вида ферм. Если ширина дома составляет от 12 до 24 м, тогда наиболее подходящими будет сегментная или трапециевидная форма. Для более габаритных конструкций, шириной до 36 м, подойдет многоугольная. А вот классическая треугольная станет прекрасным решением при строительстве домов шириной 9–18 м.

Стропильные фермы разных размеров

Огромную роль играет и материал. Наиболее часто используется древесина. В этом случае монтаж балок происходит путем врубки и последующей фиксации гвоздями, саморезами и иными крепежными элементами. Однако не во всех случаях актуально применение дерева. Так, если длина пролета превышает 16 м, тогда более подходящими будут фермы с растянутыми металлическими стойками, так как обеспечить надежные крепления деревянных элементов в этом случае будет тяжело. Еще пользуется популярностью комбинированный тип, в котором одновременно используются и деревянные, и металлические детали.

Конек представляет собой горизонтальное ребро в месте соединения двух скатов. Существует наслонная и стропильная система висячего типа. В первом случае конек устанавливается на стойки, расположенные параллельно длинным стенам. Очень важно обеспечить максимальное примыкание стропил к коньку, для этого делаются соответствующие запилы. Фиксация делается посредством гвоздей.

Конек в месте соединения двух скатов

Если речь идет о висячей конструкции, то концы стропильных ног соединяются попарно. Чтобы обеспечить подобное сопряжение, торец каждой балки подрезается под углом, равным наклону кровли. Далее стропила соединяются плоскостями срезов и фиксируются гвоздями, забитыми под углом. Обязательно необходимо закрыть место стыка металлической пластиной либо деревянной накладкой.

Попарное соединение стропильных ног

При соединении врубкой в полдерева достигается максимальная прочность. Для этого в месте сопряжения стропильные ноги соединяют с уступом. Затем сверлится отверстие под болт 14 мм. Дальнейшая фиксация достигается за счет болтового соединения. Когда речь идет о скользящей системе, то в этом случае концы ног соединяются посредством металлических пластинчатых шарниров.

Это следующий узел крепления стропильных систем, на котором нужно остановиться подробнее. Существует две технологии фиксации балок к мауэрлату. Жесткие крепления исключают какие-либо сдвиги, колебания, повороты, кручение и прочие манипуляции. Чтобы добиться подобного эффекта, на ноге делают запил. Далее соединение дополнительно фиксируют гвоздями, проволокой, саморезами и прочими вспомогательными элементами. Обычно нес

Узлы деревянных конструкций кровли — Всё о кровле

Стропильная система: узлы соединения

Деревянные стропильные фермы строятся либо из наслонных, либо из висячих стропил. соответственно, их вид называется наслонным или висячим. Выбирая устройство того или иного вида системы кровли. руководствуются следующими критериями:

  1. климатические характеристики региона,
  2. нагрузка на крышу атмосферных осадков (дождевые и талые воды, ветер),
  3. функциональность кровли,
  4. архитектурная форма выбранного владельцем проекта кровли.

Какой бы вид системы деревянных ферм ни был выбран, профессиональное и прочное устройство узлов системы гарантирует основательность и долговечность всей крыши. Поэтому устройство конструкций и узлов наслонных кровельных систем стоит поручить квалифицированным мастерам: их расчетная схема и качественная установка подвластна только специалистам.

Коньковый способ соединения наслонных стропильных ног друг с другом вверху с помощью ригеля делают вполдерева, когда у соединяемых между собой бревен вырубают паз в полтолщины бревна и пазы бревен идеально входят один в другой.

Основные термины

  • Стропила – несущая часть крыши из наслонных стропильных ног, подкосов и вертикальных стоек, опирающихся на мауэрлат.
  • Стропильная нога – одна стропилина.
  • Мауэрлат – опора для стропил. горизонтальный брус, расположенный на стенах, распределяющий на них равномерную нагрузку крыши с атмосферными осадками.
  • Затяжка – горизонтальная балка, соединяющая стропила; освобождая их от действий горизонтальной силы, придает крыше устойчивость.
  • Бабка – вертикальная опорная деталь для укрепления стропил. нижней частью опирается на затяжку, верхняя – служит опорой для стропил.
  • Распорка – брус, вставленный между бревнами, чтобы препятствовать их соединению.
  • Подкос – наклонный брус, поддерживает горизонтальные элементы кровли (балки и перекрытия), опираясь на вертикальные детали (стойки и колонны).
  • Конек – верхняя горизонтальная балка, образуемая стыком скатов кровли.

Узлы соединения кровельной системы делятся на три условные группы:

  1. узел соединения ног и мауэрлата,
  2. узел соединения ног и элементов деревянной фермы для придания жесткости и прочности конструкций,
  3. узел стыкования частей стропил для их удлинения.

Способ соединения стропил и мауэрлата бывает жестким и скользящим.

Узел соединения конструкций нельзя делать жестким всегда: от погодных условий древесина может разжиматься и сжиматься, и при жестком соединении конструкций наслонных систем есть опасность деформации несущих стен из-за возникновения на них больших распорных нагрузок.

Жесткие узлы

Чтобы получить жесткий узел соединения, применяют:

  1. устройство врубки на стропильной ноге: врубка делается глубиной не более 1/3 высоты доски; стропило упирается в мауэрлат и фиксируется гвоздями: двумя, вбитыми под углом друг к другу с боков стропила, и одним гвоздем, вбитым вертикально.
  2. нашивка подпорного бруса на стропильную ногу: к стропильной ноге подшивается метровый брусок, и им нога упирается в мауэрлат, сбоку, чтобы не сдвинуться в сторону, стропильная нога крепится металлическими уголками.

Узлы опирания наслонных стропил

Скользящие узлы

Система скользящих узлов соединения применяют в конструкциях наслонных стропил. Висячие стропила применяют для возведения кровли зданий из оцилиндрованного бревна, в которых стропила имеют упор на коньковый прогон, несущие стены распорных нагрузок не несут, а поэтому и не требуют скользящего крепления.

После постройки конструкций деревянных наслонных ферм кровля в течение нескольких лет дает усадку, ферма при этом находится в постоянном движении, поэтому жесткие крепления могут деформировать стены. Перед соединением стропил в узлах крепления узел получает некоторую свободу движения следующими способами.

На стропильной ноге производится упирающийся в мауэрлат запил. Далее нога укрепляется гвоздями: два гвоздя наискосок в мауэрлат с обеих сторон стропила и одним – в мауэрлат сверху вертикально (или металлическими пластинами с отверстиями для гвоздей) и скобами.

  1. Стропило опускается за границы стены и металлическими уголками фиксируется на мауэрлат.
  2. Применение металлических конструкций крепления под названием «салазки».
  3. Стропильная нога упирается в мауэрлат всегда, но и стропило, и мауэрлат могут двигаться друг относительно друга, если возникает такая необходимость.
  4. Для уменьшения риска сноса наслонных крыш штормовым ветром подкосы, бабки и распорки соединяются с висячими стропилами хомутами и скобами, а ноги – проволочным скрутками.

Схема соединения стропильных ног

Узел опирания скользящим способом

При значительных пролетах кровли необходимо удлинение конструкций стропильных ног следующими способами соединения:

  1. косым прирубом: торцы стропильных досок сращиваются сверху болтом с диаметром 12-14 мм под углом 45%,
  2. встык: торцы стропильных досок обрезаются под углом 90%, накладками досок стыки в шахматном порядке с обеих сторон прибиваются гвоздями (прикручиваются саморезами),
  3. внахлест: торцы досок обрезаются под любым углом, и доски укладываются друг на друга внахлест.

Система соединения наслонных стропил с прочими элементами конструкций

Коньковый способ соединения сверху:

  1. Доски под углом обрезаются таким образом, чтобы устройство их соединения друг с другом было плотным, и прибиваются гвоздями с двух сторон.
  2. Ноги крепятся прямо к коньку с помощью запила необходимой формы на торце стропил.
  3. Ноги соединяются между собой внахлест в коньковый верх гвоздями или металлическими саморезами.
  4. Используя любой вид крепления, следует дополнительно подстраховаться – сделать укрепление всех конструкций соединения металлическими пластинами или досками.
  5. Висячие стропила при больших нагрузках соединяются друг с другом одинарным или двойным зубом или «в шип» (см. сноску-примечание).

Примечания:

Основные узлы висячих стропил

  1. Система соединения в шип очень прочная, поэтому часто применяется в работе с деревом. Шип – выступающая часть на конце бревна, входящая в гнездо, шпунт или проушину другого бревна. Размер и форма шипа должна совпадать с формой и размером гнезда или проушины.
  2. Соединение зубом: в конце одного бревна вырубается ступенька, в конце другого – выемка; ступенька и выемка должны соответствовать друг другу по форме и размеру, тогда соединение бревен будет плотным.

Все узлы соединения ног с прочими элементами крыши для большей надежности требуют дополнительных конструкций закрепления: болтов, шурупов, скоб или саморезов, при этом в досках отверстие делается на 1 мм меньше диаметра самореза, а скобы забиваются с двух сторон соединяемых элементов.

Коньковый способ соединения наслонных стропильных ног друг с другом вверху с помощью ригеля делают вполдерева, когда у соединяемых между собой бревен вырубают паз в полтолщины бревна и пазы бревен идеально входят один в другой. Затем узел укрепляют болтами и дополнительными скобами.

Чтобы кровля была ровной, стропильные ноги должны быть одинаковыми. Для этого предварительно необходимо изготовить шаблон для последующих врезок и запилов остальных стропил. Так поступают профессионалы.

Кажется, все не сложно, если есть голова и руки. Но, как в любом деле, требуется опыт: крыша – серьезная конструкция, ни один любитель не изготовит системы узлов соединения деревянной фермы лучше, чем профессионал.

Поделитесь полезной статьей:

Конструкции узлов деревянных стропильных ферм крыши

Несущие треугольные композиции крыши с разными узлами называются стропильными фермами. Благодаря своим конструкциям фермы придают жесткость всей крыше и равномерно распределяют нагрузку на все участки. Для любой деревянной стропильной фермы главное – качественно скрепить все узлы. Рассмотрим варианты крепления.

Конструкция стропильной фермы

Выбор конструкции стропильной фермы зависит от всех факторов: уровень возможной нагрузки от осадков и ветра на крышу, вес кровли, размеры крыши, материал и многие другие. Но, к счастью, создавать свою конструкцию фермы можно как угодно. Вот вам достаточное количество примеров для вдохновения (некоторые подходят для строительства обычного чердака, некоторые для крыши гаража или сарая, некоторые для мансарды).

Узлы стропильных ферм

Задача крепления любого узла в стропильной ферме – не дать стыку двух и более брусьев расшататься. Поэтому крепить их нужно как следует. Но это еще не значит, что надо забивать гвозди или вкручивать шурупы везде, где это возможно. Такой метод только создаст в дереве лишние трещины, которые могут привести к расколу всего бруса или доски.

Для начала рассмотрим несколько вариантов узлов для стропильных ферм при пролетах до 6 метров. Вот так могут выглядеть узлы обычной треугольной фермы со стропильными ногами и ригелем .

Коньковый узел между стропильными ногами создается креплением скоб или накладок с гвоздями (желательно в половину толщины бруса). Узел ригеля со стропильной ногой создается так же при помощи скоб, гвоздей или болтов. Если стропила не выходят (или почти не выходят) за рамки стен, то концы стропильных ног можно опирать прямо на стены. Такая конструкция подходит для небольших строений, но имеющих достаточно прочные стены, поскольку из-за отсутствия нижней затяжки и поперечных стоек с подкосами нагрузка сразу передается на стены.

Обычная треугольная ферма с нижней затяжкой имеет узлы, схожие с предыдущим вариантом, за исключением дополнительного усиления узлов стропильных ног с мауэрлатом.

Лучше опирать стропильную ногу на затяжку методом лобовой врубки и крепить специальным стяжным болтом. Желательно, чтобы оси элементов пересекались над серединой подкладки. Это придаст узлу дополнительную прочность.

Еще есть вариант, когда вы оставили вверху стен внутренние пустоты для опирания балок потолка. В этом случае крепление опорного узла фермы будет очень серьезным.

Под концы стропильных ног нужно подвести шпалы. От этого распор будет передаваться сразу на потолочные балки. Между шпалой и стропильной ногой необходимо смонтировать специальный подкос и колодку (последнюю как можно ближе к опорам балок). Это не даст балкам прогибаться.

При изготовлении фермы с центральной стойкой коньковый узел можно скрепить несколькими болтами с накладками, то же самое касается и нижнего узла стойки и затяжки.

При пролетах от 6 до 12 метров стропильную ферму нужно усиливать дополнительными элементами: стойками и подкосами.

Принципы крепления узлов стропильной системы

Узлы крепления стропил должны обеспечивать необходимую прочность каркаса кровли. Важно правильно выбрать технологию монтажа элементов стропильной системы между собой и их крепления к несущему контуру, чтобы готовая крыша была способна выдержать расчетные нагрузки.

Особенности кровельных конструкций

Задача наслонных и висячих стропильных систем кровли – максимально равномерная передача нагрузки подстропильной конструкции, которая, в свою очередь, распределяет нагрузку на несущие стены и фундамент постройки. Подстропильная конструкция обычно является мауэрлатом (балкой, уложенной вдоль на каждой несущей стене). Также это могут быть опоры перекрытия (укладываются на стене поперек) или верхний венец сруба из бруса или бревна.

Выбор способа крепления стропил к мауэрлату зависит от их типа. Наслонная конструкция заставляет мауэрлат работать на срез, в то время, как висячие фермы – на сжатие, направление которого совпадает с ориентацией несущих стен.

Установка затяжки

Монтаж двускатной кровли требует установки стропильной системы наслонного или висячего типа. Чтобы смонтировать жесткую висячую стропильную ферму, не передающую распорные нагрузки на стены, требуется правильно выполнить узлы крепления горизонтальных перемычек – затяжек и ригелей .

В зависимости от того, какая была выбрана конструкция крыши, затяжка может монтироваться у основания стропил и выполнять функцию балки перекрытия. Стропильную ферму, которая крепится к мауэрлату, для придания жесткости оснащают ригелем – перемычкой, расположенной ближе к коньку. В мансардных крышах ригели служат основой для обшивки потолка.

Узел соединения при установке затяжки рекомендуется выполнять методом «врубки в стропило полусковороднем» с использованием крепежного винта. Данный способ монтажа требует точной подгонки элементов, так как при больших зазорах, в местах сопряжения, узел крепления под нагрузкой может разрушиться .

Более простой способ – монтаж внахлест. В этом случае перемычка выполняется из доски либо двух досок, установленных с обеих сторон стропильной ноги. В качестве крепления используются гвозди. Узел может представлять собой и болтовое соединение, но это снизит несущую способность стропил на 20%.

Еще один вариант – установка ригеля враспор. Монтаж узла такого типа стал возможен после изобретения гвоздевых пластин. Конструкция способна выдержать высокие нагрузки – надежность обеспечивается за счет плотного примыкания деталей и прочной фиксации с двух сторон благодаря большому количеству зубьев на пластине.

Сечение бруса или доски для изготовления распорного ригеля должно совпадать с сечением стропила.

Мауэрлат: узлы крепления стропильных ног

Опирание деревянных стропил на мауэрлат может выполняться по двум технологиям :

  • жесткое крепление к мауэрлату;
  • скользящее крепление к мауэрлату.

При жестком креплении полностью исключаются любые виды смещения стропильной ноги, которая упирается в мауэрлат (изгибы, сдвиги, кручение). С этой целью при монтаже стропильной системы кровли установка стропил может выполняться с применением подшивного бруска, который предотвращает соскальзывание стропильной ноги в месте опирания. Боковые сдвиги при этом методе соединения исключаются благодаря установке металлических уголков.

Во втором варианте жесткого крепления стропильной ноги на мауэрлат необходимо выполнить запил (седло) в нижней части стропильного бруса или доски. Плоскость опирания должна быть горизонтальной, для этого запил в стропилах производится под углом, соответствующим наклону ската. Для фиксации узла с обеих сторон стропила под углом вбивается по гвоздю (внутри мауэрлата они должны быть скрещенными), сверху вертикально через стропило в мауэрлат вбивается третий гвоздь.

Скользящее крепление обычно используется при возведении стропильной системы на доме из бруса или бревна. Основанием для опирания стропильных ног в этом случае служит не мауэрлат, а верхний венец сруба. Чтобы избежать деформации крыши при усадке дома, необходимо выполнить узел с определенной степенью свободы для стропильной ноги. Нередко с этой целью используется специальный крепежный элемент из металла – скользящая опора («салазки»). Его верхняя часть представляет собой петлю, которая смещается по направляющей, закрепленной на стропильной ноге, при изменении геометрии сруба.

Используются и другие методы монтажа скользящего узла. В стропильной ноге выполняется запил, балка устанавливается срезом на верхний венец, после чего закрепляется одним из способов :

  • посредством одного вертикально забитого гвоздя;
  • с помощью забитых с двух сторон гвоздей, скрещивающихся в мауэрлате;
  • посредством скобы;
  • выполнив единичную фиксацию стальными крепежными пластинами.

Такой метод крепления оставляет возможность элементам системы смещаться друг относительно друга при изменении геометрии строительных конструкций.

Коньковые соединения

Устройство стропильной системы кровли с двумя скатами подразумевает наличие в верхней части крыши горизонтального ребра, образованного в результате примыкания скатов – конька. Коньковый узел может выполняться несколькими способами, выбор зависит от типа стропильной системы и особенностей самого здания.

Наслонная конструкция подразумевает крепление стропильных ног на коньковый прогон – горизонтальную балку, расположенную на стойках параллельно длинным стенам дома. Верхние концы стропильных ног следует запилить под углом, соответствующим углу наклона скатов. Примыкания срезанных торцов стропил к коньку должны быть максимально плотными. В качестве крепежных элементов используются гвозди. Наслонные стропила применяются, если есть возможность установить на внутренней стене или столбчатых опорах стойки для крепления конькового прогона. Кроме того, стены должны быть оснащены мауэрлатом для опирания стропил.

Сборка стропильной фермы висячего типа требует соединить верхние концы пары стропильных ног. Для этого торец каждого из стропил подрезается под углом, равным углу наклона крыши, балки соединяются плоскостями срезов — требуется обеспечить плотность их примыкания. Фиксируются при помощи двух гвоздей, забитых под углом в верхние плоскости стропил. Затем с каждой стороны прибивается по деревянной накладке или металлической пластине, которые закрывают место стыка.

Чтобы обеспечить коньку необходимую прочность, может выполняться врубка в полдерева: в этом случае вместо плоскости сопряжения соединения встык, стропила соединяются уступом. Далее сверлится сквозное отверстие под шпильку или болт диаметром 12 или 14 мм, для крепления используются гайки с широкими шайбами.

Если на стене сруба предстоит установить скользящие опоры или создать примыкания (сопряжения стропила с мауэрлатом) с некоторой степенью свободы, коньку следует уделить особое внимание. Рекомендуется выполнить подвижный узел соединения, чтобы крыша не деформировалась при неравномерной усадке сооружения. С этой целью концы стропил соединяются металлическим пластинчатым шарниром.

Узлы стропильной системы вальмовой крыши

Особенностью вальмовой кровли является форма ее скатов: длинные скаты имеют трапециевидную форму, торцевые скаты (вальмы) – треугольную. Монтаж такой стропильной системы требует установки диагональных (накосных) стропильных ног, которые формируют треугольные скаты. Принцип крепления диагональных стропил в верхней части зависит от особенности конструкций основной части крыши. Она может быть сформирована из стропильных ферм висячего типа, либо представлять собой каркас с коньковым прогоном и наслонными стропилами, прикрепленными к мауэрлату.

Если наслонные стропильные ноги трапециевидных скатов опираются на коньковый брус (прогон), то накосные стропила требуется опереть на консоли конькового прогона. Выпуски консоли за подстропильную раму должны составлять 100-150 мм. Нижней частью диагональные стропильные ноги крепятся к мауэрлату или балке, закрепленной на стене.

Если накосные стропила необходимо опереть на крайнюю висячую ферму, то принцип создания узла крепления зависит от сечения боковых стропильных ног. Шпренгель со стойкой монтируется в случае, если стропильные ноги выполнены из доски. На шпренгель опираются диагональные стропила. В ситуации, когда для изготовления стропильных ног был использован брус, накосные стропила можно крепить к прибоине — доске толщиной от 5 мм, закрепленной на стропильной ферме.

На накосных стропилах выполняется запил под углом, соответствующим углу наклона вальмового ската, чтобы обеспечить плотное соединение со шпренгелем или прибоиной. Для прочности гвоздевого соединения дополнительно могут применяться хомуты и проволочные скрутки.

Укороченные стропильные ноги (нарожники) верхней частью опираются на накосное стропило, нижней крепятся к мауэрлату на стене. Узел крепления к диагональной балке может выполняться :

  • методом запила с гвоздевым креплением;
  • посредством гнездового соединения;
  • с помощью крепления брусков сечением 50х50 мм с обеих сторон и по всей длине диагональных стропил и нарожников.

Вспомогательные элементы

Для усиления жесткости и надежности стропильных конструкций нередко требуется установка подкоса, дополнительного прогона или опорных стоек. Прогоны для наслонных стропил позволяют обеспечить стропильной ноге дополнительную точку опоры. Прогон представляет собой горизонтальную балку, закрепленную на вертикальных стойках, расположенную параллельно коньку. Узел крепления выполняется с помощью металлических угловых пластин либо внутреннего металлического стержня и внешней прямой скобы.

Подкосы деревянных стропил позволяют уменьшить пролет стропильных ног (включая накосные стропила). Угол наклона подкоса к горизонтальной плоскости должен составлять не менее 45°. Если стропило изготовлено из бревна или бруса, выполняется врубка подкоса с установкой стального нагеля под углом 90° к площадке примыкания, либо стык снаружи закрывается пластиной.

При необходимости усилить каркас крыши требуется установка подкоса под каждую стойку, на которую опирается наслонное стропило. При этом все подкосы одного ската упираются в общий лежень. Для крепления используются скобы.

Особого внимания требуют подкосы крайних пролетов, на которые воздействует максимальная снеговая и ветровая нагрузка. Узлы крепления при монтаже подкоса к стойке или прогону выполняются с использованием накладок и болтов.

Похожие новости

Комментарии (0)

Источники: http://kryshikrovli.ru/elementy/stropilnaya/uzly-svoimi-rukami.html, http://gold-cottage.ru/krysha_krovlya/konstrukcii_uzlov_derevyannyh_stropilnyh_ferm_kryshi.html, http://vseokrovle.com/stropilnaja/145-uzly-stropilnoj-sistemy.html

ОБЛМЕЖКОЛХОЗСТРОЙОБЪЕДИНЕНИЕ_ Новосибирск 1965 г. Сборник конструкций узлов и элементов деревянных конструкций

Зяблик , 29 марта 2008 в 20:26

#1

Спасибо KOS.S.и raga. Толковая вещь.

, 30 марта 2008 в 13:34

#2

Спасибо! Серия 2.160 просто отдыхает!

solnishek , 31 марта 2008 в 11:14

#3

Супер! Спасибо:)

vladas , 09 апреля 2008 в 07:42

#4

Документ 1965г. выпуска, это мемориал.
Сравните текст (характеристики, термины и определения) по действующим ГОСТ на древесину и пиломатериалы.
Многое о несовременных технологиях деревообработки и монтаже, дедовских плотницких инструментах …
Электроинструмента конечно же нет. Есть то, как и чем сделать зубьям ножовки разводку, отесать топором бревно, и т.п. В проектировании это надо?
Где б увидеть стропилу из бревна, а кровлю из досок? Вероятно в постройках 1960-х, да в этом справочнике. Кажется, что в Новосибирской обл. леса столько было, а пилорам не хватало, поэтому стропилы из ствола-кругляка, а не бруса. Или подрядчику доход с куб. метра древесины в деле и приоритет того же подрядчика по сокращению деревообработки для деталей.
Много технически неоптимального, несовременного, в т.ч. по узлам, соединениям деталей, их креплению.
Есть также кое-что полезное, если нигде больше увидеть по дер. конструкциям. Работа же выполнена по тому времени «на совесть», емко, не ограничивается только узлами стропильных конструкций. Возведение деревянных зданий от бутокладочного фундамента до кровли.
Для применения альбома в современном проектировании нужно рассматривать его достаточно скептически.
Этот альбом-справочник — разработка ПТО, с участием гл.технолога подрядного объединения. Авторитетно ли в настоящем сие издание? Решайте сами. Очевидно, альбом составлен с выборкой из имеющейся тех. литературы. Смотрю в книге Линовичей Е.Е. и Л.Е. «Расчет и конструирование частей гражданских зданий», — 1959г., и вижу те же узлы, очень похожие, один к одному, или же с «подрядными» упрощениями.
Даже в наименовании логическая неувязка: «… конструкций узлов …». Поменять бы местами слова.
Зачем же сер. 2.160 унизили, она ведь утверждена Госстроем, а не каким-то местным «колхозстроем».

Подстропильная система. Безраспорные схемы и узлы врубок. Размеры бруса для стропила.

Стропила выполняют ряд значимых кровельных функций. Они задают конфигурацию будущей крыши, воспринимают атмосферные нагрузки, удерживают материал. В числе стропильных обязанностей формирование ровных плоскостей для укладки покрытия и обеспечение пространства под компоненты кровельного пирога. Для того чтобы столь ценная часть крыши безупречно справлялась с перечисленными задачами, нужны сведения о правилах и принципах ее устройства. Информация полезна и тем, кем сооружается стропильная система двухскатной крыши своими руками, и тем, кто решит прибегнуть к услугам наемной бригады строителей.

В устройстве стропильного каркаса для скатных крыш используют деревянные и металлические балки. Исходным материалом для первого варианта служит доска, бревно, брус. Второй сооружают из металлопроката: швеллера, профильной трубы, двутавра, уголка. Есть комбинированные конструкции со стальными наиболее нагружаемыми деталями и элементами из древесины на менее ответственных участках.

Кроме «железной» прочности у металла имеется масса недостатков. К ним относятся теплотехнические качества, неудовлетворяющие владельцев жилых строений. Разочаровывает необходимость в применении сварных соединений. Чаще всего стальными стропилами оборудуют индустриальные строения, реже частные бытовки, собранные из металлических модулей.

В деле самостоятельного сооружения стропильных конструкций для частных домов в приоритете древесина. С ней работать несложно, она легче, «теплей», привлекательней по экологическим критериям. К тому же для выполнения узловых соединений не потребуется сварочный аппарат и навыки сварщика.

Стропила — основополагающий элемент

Основной «игрок» каркаса для сооружения крыши – стропило, в среде кровельщиков называемое стропильной ногой. Лежни, раскосы, бабки, прогоны, затяжки, даже мауэрлат могут использоваться или не использоваться в зависимости от архитектурной сложности и габаритов крыши.

Стропила, применяемые в строительстве каркаса двухскатных крыш, по техническим признакам и способу укладки подразделяются на:

  • Наслонные стропильные ноги, обе пятки которых имеют под собой надежные конструктивные опоры. Нижний край наслонного стропила упирается в мауэрлат или в потолочный венец сруба. Опорой для верхнего края может служить зеркальный аналог смежной стропилины или прогон, представляющий собой горизонтально проложенную под коньком балку. В первом случае стропильная система называется распорной, во втором безраспорной.
  • Висячие стропила, верх которых упирается друг в дружку, а низ базируется на дополнительной балке – затяжке. Последняя соединяет две нижние пятки смежных стропильных ног, в результате получается треугольный модуль, именуемый стропильной фермой. Затяжка гасит процессы растяжения, благодаря чему на стены действует только вертикально направленная нагрузка. Конструкция с висячими стропилами хоть и является распорной, но сам распор на стены не передает.

В соответствии с технологической спецификой стропильных ног сооружаемые из них конструкции делятся на наслонные и висячие. Для устойчивости конструкции оснащают подкосами и дополнительными стойками. Для устройства опор верха наслонных стропилин монтируют лежни и прогоны. В реальности стропильная конструкция намного сложнее, чем описанные элементарные шаблоны.

Отметим, что формирование каркаса двухскатной крыши может вообще производится без стропильной конструкции. В таких ситуациях предполагаемые плоскости скатов образуются слегами – балками, уложенными прямо на несущие фронтоны. Однако интересует нас сейчас конкретно устройство стропильной системы двухскатной кровли, а в нем задействованы могут быть как висячие или наслонные стропила, так и комбинация обоих типов.

Тонкости крепления стропильных ног

Крепление стропильной системы к кирпичным, пенобетонным, газобетонным стенам производится через мауэрлат, который в свою очередь фиксируется анкерами. Между мауэрлатом, представляющим собой деревянную раму, и стенами из указанных материалов в обязательном порядке прокладывается гидроизоляционная прослойка из рубероида, гидроизола и т.д.

Верх кирпичных стен иногда специально выкладывают так, чтобы по внешнему периметру получилось нечто вроде невысокого парапета. Так надо, чтобы размещенный внутри парапета мауэрлат и стены не распирали стропильные ноги.

Стропила каркаса крыш деревянных домов опираются на верхний венец либо на потолочные балки. Соединение во всех случаях выполняется врубками и дублируется гвоздями, болтами, металлическими или деревянными пластинами.

Как обойтись без зубодробительных расчетов?

Крайне желательно, чтобы сечение и линейные размеры деревянных балок определялись проектом. Проектировщик даст четкие расчетные обоснования геометрическим параметрам доски или бруса с учетом всего спектра нагрузок и погодных условий. Если в распоряжении домашнего мастера проектной разработки нет, путь его лежит на стройплощадку дома с подобной кровельной конструкцией.

На этажность возводимого здания внимание можно не обращать. Проще и правильнее выяснить требующиеся размеры у прораба, чем узнавать их у владельцев шаткого самостроя. Ведь в руках прораба документация с четким расчетом нагрузок на 1м² крыши в конкретном регионе.

Шаг установки стропилин определяет тип и вес кровельного покрытия. Чем оно тяжелее, тем меньше должно быть расстояние между стропильными ногами. Для укладки глиняной черепицы, например, оптимальным расстоянием между стропилами будет 0,6-0,7м, а для и профлиста допустимо 1,5-2,0 м. Однако даже при превышении шага, требующегося для правильно монтажа кровли, имеется выход. Это устройство усиливающей контробрешетки. Правда она увеличит и вес крыши, и бюджет строительства. Поэтому с шагом стропил разобраться лучше до сооружения стропильной системы.

Типовые конструкционные системы | Изделия из дерева

Изделия из дерева подходят практически для всех новостроек и реконструкций. Деревянные конструкции можно использовать в различных зданиях, будь то высокие башни, большие холлы или мосты. Помимо конструкций, изделия из дерева обычно используются для окон и дверей, внутренней отделки и мебели. Строительные стандарты, регулирующие использование древесины, варьируются от страны к стране.

Существует множество промышленных альтернатив возведения деревянных построек, из которых можно выбрать оптимальное решение для конкретного случая.Общими для них являются высокоразвитые промышленные сборные конструкции и быстрое строительство. Деревянное здание можно построить вдвое быстрее, чем при традиционном строительстве.

НАГРУЗОЧНЫЕ СТЕНКИ

В деревянных домах чаще всего используется каркасная система на основе несущих стен. Несущие стены могут быть построены из крупных элементов столбовой конструкции или элементов из массива дерева. С деревянными конструкциями межэтажных перекрытий можно достичь пролетов до семи метров.Несущими линиями обычно выступают внешние стены здания и некоторые его перегородки, обычно стены между квартирами. Полы и некоторые стены служат конструкциями, повышающими жесткость дома.

ДОМ С ОПОРНЫМ КАРКАСОМ

Элемент полюс-кадр является наиболее распространенным способом сделать деревянную рамку здания. В высотных зданиях каркас стены изготавливается из клееного бруса стандартных размеров. Это может быть использовано для строительства зданий более четырех этажей.Несущие и ненесущие стены конструктивно идентичны. Конструкции промежуточного этажа можно выбирать произвольно. Это может быть, например, перекрытие из балок, коробчатая плита или ребристая плита. Возможны большие пролеты за счет увеличения высоты несущей конструкции. Пролеты также можно увеличить с помощью композитной конструкции из бетона и дерева или так называемой гибридной конструкции. Опыт работы с опорными конструкциями очень большой. Благодаря конструкции столбов можно достичь превосходной энергоэффективности и герметичности вплоть до уровня пассивного дома.Технология гибкая для разных нужд. Структурные решения и типы могут быть оптимизированы в зависимости от области применения. Деревянные конструкции также работают вместе с бетонными конструкциями. Вместе с другими материалами гибридные конструкции еще больше расширяют возможности использования конструкции. В изделиях из инженерной древесины прогиб конструкций небольшой. Высокая степень заводской готовности элементов гарантирует быстрый монтаж. Дом можно строить из расчета один этаж в неделю.Монтаж на строительной площадке можно производить в защищенном от непогоды.

ДЕРЕВЯННЫЙ БЛОК КВАРТИРЫ С ИСПОЛЬЗОВАНИЕМ ТЕХНОЛОГИИ CLT

Несущие стены могут быть построены из массивной доски CLT, в которой слои древесины склеены крест-накрест (CLT: поперечно-клееный брус). Доска действует как при строительстве деревянных многоквартирных домов, так и как укрепляющая конструкция стен и полов. Отверстия и стыки выполняются на досках на заводе с использованием точной фрезерной технологии с компьютерным управлением.Максимальный размер доски CLT составляет 3 x 16 метров, и она доступна во многих вариантах прочности. Использование плиты CLT позволяет гибко открывать стены, межэтажные перекрытия и консольные конструкции. Вместимости доски достаточно для зданий до 12 этажей. Элементы поставляются в желаемой степени готовности, включая изоляцию, материалы поверхностей, окна и двери. В поставку также может входить установка. CLT — распространенная строительная технология, например, в Германии и Австрии.В немецкоязычных странах эта технология носит название KLH (Kross Laminate Holz).

КОЛОННО-БАЛКА

В колонно-балочной системе каркас здания состоит из колонн и балок из клееного бруса, на которых возводятся промежуточный этаж, конструкции крыши и внешние стены. Жесткость каркаса обычно достигается с помощью диагонально установленных узлов жесткости или мачтовых колонн. С помощью колонно-балочной системы можно получить открытый трансформируемый пол и большие проемы в фасадах.Система позволяет свободно и гибко планировать пространство и открывать стены. Отсутствие несущих перегородок позволяет легко изменить положение стен между квартирами в течение жизненного цикла здания. Структурная система предлагает хорошую гибкость при преобразовании. Благодаря одномерным вертикальным конструкциям здание нигде не проседает. Этап строительства на строительной площадке очень быстрый. Крышу можно установить всего за несколько дней, после чего у дома появится защита от непогоды.Наружные стены устанавливаются в виде крупных легких элементов. Толщина утеплителя и наружного облицовочного материала может быть выбрана заказчиком.

ОБЪЕМНЫЕ ЭЛЕМЕНТЫ

Технология объемных элементов — это метод строительства, при котором здание собирается отдельно на заводе из готовых к сборке коробчатых элементов. Объемный элемент обычно состоит из несущего каркаса и ограничивающих поверхностей: готовых стен, перекрытий и крыши. Элементы полностью изготовлены в заводских условиях, защищены от атмосферных воздействий.Окна, система отопления, вентиляции и кондиционирования воздуха, электрическое оборудование и фурнитура устанавливаются в элементе на заводе. Несущая конструкция объемного элемента может быть построена множеством различных способов, например, с использованием колонно-балочной технологии, рамной конструкции или крупных плитных элементов. Благодаря технологии объемных элементов достигается отличная звукоизоляция благодаря двойной конструкции. Типичные максимальные размеры объемных элементов составляют 12 х 4,2 х 3,2 метра. При планировании размеров элементов и модульных систем необходимо учитывать ограничения, накладываемые транспортировкой элементов.Технология объемных элементов очень подходит для жилых домов и жилых домов. Этап строительства на строительной площадке очень быстрый. Благодаря своей скорости система отлично подходит для заполнения и, например, строительства дополнительных этажей. Он также подходит для строительства с низким энергопотреблением. Например, технология объемных элементов является распространенным методом строительства деревянных многоквартирных домов в Швеции.

КОНСТРУКЦИИ БОРТОВ

Бревенчатое строительство — это традиционный метод деревянного строительства, особенно в странах, где имеется изобилие прямой древесины подходящего поперечного сечения.В бревенчатом доме как минимум несущие конструкции сооружены из бревна.

Типы бревен, используемых в срубах:

  • Оцилиндрованное бревно: круглое бревно, сформированное вручную или механическим способом. Диаметр промышленного оцилиндрованного бревна одинаков от основания до кончика.
  • Бревно бруса: бревно, сформированное с плоскими сторонами. Также можно резать вручную вручную с помощью косой пилы.
  • Бревно сухостой: бревно из сушеной сосны
  • Клееный брус: изделие из дерева, полученное путем склеивания нескольких слоев древесины

Оцилиндрованное бревно используется в основном в коттеджах, складских помещениях и сараях.Оцилиндрованное бревно встраивают в углы, используя метод, при котором бревно пересекает бревно на поперечной стене и выступает из угла на некоторое расстояние.

Ламинированные бревна изготавливаются путем склеивания нескольких слоев древесины и строгания бревна в желаемый профиль. Преимущества этой структуры включают однородность свойств и, в некоторых типах бревен, также очень небольшую проседание или оседание.

Брус представляет собой традиционное трудоемкое строительство. Обычно он используется в зданиях, которые должны быть герметичными, таких как жилые и дачные дома, зернохранилища, сауны и т. Д.Бревенчатый дом более ровный по стенам, чем бревенчатый, поэтому, например, к стенам легче прикрепить шкафы. Угловые участки внахлест у бруса также обычно короче, чем у оцилиндрованного бревна, что позволяет сэкономить на древесине. Короткие угловые секции бывают, например, типа «ласточкин хвост» и фиксатора.

В Финляндии бревна обычно делают из сосны.

,

Деревянные фермы

Деревянные фермы — это несущие элементы конструкции, состоящие из ряда элементов, действующих как на растяжение, так и на сжатие. Они используются для строительства крыш или перекрытий и доступны в различных формах и размерах. Они производятся в контролируемых цехах / заводах с высокой эффективностью и чаще всего с деревянными элементами размером 2 × 4 и / или 2 × 6. Фермы изготавливаются путем разрезания по размеру и соединения элементов на соединениях зубчатых пластин. Основными проектными факторами, которые будут учитывать архитекторы, являются наклон крыши, общий пролет и детали свеса.Обычно производители ферм обязаны использовать известную конструкцию для выдерживания токовых, статических, ветровых и сейсмических нагрузок или иметь индивидуальную конструкцию инженера. Рабочие чертежи обычно производятся и отправляются на рассмотрение архитектору / инженеру проекта. Предварительно изготовленные деревянные фермы обычно потребляют меньше древесины, чем полевые конструкции, и собираются более эффективно на заводе, часто за более низкую заработную плату рабочих, чем в поле. Фермы можно установить с помощью крана относительно быстро по сравнению с полевыми работами с нуля, но все же обычно требуются некоторые устанавливаемые в полевых условиях блокирующие конструкции, соединения и столярные изделия для сборки и соединения.

Одним из недостатков деревянных ферм является значительное пространство, которое они занимают на чердаке для других комнат / складских помещений или в случае, если в потолке требуется углубление / проем. Однако конструкция и изготовление фермы могут преодолеть эти типы ограничений, если это запланировано заблаговременно.

Ферма состоит из нижнего пояса, верхних поясов и элементов перемычки. Распространенные типы ферм следующие:

Треугольный — Сундук (Бухта), Убежище, Clearstory, консольный, двухскатный, двухскатный, комната на чердаке, овальный.

Common — Fink (W), Howe (K) Fan, Modified Queen, Double Fink, Double Howe, Modified Fan, Triple Fink, Triple Howe, Трехсекционный удлиненный пролет, Трехкомпонентный приподнятый центральный отсек

Плоский и параллельный пояс — Шаг вниз по бедру, поясная балка, несущая ферма верхнего пояса, плоская ферма (Уоррен) Наклонные параллельные пояса, наклонный верхний пояс, ферма пола

Непрерывные боковые распорки или «прогоны» обычно устанавливаются непосредственно над или под верхним поясом с блокировкой 2 × 3, 2 × 4 или 2 × 6.

В зависимости от пролета ферма может стыковаться (выполняется на заводе), и почти все соединения ее элементов крепятся металлическими пластинами.

Типичное расстояние между центрами фермы составляет 2–4 фута, но деревянные фермы могут располагаться на расстоянии до 8 футов в зависимости от перекрывающей способности настила / обшивки крыши. Длина свеса обычно составляет 2 фута или меньше, и обычно требуется облицовочная доска вдоль концов фермы (карниза), при этом материал потолка размещается горизонтально под выступом.

Использование прогонов позволяет деревянным фермам располагаться на большем расстоянии друг от друга, иногда до 20 футов в крайних случаях. Типичный диапазон шага фермы составляет от 2:12 до 8:12. Обычный диапазон глубины фермы составляет от SPAN / 10 до SPAN / 20. Чаще всего используется диапазон 20-32 футов. Для ферм, расположенных на расстоянии более 2 футов, могут потребоваться полосы обрешетки для адекватной поддержки потолочной установки с предполагаемым материалом для обшивки.

Вообще говоря, следующие типы ферм можно размещать, как показано на рисунке:

Фигурные фермы — 40-150 ′

Плоские фермы — 40-110 ′

Нравится:

Нравится Загрузка…

.Конструкция узла соединения

и оптимизация производительности фермы

1. Введение

В течение многих лет строительную отрасль в Китае называли «большими энергопотребляющими домохозяйствами», включая промышленность и транспорт. Потребление энергии в зданиях составляет одну треть от общего потребления энергии всего общества, что в 2–3 раза выше, чем в других странах при тех же климатических условиях (см. [1]). В основном это связано с традиционными китайскими строительными материалами, такими как сталь, цемент, глиняный кирпич и т. Д.Эти материалы не только расходуют много природных ресурсов, но и вызывают загрязнение окружающей среды. Таким образом, использование экологически чистых строительных материалов стало ключом к энергосбережению и сокращению выбросов в строительной отрасли. 5 марта 2016 года премьер-министр Ли Кэцян четко заявил в «Отчете о работе правительства» четвертой сессии 12-го Всекитайского собрания народных представителей, что основная работа в области жилищного строительства заключается в дальнейшем продвижении новой урбанизации и активном развитии зеленых насаждений. здания и строительные материалы (см.[2]). Очень важным направлением развития зеленых зданий является архитектура из деревянных конструкций (см. [3]). Большое количество исследований также показало, что деревянные конструкции лучше позволяют экономить энергию и сокращать выбросы, чем другие структурные формы (см. [4, 5, 6]). Как одна из основных тенденций в современной архитектуре, энергоэффективность зданий может быть полезной для роста национальной экономики, а также способствовать защите окружающей среды (см. [6, 7]). Кроме того, здание из деревянных конструкций имеет прочную сборную конструкцию, потому что большинство его компонентов обрабатывается на заводе.Исследование компонентов очень важно, потому что компоненты тесно связаны с безопасностью и энергоэффективностью деревянных конструкций.

Поскольку важные части здания с деревянными конструкциями, система перекрытий и крыша обычно делятся на два типа систем: традиционная система решетка-стропила и система стропильных конструкций из светлого дерева, и последняя используется более широко. С развитием конструкции из светлого дерева в Китае перспективы применения фермы из светлого дерева в современной деревянной конструкции в Китае будут все более и более широкими.Ферма с балкой состоит из нескольких частей одиночной фермы из светлого дерева с помощью соединителей и обычно используется в ключевых частях системы крыши или пола в современных зданиях с деревянными конструкциями и проектах по замене кровли. Для системы перекрытия и крыши современной деревянной конструкции ключевые соединения испытывают как верхнюю равномерную нагрузку, так и сосредоточенную нагрузку от других связанных с ними ферм. Таким образом, силовое обстоятельство настолько сложно, что обычная деревянная ферма с трудом выдерживает нагрузку (см. [8, 9, 10]).Обычным решением в практической инженерии является увеличение площади поперечного сечения элемента путем объединения множества обычных ферм из легкой древесины в качестве конструктивного элемента для получения большей несущей способности (как показано на рисунке 1). Форму балочной фермы легко получить и она соответствует развивающейся тенденции индустриализации и модульности зданий. Кроме того, некоторые длиннопролетные и консольные конструкции возникают с развитием современного здания из деревянных конструкций, которому необходимы деревянные фермы с большей несущей способностью.Появляясь по мере того, как требует времени, балочная ферма имеет более высокую грузоподъемность, больший пролет и более широкий диапазон использования по сравнению с одинарной деревянной фермой. В настоящее время исследование одиночной фермы является очень зрелым (см. [11, 12, 13]), но мало исследований было выполнено на ферме фермы. В большинстве практических инженерных проектов многие строители работают в основном в зависимости от своего опыта без каких-либо надежных стандартов, что создает некоторые потенциальные проблемы с безопасностью. Ферма фермы обычно соединяется гвоздем и болтом, что легко вызывает коррозию, а механические свойства ухудшаются в условиях огнестойкости.Поэтому в этой главе был разработан новый тип метода соединения, который используется для балочной фермы (как показано на рисунке 2). Деревянный дюбельный соединитель нелегко заржаветь, и его механические свойства не будут быстро ухудшаться в условиях огнестойкости. Кроме того, соединители из дерева могут повысить пластичность соединяемых компонентов. Таким образом улучшаются характеристики фермы. Узел соединения деревянной конструкции также связан с несущей способностью и нормальным использованием всего здания в будущем.Поэтому очень важно изучить узлы соединения деревянной конструкции (см. [14]).

Рисунок 1.

Применение балочной фермы в конструкции здания.

Рисунок 2.

Новый тип балочной фермы.

2. Новая конструкция узла соединения балочной фермы

В настоящее время способы соединения балочной фермы относительно просты. В техническом описании ферм из светлого дерева (JGJ / T 265-2012) рекомендуется внутренний способ соединения, но при соединении гвоздями остаются следующие проблемы.

  1. Обработка сложна. Ферме необходимо постоянно переворачивать ферму во время обработки. Забивание гвоздями в различных частях не способствует промышленному производству на линии.

  2. Плохая огнестойкость. Под воздействием огня сталь размягчается и ее механические свойства быстро ухудшаются. Выход из строя узла фермы балки влияет на его общую несущую способность, что приводит к временному разрушению конструкции.

  3. Легко ржавеет.Стальные или железные гвозди подвержены ржавчине на воздухе, которая более выражена в условиях высокой влажности и высокого содержания соли, что снижает долговечность всей деревянной конструкции.

  4. Плохое рассеяние энергии. Гвозди представляют собой соединения типа крепления, которые ограничивают относительное вращение фермы и фермы и не могут потреблять энергию, генерируемую боковой силой, что приводит к ослаблению бокового сопротивления всего здания.

В ответ на проблемы, связанные с режимами соединения балочной фермы, в этой главе предлагается новый тип способов соединения балочной фермы, который заменяет традиционные железные соединители деревянными соединителями.Конкретная схема выглядит следующим образом: все отдельные фермы, составляющие ферму, предварительно собираются и временно фиксируются, затем предварительно просверливаются в определенных положениях всех ферм и, наконец, вставляются в деревянный или бамбуковый круглый дюбель, который представляет собой соединитель деревянных дюбелей ( см. [15]) (как показано на рисунке 2).

Использование деревянных или бамбуковых соединителей в основном связано с тем, что соединения из дерева или бамбука менее подвержены коррозии, чем соединения из железа (см. [16, 17]). Также нет проблемы резкого падения механических свойств в условиях огнестойкости.Кроме того, деревянные или бамбуковые соединения могут значительно улучшить пластичность соединяемых элементов (см. [18]), тем самым улучшая характеристики балочной фермы при сопротивлении боковым силам.

Выбор положения деревянного дюбеля определяется силовыми характеристиками фермы с параллельным поясом. Ферму с параллельными поясами можно рассматривать как свободно опертую балку, когда она подвергается равномерной нагрузке сверху. Усилие в основном воспринимают верхние и нижние пояса фермы.Верхний пояс находится под давлением, а нижний — в растяжении, но полотно играет лишь вспомогательную роль. На рисунке 3 показана диаграмма внутренних сил фермы из легкого дерева, поддерживаемой верхним униформным блоком. Из диаграммы внутренних сил видно, что если ферму с параллельным поясом рассматривать как статическую комбинированную конструкцию, это означает, что пояс сломан, а оба конца шарнирно закреплены. При равномерной нагрузке значение среднего изгибающего момента каждого пояса является наибольшим, а поперечная сила не менее нуля.Использование деревянных дюбелей требует предварительного просверливания верхнего и нижнего поясов фермы, что снижает чистые размеры поперечного сечения пояса. Формула расчета поперечной силы конструктивного элемента:

τ = QAE1

Рисунок 3.

Диаграмма внутренних сил фермы с параллельным поясом. (а) Диаграмма осевых сил параллельной фермы; (б) диаграмма изгибающего момента параллельной фермы; (c) диаграмма поперечных сил фермы с параллельными поясами.

A представляет срезанное чистое поперечное сечение срезанного элемента.Уменьшение A означает увеличение напряжения сдвига в элементе. Следовательно, положение соединителя должно быть расположено там, где сила сдвига хорды наименьшая, то есть в середине каждых двух узлов хорды.

3. Обзор эксперимента

3.1. Схема эксперимента

Материал, использованный в испытании, — это материал спецификации Лиственница ( Larix gmelinii), импортированный из России. Марка материала II сорта, плотность 0,657 г / см 3 .Влажность составляет 17,4% в соответствии с общими требованиями к физико-механическим испытаниям древесины (GB / T 1928–2009).

В соответствии с методом непрерывного нагружения ферм в стандарте на методы испытаний деревянных конструкций (GB20329-2012) было проведено испытание на статическую нагрузку шести типов малопролетных ферм, а количество испытательных образцов выражается как S.

Чтобы изучить влияние деревянных дюбелей разного диаметра на характеристики балочной фермы, в эксперименте в этой главе используется балочная ферма из трех деревянных дюбелей разного диаметра.Деревянные дюбели имеют диаметр 12, 16 и 20 мм. Оценка характеристик трехбалочной фермы по-прежнему рассматривается с двух аспектов: предельной несущей способности и сопротивления деформации. Среди них способность к деформации включает сопротивление ползучести и характеристики упругого восстановления.

Кроме того, в ходе эксперимента была создана ферма фермы, состоящая из трех отдельных ферм, чтобы исследовать эффект усиления фермы фермы с увеличением количества одиночных ферм.Диаметр деревянных дюбелей, соединяющих ферму фермы, зависел от экспериментальных результатов фермы фермы с двумя одиночными фермами. Чтобы различать другие фермы с двумя одиночными фермами, фермы с тремя одиночными фермами обозначаются G3, а другие фермы G2.

На рисунке 4 показана структурная форма и конкретные размеры испытательного образца, использованного в этом испытании. Все фермы, использованные в эксперименте, состоят из этой единственной фермы.

Рисунок 4.

Размер модуля балочной фермы (единицы измерения: мм).

Конкретный состав испытательного образца показан в таблице 1.

Номер фермы Описание Количество
SPT-S Обычная одинарная ферма 1
SPT-G2-N Ферма из двух гвоздей SPT-S 1
SPT-G2-12 Ферма из двух SPT-S, соединенных дюбелем из бука диаметром 12 мм 2
SPT-G2-16 Балочная ферма из двух SPT-S, соединенных деревянным дюбелем из бука диаметром 16 мм 2
SPT-G2-20 Балочная ферма из двух SPT -S соединяется дюбелем из бука диаметром 20 мм 2
SPT-G3 Балочная ферма из трех SPT-S, соединенных дюбелем из бука диаметром 16 мм 1

Таблица 1.

Номер образца и описание.

3.2. Теоретический расчет

Расчет стандартной нагрузки Pk

Предположим, что расстояние между фермами составляет 406 мм, а срок службы здания составляет 50 лет.

Согласно нормативам нагрузки для проектирования строительных конструкций 2012 года (GB5009-2012):

Стандартное значение постоянной нагрузки: 0,885 × 0,406 = 0,359 кН / м

Вес фермы: 0,106 × 0,406 = 0,043 кН / м

Нормативное значение снеговой нагрузки: 0.5 × 0,406 = 0,203 кН / м

Нормативное значение временной нагрузки: 2,0 × 0,406 = 0,812 кН / м

Расчетное значение нагрузки: (0,359 + 0,043) × 1,2 + (0,203 + 0,812) × 1,4 = 1,9 кН / м

Нагрузка на узел: 1,9 × 1,734 ≈ 3,3 кН.

3.3. Программа и устройство нагрузки

В соответствии с классификационной нагрузкой фермы в стандарте для методов испытаний деревянных конструкций (GB50329-2012), испытание статической нагрузкой фермы добавляло нагрузку первого порядка каждые 10 минут во время фазы разрушения, с нагрузкой 0.2 Pk на этап. В этом испытании для нагрузки использовалась механическая испытательная машина. Таким образом, процедура загрузки может выполняться в режиме непрерывной загрузки, которая составляет 0,2 Pk каждые 10 минут. Загрузка в минуту составила 0,02 Pk . После вышеуказанного теоретического расчета Pk составляло 3,3 кН, а нагрузка в минуту составляла 0,066 кН. Однако в предварительном эксперименте мы обнаружили, что балочная ферма имела более чем в два раза превышающую предельную несущую способность одиночной фермы.Таким образом, в процессе загрузки нагрузка каждой ступени также была увеличена вдвое до 0,132 кН. Если ферма фермы состоит из трех одиночных ферм, нагрузка на каждую ступень также увеличивается втрое до 0,198 кН. Схема конкретной системы загрузки показана на рисунке 5.

Рисунок 5.

Система загрузки.

3.4. Индекс оценки и расположение точек измерения

Цель этого эксперимента — изучить влияние различных диаметров дюбелей на механические свойства новой фермы, соединенной дюбелями.Оценка характеристик балочной фермы для различных диаметров дюбелей должна также начинаться с аспектов предельной несущей способности, сопротивления деформации, формы разрушения и механизма. Поэтому, как и при испытании на статическую нагрузку большепролетных деревянных ферм, необходимо непрерывно отслеживать изменения смещения различных узлов разных типов деревянных ферм. В этом эксперименте между хордой и зубной пластиной также был установлен датчик смещения с малым диапазоном для измерения относительного скольжения зубной пластины относительно хорды.Кроме того, на важных хордах были установлены тензодатчики для измерения деформации на различных этапах хорды. Расположение конкретных точек измерения показано на рисунке 6.

Рисунок 6.

Расположение датчиков деформации и перемещения. а) схема тензодатчика; (б) манометр; (c) универсальная механическая испытательная машина.

4. Описание явления

4.1. Полное разрушение

В этой главе выполняется испытание статической нагрузкой на одной одиночной ферме и девяти фермах, включая ферму, состоящую из трех отдельных ферм.Существует большая разница в предельной несущей способности и деформации различных типов ферм. Однако общая форма и процесс разрушения фермы примерно одинаковы. Форма повреждений соединителя, вынутого после испытания фермы, также сильно отличается. Это также полностью иллюстрирует различное соединение между балочными фермами, которое будет иметь большее влияние на его характеристики.

Во-первых, во время предварительного нагружения ступени T1 ферма не претерпела значительных изменений.После 30 минут нагрузки все типы ферм производили очень небольшие остаточные деформации. В частности, ферма фермы могла достичь полного упругого восстановления. Из кривой нагрузка-смещение ступени T1 на рис. 7 определенное значение ползучести появилось в единственной ферме во время фазы предварительного нагружения. Переменные ползучести других ферм фермы были незначительны. Использование дюбелей разного диаметра мало повлияло на характеристики фермы.

Рисунок 7.

Нагрузка-смещение в ступени Т1. а) SPT-S; b) СПТ-Н; (C) SPT-G2-12 (d) SPT-G2-16; е) SPT-G2-20.

По мере продвижения испытаний не наблюдалось значительных явлений испытаний для каждой фермы от 24-часовой удерживающей нагрузки до начальной стадии T3 . Однако при загрузке до 5 Pk явление испытания начало проявляться в пролете фермы, а в других узлах явного явления не было. Например, небольшая выпуклость пластины фермы произошла в верхнем узле B SPT-S, а на нижнем поясе появилась трещина возле узла (как показано на рисунке 8).На других этапах другие фермы фермы были подобны явлению испытаний одиночных ферм, и явления разрушения также были сосредоточены в этих двух местах. В частности, опорная плита центрального узла B верхнего пояса вздулась (как показано на рисунке 9). В основном это связано с силовым механизмом фермы с параллельным поясом. Когда ферма с параллельным поясом подвергается верхней сосредоточенной нагрузке, верхний пояс испытывает сжатие, а нижний пояс — растяжение. В сочетании с анализом структурной механики диагональная стенка фермы будет создавать боковую силу в узле B, чтобы противостоять верхней сосредоточенной нагрузке.Таким образом, узел B подвергался напряжению сдвига, и напряженная среда была очень сложной. В сочетании с окончательной формой разрушения пластины фермы, пластина фермы в узле B в конечном итоге возникла как форма разрушения при сжатии при сдвиге.

Рис. 8.

Трещины на нижней хорде, сопровождаемые тестовым процессом удаления зуба SPT-S1.

Рис. 9.

Разрушение ответной пластины при сжатии при сдвиге в узле B. а) SPT-G2-N; (б) SPT-G2-12-1; c) SPT-G2-16-2; (d) SPT-G2-20-2.

Кроме того, многие эксперименты показали, что полное повреждение фермы разрушается за счет разрушения нижнего пояса. Узел нижнего пояса также напрямую влияет на силовые характеристики. На рис. 10 показаны реальные фото разрушения нижних поясов ферм. При обработке фермы экспериментаторы должны обратить внимание на выбор нижнего пояса и постараться избежать слишком большого количества уточнений с узлами. Однако верхний пояс и стенка фермы имели явные повреждения сдвига, а пояс не имел явных повреждений.Следовательно, когда деревянная ферма обрабатывается, качество обрабатываемого материала может быть соответствующим образом снижено.

Рисунок 10.

Разрушение нижних поясов ферм. а) SPT-G2-N; (б) SPT-G2-12-2; (c) SPT-G2-16-1.

Разрушение нижнего пояса фермы СПТ-Г2-20 произошло по разным причинам. SPT-G2-20 имел отверстие диаметром 19,5 мм в верхней и нижней поясах. Открытие нижнего пояса было слишком большим, что разрушало волокна в направлении древесины, а также уменьшало чистую площадь поперечного сечения пояса фермы.В условиях постоянной силы уменьшение чистой площади поперечного сечения стержня приведет к увеличению нагрузки на пояс. Предел прочности на разрыв у крупногабаритной древесины меньше прочности на сжатие, поэтому нижний пояс легко повреждается. На рисунке 11 представлена ​​реальная фотография разрушения пояса фермы СПТ-Г2-20. Трещина нижней пояса начинается от деревянного дюбеля и проходит через всю хорду. В конечном итоге это привело к полному разрушению фермы, однако дюбель был поврежден незначительно.

Рисунок 11.

Явление отказа SPT-G2-20-1.

4.2. Разрушение узла соединения

В предыдущем разделе описан режим отказа узла балочной фермы, соединенной дюбелем диаметром 20 мм между одиночными фермами балочной фермы. Окончательное повреждение произошло в результате разрушения нижнего пояса, но дюбели практически не деформировались. Размер дюбелей и соединителей гвоздей был поврежден в разной степени. На рис. 12 показан соединитель, снятый с фермы после окончательного разрушения каждого соединителя фермы.

Рисунок 12.

Форма выхода из строя разъемов.

Из рисунка 12 видно, что деформация, вызванная гвоздевым соединением, была большой. Как и в случае фермы фермы для соединения длинных гвоздей, в середине гвоздя появился пластиковый шарнир. Когда ферма была загружена на более позднем этапе, более очевидное смещение произошло между отдельными фермами, составляющими ферму фермы. Разные диаметры дюбелей вызывали разные формы деформации или повреждения. Во-первых, как и гвоздь, деревянный дюбель диаметром 12 мм также производил пластмассовую петлю.Однако степень деформации была меньше, чем у гвоздевого соединения. Диаметр деревянных дюбелей повлиял на его жесткость. Деформация дюбеля большого диаметра была небольшой. Дюбели диаметром 20 мм практически не деформировались. Деревянные дюбели практически не пострадали от повреждений ферм. Деформация деревянных дюбелей на 16 мм также не была очевидной. Потеря поперечного сечения хорды была уменьшена при обеспечении достаточной прочности соединения. Соотношение между диаметром отверстия и дюбелем элемента фермы также повлияло на характеристики соединения.Черный цвет на конце дюбеля диаметром 20 мм на Рисунке 13 является результатом карбонизации, когда дюбель был ввинчен в паз. Когда диаметр отверстия пояса составлял менее 0,5 мм диаметра деревянного дюбеля, деревянный дюбель, ввинчиваемый в стержень, был карбонизирован за счет тепловыделения при высокоскоростном вращении, и на поверхности дюбеля образовался карбонизированный слой, который защищала поверхность деревянным дюбелем. Поверхностная прочность была улучшена. Следовательно, необходимо хорошо выбрать соединители и подобрать соответствующий размер предварительного сверления с точки зрения долговечности фермы.

Рисунок 13.

Предельная несущая способность ферм.

5. Предельная несущая способность

На Рисунке 13 показано сравнение предельной несущей способности ферм пятой категории. Среди них новая деревянная балочная ферма, соединенная дюбелями, проходит в среднем два испытания. Из рисунка видно, что предельная несущая способность всех видов деревянных ферм намного превышает теоретическое расчетное значение, поэтому уменьшение пролета фермы эффективно увеличивает ее несущую способность.Кроме того, предельная несущая способность различных ферм намного больше, чем у одиночных, но предельная несущая способность различных ферм мало отличается друг от друга. Деревянные фермы с дюбелями диаметром 12 и 16 мм имеют относительно высокую предельную несущую способность. Ферма балочного соединения с гвоздевым соединением повлияла на синергию фермы балки из-за взаимного смещения ее отдельных ферм, что снизило ее несущие характеристики. Ферма балки с диаметром деревянного дюбеля 20 мм имела большую площадь проема в нижнем поясе фермы, что уменьшало чистую площадь поперечного сечения натяжного элемента, тем самым снижая несущие характеристики фермы.

6. Анализ результатов испытаний узла на прогиб

На рисунке 14 представлена ​​диаграмма прогиба нижних поясов трех балочных ферм с использованием двух деревянных дюбельных соединений разного диаметра. Из рисунка видно, что три типа ферм показывают хорошую согласованность на первых двух этапах нагружения. Ферма переходит в нелинейную стадию, когда она переходит в стадию разрушения, и результаты двух испытаний будут отличаться из-за изменчивости древесины. На рис. 17 показано изменение общей деформации фермы в процессе нагружения.На изображении видно, что трудно различить влияние различных методов соединения на сопротивление ползучести, упругое восстановление и сопротивление деформации фермы на образцах фермы с малым пролетом. Только на стадии разрушения фермы можно выделить кривую прогиба и проанализировать различные режимы и механизмы разрушения различных ферм.

Рис. 14.

Прогиб во времени новых балочных ферм от начала до конца. а) SPT-G2-12; b) SPT-G2-16; (c) SPT-G2-20.

Как показано на Рисунке 15, кривые нагрузка-прогиб одиночной фермы, балочной фермы гвоздевого соединения и балочной фермы деревянного дюбельного соединения выбираются на стадии разрушения. Из рисунка видно, что у разных типов ферм проявляются разные режимы и механизмы разрушения. Одиночная ферма показала очевидные характеристики хрупкого разрушения. Вблизи аварии не было явных признаков. Трещина возникла около узла нижнего пояса (как показано на рисунке 8).Затем трещина продолжала увеличиваться. В конце концов, полный отказ фермы был вызван внезапным переломом нижнего пояса.

Рисунок 15.

Кривая прогиба ферм.

Пластичность двух ферм значительно выше, чем у одинарных. На средней и более поздних стадиях разрушения фермы кривая нагрузка-смещение часто показывает изгиб на одном конце. Причина изгибов и поворотов в том, что первой была разрушена одна единственная ферма в балочных фермах.Так как другая ферма все еще имела несущую способность, она быстро несла верхнюю нагрузку. Однако он также будет быстро разрушен, потому что только одна ферма подверглась нагрузке. Из-за различных соединений между выбранными одиночными фермами балочных ферм описанная выше ситуация будет иной. Хотя коэффициент пролета сдвига был уменьшен, ферма фермы гвоздевого соединения по-прежнему проявляла нестабильность в плоскости на более позднем этапе нагружения. Фермы большего пролета были не очень очевидны.Между верхними фермами произошел взаимный вывих. Для балочной фермы будет очевидно, что сначала будет разрушена одна единственная ферма, а затем быстро разрушится другая ферма. Следовательно, ферма с гвоздевым соединением не дала ожидаемого эффекта «один плюс один больше двух». Ферма фермы, соединенная деревянным дюбелем, могла все еще поддерживать хорошее взаимодействие между нагруженными фермами. Таким образом, SPT-G2-16 также имел свою первую волну, в которой SPT-G2-N имел свои изгибы и повороты. Однако можно увидеть, что падение смещения было очень ограниченным, что указывает на то, что ферма не была полностью разрушена.По мере увеличения нагрузки на кривой появлялись три или четыре небольших поворота. В конечном итоге трещины, образовавшиеся в нижней части двух нижних поясов фермы, были чрезмерными и полностью проникли (как показано на рисунке 16), что привело к выходу фермы из строя.

Рисунок 16.

Явление отказа SPT-G2-16.

На рис. 17 показаны кривые прогиба от нагрузки трех новых ферм с разным диаметром деревянного дюбеля в качестве соединения между отдельными фермами.Из рисунка видно, что кривые прогиба-нагрузки трех балок имеют разную форму. Ферма балки с диаметром деревянного дюбеля 20 мм имела такой же вид разрушения, как у одиночной фермы, а именно хрупкое разрушение (как показано на Рисунке 10). Нижний пояс был сломан при совместном действии растяжения и сдвига. Ферма с дюбелями диаметром 12 мм была аналогична балочной ферме с гвоздями. Хотя кривая «нагрузка-смещение» претерпела изгиб, ферма не показала хорошей синергии.Наконец, появился пластиковый шарнир, похожий на деревянный дюбель и гвоздь. Таким образом, ферма, соединенная дюбелями, показала лучшие механические характеристики с деревянным дюбелем диаметром 16 мм.

Рисунок 17.

Кривая прогиба нагрузки для новых ферм.

7. Дальнейшие эксперименты с балочной фермой, состоящей из трех отдельных ферм

В последнем разделе фермы, соединенные тремя деревянными дюбелями разного диаметра, были испытаны на статическую нагрузку, а балочная ферма с деревянными дюбелями диаметром 16 мм была испытана. Лучший.Все предыдущие эксперименты проводились на ферменной ферме, состоящей из двух отдельных ферм, но ферма, состоящая из трех или более отдельных ферм, не тестировалась. Для того чтобы фермы фермы широко использовались в конструкциях больших пролетов и в более сложных несущих средах, они не могут состоять только из двух отдельных ферм. Он должен учитывать больше форм комбинаций одиночных ферм. В сочетании с результатами испытаний предыдущего раздела, в этом разделе проводится испытание статической нагрузкой на балочной ферме, состоящей из трех отдельных ферм, соединенных деревянными дюбелями диаметром 16 мм.Эффект усиления балочной фермы был исследован путем сравнения балочной фермы, состоящей из двух отдельных ферм, соединенных деревянными дюбелями одинакового диаметра.

Что касается несущей способности, несущая способность фермы, состоящей из двух отдельных ферм, составляла 53 кН, а ферма фермы, состоящая из трех отдельных ферм, имела несущую способность 77 кН, увеличиваясь на 45%. Таким образом, чем больше количество отдельных ферм, составляющих ферму фермы, тем более очевидны эффекты улучшения с точки зрения режима разрушения, две фермы фермы были похожи, а пояс был разрушен под действием сдвига при растяжении, что привело к разрушение фермы.Как показано на Рисунке 18, средняя ферма сначала появилась в виде трещин на нижнем поясе. Увеличение силы привело к полному отказу промежуточной фермы, при этом только две фермы были напряжены, но ферма фермы в это время потеряла синергию. Затем были разрушены деревянные дюбели нижнего пояса (как показано на Рисунке 19). Нижний пояс одиночной фермы на внешней стороне фермы был полностью потрескался в направлении волокон. Ферма вышла из строя в целом. Как показано на Рисунке 20, кривые нагрузка-смещение двух ферм на финальной стадии разрушения, также можно обнаружить, что две фермы имеют очень похожие режимы разрушения, и обе обладают хорошей пластичностью.

Рисунок 18.

Неисправность SPT-G3-16.

Рисунок 19.

Отказ разъемов в SPT-G3-16.

Рисунок 20.

Кривая нагрузка-смещение в стадии разрушения.

8. Заключение

В этой главе было проведено испытание деревянных ферм на статическую нагрузку, чтобы исследовать влияние различных соединений на механические свойства балочной фермы между отдельными фермами балочной фермы, особенно влияние различных диаметров дюбелей на ферма фермы.Результаты показали, что:

  1. Ферма с деревянным дюбелем должна быть присоединена к ферме как единое целое, но диаметр деревянного дюбеля должен быть выбран разумно.

  2. С точки зрения допустимой нагрузки, механизма разрушения и режима фермы, балочная ферма имеет лучшие характеристики, когда диаметр деревянного дюбеля составляет 16 мм.

  3. В предельных состояниях эксплуатационной пригодности использование дюбелей разного диаметра мало влияет на сопротивление деформации фермы.

  4. На верхнем поясе, соединенном с пластиной фермы, пластина фермы склонна к повреждению при сдвиге из-за совместного действия давления и сдвига. В реальном проекте следует попытаться сделать частичное армирование.

  5. По мере увеличения количества одиночных ферм, составляющих ферму, также будет происходить значительное улучшение ее механических свойств.

  6. Деревянные сучки, особенно мертвые, сильно ослабляют несущую способность поясов деревянных ферм.Общий отказ фермы часто происходит из-за наличия узла, поэтому следует производить выбор фермы. В поясе фермы следует избегать использования материалов с узлами. При необходимости можно выбрать, что, используя сталь вместо дерева, развивается композитная структура сталь-дерево.

Благодарности

Эта работа поддержана Национальным фондом естественных наук Китая (грант № 31670566) и Национальным «Двенадцатым пятилетним» планом поддержки науки и технологий (2015BAD14B0503).

.

Завод по производству ферм, Компания по производству OEM / ODM по индивидуальному заказу

Всего найдено 296 заводов и компаний по производству стропильных систем с 888 продуктами. Закажите высококачественную стропильную систему из нашего огромного ассортимента надежных заводов по производству стропильных систем. Золотой член
Тип бизнеса: Производитель / Factory
Основные продукты: Алюминий Ферма , сцена, подъемная стойка
Mgmt.Сертификация:

EN 1090-1: 2009 + A1: 2011, EN ISO 3834-3

Собственность завода: Общество с ограниченной ответственностью
Объем НИОКР: Собственный бренд, ODM, OEM
Расположение: Фошань, провинция Гуандун
Бриллиантовый член
Тип бизнеса: Производитель / Factory
Основные продукты: Подвижный подиум, ферма , кейс, алюминиевые леса, сиденья Система
Mgmt.Сертификация:

ISO 9001

Собственность завода: Общество с ограниченной ответственностью
Объем НИОКР: OEM
Расположение: Фошань, провинция Гуандун
Бриллиантовый член
Тип бизнеса: Производитель / Factory
Основные продукты: Алюминий Ферма , Алюминиевый этап, Алюминиевые леса, Алюминиевая баррикада, Полетный кейс
Собственность завода: Общество с ограниченной ответственностью
Объем НИОКР: ODM, OEM
Расположение: Гуанчжоу, Гуандун
Производственные линии: 3
Бриллиантовый член
Тип бизнеса: Производитель / Factory , Торговая компания
Основные продукты: Шатер, алюминий Ферма , Концертная сцена, ферма Дисплей.
Mgmt. Сертификация:

ISO9001: 2015

Собственность завода: Общество с ограниченной ответственностью
Объем НИОКР: ODM, OEM
Расположение: Сучжоу, Цзянсу
Золотой член
Тип бизнеса: Производитель / Factory , Торговая компания
Основные продукты: Ферма , Сцена, Барьер, Строительные леса, Хоровой стояк
Mgmt.Сертификация:

ISO9001: 2015

Собственность завода: Общество с ограниченной ответственностью
Объем НИОКР: Собственный бренд, ODM, OEM
Расположение: Уси, Цзянсу
Бриллиантовый член
Тип бизнеса: Производитель / Factory , Торговая компания
Основные продукты: Продукция: Ферма , Сцена, Алюминиевые перегородки, Барные стулья, Большие палатки
Mgmt.Сертификация:

ISO 9001

Собственность завода: Общество с ограниченной ответственностью
Объем НИОКР: ODM, OEM
Расположение: Гуанчжоу, Гуандун
Бриллиантовый член
Тип бизнеса: Производитель / Factory
Основные продукты: Алюминий Ферма , Барьер, Переносной этап, Алюминиевый этап, Выставка Ферма
Mgmt.Сертификация:

ISO 9001, ISO 9000, ISO 14000

Собственность завода: Общество с ограниченной ответственностью
Объем НИОКР: ODM, OEM
Расположение: Гуанчжоу, Гуандун
.
Опубликовано в категории: Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *