Технологии и строительные материалы: Строительные и отделочные материалы, современные строительные технологии

Строительные технологии и материалы

От обилия объявлений в интернете и по тв, на тему строительства дома можно растеряться . Нам предлагают различные технологии с очень громкими и обещающими названиями. Что из себя представляют современные строительные технологии строительства частного дома?

Представления о комфортном, удобном и безопасном жилье глобально изменилось за последнее десятилетие, особенно это чувствуется в крупных городах нашей страны. Современное строительство домов развивается за счет внедрения автоматизированных систем, повышенной эффективности инжиниринга. Технологические решения проявляются практически во всех нишах строительства начиная от фундамента, заканчивая отделочными работами.

Любая стройка это постоянный поиск технологий, выбор и закупка материалов. Этот процесс идет покругу, начинается фундаментом и заканчивается лишь на стадии финишной отделки. Построить каркасный дом по силам каждому особенно с подробными инструкциями, а вот построить дом из газобетона в одиночку уже задача сложнее, но также вполне решаемая. Все это время мы постоянно ищем и выбираем материал, изучаем строительные технологии, чтобы построить недорогой, но качественный дом. Разработка и производство новых строительных материалов происходит очень часто, о них знают далеко не все, но они значительно ускоряют и улучшают строительство объекта. О них не расскажет вам отец или дед, так как с ними они не знакомы были в прошлом, как например с цементом, древесиной или щебнем. Также нужно знать, что есть новые технологии и материалы, которые настолько взаимосвязаны между собой, что использование их по отдельности только навредит при строительстве, поэтому важно знать, как применять старые и новые материалы и технологии.

Мы расскажем, какие новый материалы существуют, с очень объективной стороны опишем плюсы и минусы того или иного материала. Мы не торгуем материалами и поэтому нашему сайту нет резона необоснованно пиарить ту или иную марку. Если найдем что-то хорошее обязательно напишем, как и озвучим плохие моменты, если чего-то не написали и у вас есть что добавить, пожалуйста пишите нам в комментариях, пообщаемся, обсудим и дополним статью по тематике.

Новые технологии в строительстве частных домов и современные

Выбирая проект для строительства дома, каждый хозяин предполагает выполнить два условия: оперативность сборки и комфортабельность жилья. Именно поэтому производители предлагают качественные и практичные современные материалы. И технологии при этом также применяются самые новейшие. Например, технология умный дом, которая отвечает всем требованиям и запросам современного пользователя.

Новые материалы и их особенности

новые технологии в строительстве частных домов

Современные материалы имеют неоценимое качество – они способны воплотить любые формы и форматы строений, не требуя от застройщика больших вложений

Стоит сразу обратить внимание на то, что новейшие технологии в строительстве и высокотехнологичные материалы – разные понятия, хотя и лежащие в одной плоскости. В частности, такая штучная продукция, как:

  • блоки пенобетона;
  • газоблоки;
  • оцилиндрованное бревно;
  • OSB плиты;
  • Сэндвич-панели;
  • СИП-панели;
  • прочее…

Это производственные новинки, не так давно появившиеся на рынке строительных материалов, однако они не обуславливают новых технологических приемов, а имеют особенности в плане монтажа. Например:

  • Блочная продукция (пено-, газобетон) имеет больший формат, чем штучный кирпич, обладает повышенной энергоемкостью, малым весом, вариабельной плотностью. За счет данных показателей снижается срок строительства, повышается удобоукладываемость и сохраняются все высокие показатели прочности, комфорта и практичности частного дома. Еще один плюс – цена на материалы ниже, чем на кирпич, а вследствие малого веса строения, показано обустройство облегченного фундамента.
технология умный дом

Оцилиндрованное бревно – природный материал, обладающий всеми показателями натурального дерева, имеющий высокие показатели теплоемкости

  • Оцилиндрованное бревно – природный материал, обладающий всеми показателями натурального дерева, имеющий высокие показатели теплоемкости, однако цена на материал ниже, чем на клееный брус, хотя практические качества остаются на высоком уровне. Застройщик получает удобный штучный материал стабильной формы, сэкономив на закупе, и тем самым снижает общую стоимость проекта.
  • Панели. Продукт также штучного выпуска, идеально подходящий для частного застройщика. Удобство материала в его полной готовности к монтажу, то есть, панели уже оснащены теплоизоляционным слоем, ветрозащитной мембраной и влагозащитой. Нужно лишь смонтировать коробку стен, перекрытия и кровлю – дом готов. В отдельных случаях панельные секции имеют внешнюю и внутреннюю отделку. Цена материалов значительно ниже любой другой штучной продукции, легкий вес элементов требует облегченного фундамента, сборка производится без «мокрых процессов», для монтажа не всегда требуется подъемная техника, что позволяет построить дом своими руками.

При этом все указанные материалы имеют неоценимое качество – они способны воплотить любые формы и форматы строений, не требуя от застройщика больших вложений.

Новые технологии и их особенности

Применение материалов нового порядка не отменяет использование строительства домов по новым технологиям. Сочетание двух показателей обеспечивает не только оперативность возведения строений, но и значительное удешевление домостроя.

ТИСЭ

Предельно популярная технология, имеющая также определение «переставная опалубка». Процесс разработан отечественными учеными и при использовании не требует не только применения спецтехники, но и позволяет обходиться буквально лишь одной парой рук.

Принцип ТИСЭ
современные технологии строительства

Метод характеризуется установкой свайных элементов или обустройством фундамента столбчатого типа, дополненных ростверком

Метод характеризуется установкой свайных элементов или обустройством фундамента столбчатого типа, дополненных ростверком. Обязательный инструмент – бур, разработанный для технологии ТИСЭ. Стеновые панели на данный облегченный фундамент собираются из блочного штучного продукта, формируемого непосредственно на строительной площадке: передвижная опалубка выступает в качестве формы и перемещается по стеновым панелям, как только сделанный модуль застывает.

Достоинства технологии:

Рекомендуем к прочтению:

  1. Полное отсутствие мостиков холода;
  2. Не нужна бригада профессионалов, вполне можно обойтись своими руками и парой помощников для перемещения опалубки и земляных работ;
  3. Вариабельность состава блоков, что снижает затраты на строительство.

Совет! Чаще всего в технологии ТИСЭ используется два строительных материала: бетон и кирпич. Бетонные блоки отличаются высокой теплоемкостью, кирпич для облицовки придаст строению прочность, стабильность формы и дополнительную жесткость.

Каркасное строительство

Это один из самых простых и удобных способов возведения частного дома. Разнообразие вариантов обустройства каркаса, легкий фундамент, возможность строить дома до 2-х этажей, огромное количество проектов и практичность дома – основные плюсы технологии.

Особенности
новые технологии строительства

Возведение каркаса начинается сразу после установки фундамента

Возведение каркаса начинается сразу после установки фундамента. Конструкция вся состоит из блочных элементов, располагаемых горизонтально, вертикально или диагонально, сочленяемых между собой различными вариантами. Используется пиломатериал, металл – все зависит от финансирования и предпочтений застройщика.

Важно лишь помнить, что металлический каркас, хотя и является более прочным, но требует наличия сверлильных инструментов по металлу, сварки – данные нюансы могут осложнить процесс возведения каркаса. Пиломатериал хорошего качества не уступает металлу по стойкости, при этом упрощает процесс сборки. Чаще всего применяется хороший качественный брус, из-за чего сохраняется как показанная жесткость каркаса, так и его геометрическая стабильность.

Современное строительство каркасных домов допускает несколько вариантов наполнения стен:

  1. ОСП плиты выступают в качестве стеновых панелей и заполняются любым подручным теплоизоляционным материалом, например, минвата, пенобетон, керамзитная засыпка, пенополиуретан.
  2. Сборные щитовые СИП-панели, уже доукомплектованные утеплителем, ветро-, гидрозищитной пленкой.
энерго сберегающий дом технология

Сборные щитовые СИП-панели, уже доукомплектованные утеплителем, ветро-, гидрозищитной пленкой

Совет! Практикуя для строительства современные материалы и технологии, необходимо рассматривать удобоприменение всех элементов. В частности, если строить дом с СИП-панелями, то чтобы обойтись своими силами придется либо выбирать облегченные элементы, либо нанимать подъемники, так как стеновые панельные элементы зачастую имеют тяжелый вес. Но все зависит от предпочтений хозяина дома.

Преимущества технологии

  1. Легкость конструкции не требует строительства тяжелых и мощных фундаментов, а значит, возведение дома доступно на любом грунте без дополнительных земляных работ;
  2. Минимум затрат на строительство и возможность быстрой перепланировки, достройки здания;
  3. Вариабельность внешней, внутренней обшивки – панели и листы легко принимают отделочные материалы, поэтому можно менять вид дома хоть каждый сезон.

3D панели

новые технологии строительства частных домов

Производятся панели в промышленных условиях, представляют собой монолит плиты из пенополистирола, дополнительно армированный усиливающими сетчатыми конструкциями с обеих сторон

Это, пожалуй, новейшие технологии в строительстве, которые пока мало известны и доступны застройщикам. Несмотря на дешевизну, доступность ограничена неосведомленностью и больше ничем, ведь строительство при помощи 3D  панелей представляет собой ни что иное, как доработанный вариант каркасного возведения домов.

Производятся панели в промышленных условиях, представляют собой не разновидность сборного щитового элемента, а монолит плиты из пенополистирола, дополнительно армированный усиливающими сетчатыми конструкциями с обеих сторон. Связываются между собой такие системы металлическими стержнями арматуры, насквозь проходящими через всю конструкцию, благодаря чему сохраняется не только стабильность формы панелей, но и объясняется высокая прочность, устойчивость к любым природным воздействиям. При этом сохраняется предельно легкий вес строения, а сборка не доставляет никаких сложностей.

Достоинства технологии
технологии строительства частных домов

После монтажа этих панелей вся конструкция заливается бетонной «рубашкой», что только увеличивает все плюсы такого дома

В стандартном понимании, строение из 3D панелей не имеет никакого «жесткого каркаса», вместо этого застройщик получает панельный элемент, связанный жесткой скрепкой и посредством этого образующий несущие стеновые панели. После монтажа этих панелей вся конструкция заливается бетонной «рубашкой», что только увеличивает все плюсы такого дома:

Рекомендуем к прочтению:

  1. Полимеры, используемые для создания панелей, имеют высокие показатели энергоэффективности, а значит, теплопотери в таком доме будут минимальными;
  2. Простота сборки обеспечивает оперативность застройки;
  3. Изготовление в промышленных условиях гарантирует качество как отдельного элемента, так и всего здания в целом;
  4. Нет необходимости создавать тяжелый фундамент, 3D панели даже в бетонной заливке не обладают тяжелой массой.

Важно! Материал намного проще любых блочных продуктов в том плане, что при навешивании тяжелых шкафов не придется укреплять стену досками. При этом цена 3D  панелей вполне может соперничать с пено-, газоблочной продукцией.

Несъемная опалубка

Доступность и простота исполнения сделали данную технологию одной из самых популярных и часто применяемых в индивидуальном домостроении.

Принцип технологии и ее достоинства
новейшие технологии в строительстве

Опалубка формируется из блочных или панельных конструкций, которые образуют простенок, куда монтируется арматура и заливается раствор бетона

Как и в случае ТИСЭ, применение опалубки несъемного типа позволяет выстроить дом в одиночку. Еще плюсами являются следующие факторы:

  1. Опалубка формируется из блочных или панельных конструкций, которые в процессе возведения дома располагаются по периметру основы и образуют простенок, куда монтируется арматура и заливается раствор бетона, что придает строению дополнительную жесткость;
  2. Вариабельность наполнителя опалубки позволяет неплохо сэкономить на строительстве дома;
  3. Можно строить конструкции до 2 этажей, при этом фундамент остается облегченным из-за малого веса всего здания.

Совет! Если выбирать не только новые технологии строительства частных домов, но и правильные материалы наполнения, в данном случае, для стеновой опалубки, можно будет не беспокоиться о дополнительных теплоизоляционных материалах.

Строительство из СИП-панелей

современные частные дома

СИП-панели представляют собой щитовой материал из двух плит ДСП, между которыми проложен теплоизоляционный и гидроизоляционный материал

Что касается этой технологии, то тут применяются и самые современные материалы, однако сама суть сводится к подвиду каркасного строительства. СИП-панели представляют собой щитовой материал из двух плит ДСП, между которыми проложен теплоизоляционный и гидроизоляционный материал, часто присутствует и дополнительная ветровая мембрана. Главное достоинство таких панелей – готовность к монтажу на месте.

Кроме того есть еще плюсы:

  1. Оперативность сборки дома;
  2. Небольшой вес панелей, что позволяет применять фундамент облегченного типа и при строительстве обойтись собственными силами.

Совет! Несмотря на кажущуюся легкость панелей, это весьма прочный материал. Построенный дом будет не только теплым, практичным, но и стойким. СИП-панели легко выдерживают ураганные ветры, снегопады и прочие воздействия внешней среды. При этом материал легко монтируется, скрепляется и, главное, производство панелей возможно только в промышленных условиях, что при хорошем подборе поставщика гарантирует отменное качество штучных элементов.

Велокс (Velox)

новые материалы для строительства дома

Отличие от других способов в том, что опалубка изготавливается не из пенополистирольных блочных элементов, а из плит щепо-цементного или цементно-стружечного вида

Относительно новая технология, применяемая для строительства частных домов, принцип которой также заключается в использовании несъемной опалубки. Отличие от других способов в том, что опалубка изготавливается не из пенополистирольных блочных элементов, а из плит щепо-цементного или цементно-стружечного вида. Наружная плита имеет дополнительное уплотнение и утепление из пенополистирола. Несъемная опалубка бывает в разных вариантах толщины и соединяется раствором цемента с добавкой жидкого стекла, что придает влагоотталкивающие свойства строению.

Преимуществами являются следующие факторы:

  1. Малый вес и толщина стеновых панелей;
  2. Отсутствие дополнительного утепления;
  3. Оперативность строительных работ;
  4. Прочность здания.

Применяя новые технологии в строительстве частных домов, не следует забывать о прочих нюансах: как правило, все современные технологии не рассчитаны на многоэтажные строения, потому требуется точный и качественный просчет нагрузки и заполнения зданий. И, конечно, не последний пункт – материалы. Производители предлагают огромный ассортимент продукции, отличающейся отменными показателями качества при сниженной стоимости.

Каталог строительной продукции и технологий — Комплекс градостроительной политики и строительства города Москвы

Московский территориальный строительный каталог (МТСК) представляет собой фрагмент единой информационно-справочной системы, охватывающей деятельность Строительного комплекса города Москвы и предназначен для проектных, строительных, подрядных, снабженческих и других организаций, осуществляющих проектно-строительную деятельность на территории города Москвы.

Основной целью МТСК является информационное обеспечение эффективного развития городской строительной отрасли, внедрение в массовое строительство новых проектов, технологий, конструкций, материалов и изделий ведущих отечественных и зарубежных производителей.

В МТСК включается продукция, соответствующая нормативно-техническим документам, стандартам, техническим условиям, имеющая необходимые сертификаты соответствия и рекомендуемая для применения на строительных площадках Москвы.

Продукция, включенная в Реестр инновационных технологий и технических решений, проходит рассмотрение Экспертной комиссией по инновационным технологиям и техническим решениям для объектов городского заказа города Москвы.

Ведение базы МТСК и ее постоянная актуализация обеспечивает всех участников  строительного процесса достоверной информацией о  выпускаемых и новых конструкциях, технологиях и материалах на строительном рынке, позволяет повысить качество и ускорить выпуск проектно-сметной документации для объектов городского заказа, существенно упрощает процедуру составления технических заявок на проведение торгов и поставку оборудования для объектов капитального строительства города Москвы.

Структура каталога:

Каталог строительных материалов, изделий, оборудования и механизмов

Реестр нормативных, правовых и методических документов по строительству

Реестр организаций, предоставляющих услуги на архитектурно-строительном рынке

Реестр сертифицированных программных средств в сфере архитектурно-строительного проектирования

Реестр конструктивных узлов и технических решений (КУ и ТР)

Реестр типовых проектных решений (ТПР)

Реестр городских объектов и программ строительства

Реестр инновационных технологий и технических решений (ИТ и ТР)

Реестр мониторинга цен на строительную продукцию

 

 

Новые материалы и строительные технологии

Развитие строительных технологий, разработка и применение новых строительных материалов ведётся в направлениях:

  • сокращения сроков и повышения рентабельности строительства,
  • снижения материалоемкости и затрат при строительстве, эксплуатации и ремонте,
  • повышения долговечности строительных конструкций и, в целом, зданий (строений и сооружений),
  • улучшения и разнообразия архитектурных форм, объемно-планировочных и функциональных решений, улучшения физических параметров существующих и возводимых объектов.
  • Для выполнения этих задач все субъекты хозяйства, связанные со строительством (научные учреждения и проектные институты, лаборатории, предприятия по производству стройматериалов и строительные организации) ведут поиск решений в части разработки, производства и применения новых строительных материалов, конструкций и технологий. В конечном итоге, это ведет к улучшению технических характеристик объектов недвижимости, снижает эксплуатационные расходы при их использовании, повышает экономическую эффективность в течение всего периода службы объектов.

Новаторство в развитии строительных материалов и конструкций идет по пути:

  • повышения прочности и долговечности,
  • повышения устойчивости к агрессивным средам,
  • повышения влагостойкости, водостойкости и водонепроницаемости,
  • повышения морозостойкости,
  • повышения устойчивости к коррозии металлов,
  • снижения теплопроводности,
  • широкого использования местных и наиболее распространенных полезных ископаемых при строительном производстве.

Новые материалы и конструкции находят применение в строительстве всех составных частях зданий, строений и сооружений:

  • фундаментов (например, сборные железобетонные, монолитные железобетонные, свайные, столбчатые и ленточные фундаменты, фундаментные плиты и т.д.),
  • каркасов зданий (из монолитного и сборного железобетона, из металлопроката, с применением новых технологий крепления),
  • ограждающих конструкций (стен и перегородок),
  • конструкций межэтажных перекрытий и покрытий (крыша, кровля),
  • широкого спектра отделочных материалов,
  • инженерных систем, оборудования и коммуникаций.

В качестве примеров можно привести:


1. Теплоэффективные блоки. Они изготовлены из двух слоев твердого, несущего нагрузку, материала с прослойкой между ними из утеплителя. Твердые слои блока соединены между собой стержнями. Лицевая часть такого блока декорирована текстурой, цветом, орнаментом. Размер лицевой части таких блоков составляет обычно 400х200 и толщина (ширина стены) в зависимости от климатических условий местности 250 — 400 мм. В результате: стена из таких блоков обладает высокой теплозащитой, снижаются сроки возведения здания, при выполнении кладки не требуется высокая квалификация каменщика.

2. Газосиликатные блоки. Их стандартные размеры: 600х300х200, 600х300х100. Блоки изготовлены в условиях завода и имеют пористую структуру. Их формуют из смеси кварцевого песка с известью. При высокой температуре в автоклаве в структуре газосиликатного камня образуются пустоты — поры, что обеспечивает в дальнейшем, при эксплуатации такого материала, отличные теплоизоляционные свойства наряду с их высокой прочностью. Газосиликатные блоки применяют для возведения наружных и внутренних несущих стен и перегородок. Для обеспечения необходимой теплозащиты здания наружные стены утепляют слоем теплоизоляционного материала, защитным и отделочным слоем.

3. Сэндвич-панели и быстровозводимые здания. Сэндвич-панели – это крупноразмерные трехслойные конструкции для бокового ограждения и покрытия зданий. Панели изготавливают унифицированных размеров в промышленных условиях из металлических, обычно, оцинкованных профлистов, окрашенных полимерной краской любого желаемого цвета, с теплоизолирующей прослойкой между ними из высокоэффективного теплоизоляционного материала, например, из пенополистирола, пенополиуретана или минеральной ваты. В условиях строительства сэндвич-панели монтируются на металлический каркас, выполненный из унифицированных, изготовленных также в заводских условиях, деталей. Каркас состоит из стальных колонн, жёстко закрепленных в столбчатых железобетонных фундаментах, и шарнирно-опираемых на них металлических ферм покрытия. Для обеспечения жёсткости всего здания, защиты от ветровых и снеговых нагрузок каркас возводят с применением вертикальных и горизонтальных связей. Все элементы такого здания изготавливаются в заводских условиях, что позволяет достичь наилучшего качества материалов и конструкций, наибольшей производительности труда и высокой рентабельности при производстве всех элементов здания.
Применение такой технологии строительного производства позволяет значительно сократить сроки строительства зданий при высоком качестве работ. Это стало настоящим «прорывом» в строительстве современных торговых и выставочных комплексов, промышленных, складских и офисных зданий, спортивных и физкультурно-оздоровительных комплексов и сооружений, авиаангаров, автосалонов, автосервисов и гаражей, то есть всего спектра коммерческих объектов недвижимости. Строительство быстровозводимых зданий даёт инвестору возможность максимально быстро вводить строительные объекты в эксплуатацию и окупить вложенные средства. В рыночной нише это дает дополнительные конкурентные преимущества. Долговечность быстровозводимого здания обуславливается долговечностью металлоконструкций и зависит прежде всего от степени вероятности коррозии металлических частей. Для защиты от коррозии применяются и разрабатываются новые технологии производства и обработки металлоконструкций. При высоком качестве комплектующих частей, высоком качестве производства и контроля в период строительства, а также при условии соблюдения правил эксплуатации и своевременных текущих ремонтах большинство производителей декларируют эксплуатационный срок службы быстровозводимых зданий не менее 50 лет, а некоторые называют срок до 100 лет.

4. Сухие строительные смеси – это практически готовые для строительства и ремонта смеси, полученные в промышленных условиях путем смешивания сухих компонентов в пропорциях, строго дозированных для обеспечения требуемых свойств. В качестве компонентов используют: цемент, песок, гипс, известь или другие минеральные наполнители с включением специальных добавок. В условиях стройки для подготовки раствора необходимо нужное количество смеси смешать с водой в определенной пропорции и тщательно перемешать. Это снижает сроки выполнения работ, значительно улучшает качество строительных конструкций и элементов, повышает долговечность здания в целом.

5. Проникающая гидроизоляция. В надежной гидроизоляции нуждаются многие здания и их элементы в период строительства и ремонта. Гидроизоляционная защита нужна фундаменту, кровле, стенам из пористых материалов, а также другим элементам, находящимся в условиях агрессивной среды. Многие гидроизоляционные материалы, применяемые ранее, часто не могли обеспечить надежной защиты из-за некачественно выполненных работ. Рулонные гидроизоляционные материалы сами по себе водонепроницаемы, прочны и долговечны. Однако в условиях стройки (или ремонта) ошибки исполнителя и нарушения технологии гидроизоляционных работ, особенно в труднодоступных местах, приводят к разгерметизации изоляции. Затем некачественный слой гидроизоляции закрывается последующими слоями материалов (стяжкой, плиткой и пр.). В результате этого, в случае обнаружения в течение эксплуатации здания течей, чаще всего невозможно выявить место нарушения гидроизоляции. Приходится накладывать новые слои гидроизоляции, что опять же не обеспечивает полной надежности по указанным выше причинам (некачественная работа, нарушения технологии, труднодоступные места). Для решения этой задачи была создана проникающая гидроизоляция. Этот материал выпускается промышленностью в виде сухой строительной смеси цементного и высокоалюминатного клинкера, полимерных вяжущих, наполнителей и полимерных добавок. Для применения в условиях строительства или ремонта сухую смесь тщательно перемешивают с водой. При нанесении полученного раствора на твердую влажную и пористую каменную поверхность химические составляющие под воздействием осмотического давления глубоко проникают в капиллярную структуру поверхности. В результате взаимодействия химических составляющих с минеральной поверхностью образуются нерастворимые и труднорастворимые соли, которые блокируют все поры, обеспечивая водонепроницаемость, прочность и стойкость к воздействию агрессивных вод. В зависимости от плотности поверхности глубина проникновения во внутреннюю структуру может достигать 10 сантиметров.

6. Новые оконные технологии уже известны широкому кругу потребителей. Современные окна изготовлены в промышленных условиях из поливинилхлоридного (ПВХ) или алюминиевого профиля с герметичными одно-, двух- или трех-камерными стеклопакетами. Стеклопакеты – это несколько слоёв высококачественного стекла с тонкой прослойкой между ними, заполненной сухим воздухом или инертным газом. Все соединения оконных блоков выполнены настолько качественно, что обеспечивают полную защиту от проникновения влажности и холодного воздуха.

7. Монолитное строительство. Применение современных надежных и многофункциональных строительных машин и оборудования, оснастки (бетононасосов, бетоновозов (миксеров), бетонных заводов, инвентарных опалубок) и современных пластичных бетонов позволило перейти строительной отрасли на новый технологический уровень — возведение монолитных железобетонных зданий. Железобетонный каркас, межэтажные перекрытия и покрытия современного здания буквально «льют» из бетона в форму, которая заранее армирована и ограждена инвентарной опалубкой. Это даёт существенные преимущества по сравнению с ранее применяемыми технологиями:
Стены и перекрытия, построенные по монолитной технологии, равномерно армированы, практически не имеют швов в бетоне, что обеспечивает проектную прочность и жесткость здания, защиту армирующих металлических каркасных элементов от коррозии и агрессивной среды.
Несущие элементы конструкций имеют меньшую толщину, что позволяет снизить нагрузку на фундамент и нижестоящие конструкции. В итоге это снижает общестроительные затраты.
Появилась возможность проектировать и строить здания, уникальные по своей архитектуре и планировке, любой формы и конфигурации.
Несущий каркас из монолитного железобетона имеет существенно лучшие прочностные характеристики, что позволяет возводить высотные здания в 30 – 40 и более этажей.
Исключена по сравнению со сборным железобетонным строительством необходимость герметизации стыков и швов железобетонных элементов в период строительства и их регулярного ремонта в период эксплуатации здания.

8. Вентилируемые фасады. 90 % существующих сегодня зданий, построенных 30 – 50 и более лет назад, пришли в неприглядный вид, фасады либо вообще не облицовывались во время строительства, либо штукатурка потрескалась и разрушилась, а фасадная краска испортилась. В таких условиях стены большинства зданий не защищены от дождя и ветра, а в наших климатических условиях, в условиях значительных перепадов температур (нагреваний до +40 — +50°С и заморозков до -30 — -35°С), происходит быстрое разрушение поверхностей ограждающих стен (кирпича, бетона) от сужения и расширения структуры камня во время пересушки, переувлажнения, замораживания и оттаивания. В итоге нестарые каменные здания, построенные на хороших фундаментах, с хорошими прочными каркасами, с прочными несущими стенами и перекрытиями, которые могли бы прослужить не одну сотню лет, приходят в аварийное состояние уже через 50 — 70 лет по причине незащищенности ограждающих стен.

Не так давно в России (а в мире используется уже в течение около 50 лет) появилась новая технология защиты стен зданий – «вентилируемые фасады». Эта технология представляют собой навесную облицовочную систему, состоящую из кронштейнов, профилированных направляющих, крепежных и других элементов и может быть применена в любой период существования здания (чем раньше, тем лучше): в период строительства, в период реконструкции, в период ремонта.

Важнейшими достоинствами применения технологии вентилируемых фасадов являются:

защита наружных конструкций зданий от внешних воздействий (влажности и перепадов температуры),
придание зданиям красивого и «ухоженного» внешнего вида,
создание новых архитектурных линий зданий и цветовых решений: различные варианты и расцветки отделки (керамогранитные, композитные, металлические или другие панели),
утепление зданий и улучшение их теплотехнических характеристик,
простота сборки приготовленных в заводских условиях элементов.
Вентилируемые фасады — это отличная современная технология для защиты зданий от внешних воздействий, придания самого современного вида даже внешне весьма устаревшим зданиям и существенного продления срока службы каждого здания!

Кроме того, в условиях необходимой экономии энергоресурсов вентилируемые фасады дают дополнительную воздушную прослойку или предусматривают слой утеплителя, повышая теплотехнические характеристики зданий. В итоге, окупаемость затрат на вентилируемый фасад составляет 5 — 6 лет, а срок безремонтной службы 30 – 40 лет. А главное, затраты на такой фасад несоизмеримо меньше расходов на новое строительство взамен аварийного здания!

Таким образом, наряду с достоинствами технического и эстетического «порядков» вентилируемые фасады принесут несомненную выгоду собственникам зданий:
повысят долговечность зданий и сохранят ценность инвестиционного капитала собственников на многие годы,
повысят эксплуатационные характеристики здания за счет экономии затрат на отопление и на ремонты ограждающих конструкций,
придадут каждому такому зданию великолепный «товарный вид», повысив привлекательность для потенциальных арендаторов и возможных покупателей,
и, в конечном счете, значительно повысят капитализацию и рыночную стоимость таких зданий.

Производство и применение строительных материалов, изделий и конструкций

Информация по профилю

В настоящее время кафедра «Производство строительных материалов, изделий и конструкций» (ПСМИК) обучает и выпускает бакалавров по направлению 08.03.01 – «Строительство» по профилю «Производство и применение строительных материалов, изделий и конструкций».

На кафедре ПСМИК действует научная школа «Самарская школа материаловедов», которая, продолжая традиции основателей школы профессоров А.А. Новопашина, Т.Б. Арбузовой. Кафедра являлась инициатором проведения Академических чтений РААСН по строительному материаловедению (1995 и 2004 гг.).

С каждым годом появляется все больше новых строительных материалов, используемых для строительства зданий и сооружений и для отделки помещений. В рамках учебного процесса студенты получают знания и навыки в области: современных строительных материалов; технологий производства разнообразных строительных материалов; требований к сырью для производства строительных материалов; возможности получения материалов с регулируемыми свойствами; перспектив развития промышленности строительных материалов. Достоинствами профессии являются: универсальность; высокая востребованность на предприятиях строительной отрасли.

Виды деятельности выпускника (кого готовят), что может выпускник

Выпускники, освоившие данную программу бакалавриата готовы к выполнению следующих видов профессиональной деятельности:

  • изыскательская и проектно-конструкторская;
  • производственно-технологическая и производственно-управленческая;
  • экспериментально-исследовательская;
  • монтажно-наладочная и сервисно-эксплуатационная;
  • предпринимательская в области производства и применения строительных материалов, изделий и конструкций.

Основные дисциплины

  • Строительные материалы. Вяжущие вещества. Керамические и плавленые материалы. Кровельные материалы. Материалы для ремонта и реконструкции.
  • Методы испытаний строительных материалов и изделий. Механическое оборудование предприятий строительной индустрии. Теплотехника и теплотехническое оборудование. Производство ремонтных работ.
  • Технология изоляционных строительных материалов и изделий. Технология полимерных строительных материалов. Современные технологии производства теплоизоляционных материалов. Постановка и совершенствование технологических процессов.
  • Проектирование предприятий по производству железобетонных изделий и конструкций. Проектирование предприятий по производству керамических изделий.
  • Экологические аспекты производства строительных материалов и многие другие дисциплины.

Виды деятельности выпускника (кого готовят), что может выпускник

Выпускники, освоившие данную программу бакалавриата готовы к выполнению следующих видов профессиональной деятельности:

  • изыскательская и проектно-конструкторская;
  • производственно-технологическая и производственно-управленческая;
  • экспериментально-исследовательская;
  • монтажно-наладочная и сервисно-эксплуатационная;
  • предпринимательская в области производстве и применения строительных материалов, изделий и конструкций.
Основные дисциплины Студенты специальности изучают следующие дисциплины:
  • Строительные материалы. Вяжущие вещества. Керамические и плавленые материалы. Кровельные материалы. Материалы для ремонта и реконструкции.
  • Методы испытаний строительных материалов и изделий. Механическое оборудование предприятий строительной индустрии. Теплотехника и теплотехническое оборудование. Производство ремонтных работ
  • Технология изоляционных строительных материалов и изделий. Технология полимерных строительных материалов. Современные технологии производства теплоизоляционных материалов. Постановка и совершенствование технологических процессов
  • Проектирование предприятий по производству железобетонных изделий и конструкций. Проектирование предприятий по производству керамических изделий.
  • Экологические аспекты производства строительных материалов и многие другие дисциплины.

Возможные сферы деятельности выпускников

Бакалавры, выпускаемые кафедрой, могут работать:

  • на предприятиях по производству строительных материалов, изделий и конструкций;
  • в организациях, которые осуществляют экспертизу строительных материалов;
  • в проектных институтах;
  • в организациях, реализующих строительные материалы;
  • преподавателями высших учебных заведений.

Примеры трудоустройства выпускников

Вчерашние выпускники специальности «Производство и применение строительных материалов, изделий и конструкций» работают инженерами, технологами, заведующими лабораториями, руководителями на предприятиях Самарской области (ОАО «Самарский гипсовый комбинат», ОАО «Самарский комбинат керамических материалов», ООО «Самарский Стройфарфор», ООО «Древо», заводах ЖБИ) и других регионов, в научно-исследовательских и проектных организациях (г. Москва, г. Самара), обучаются в магистратуре и аспирантуре, преподают и работают в СамГТУ и других вузах, а также в школах и лицеях г. Самары и области.

Компании, с которыми сотрудничает кафедра, связь с предприятиями, где проходит практика:

Список организаций – партнёров:

  1. Некоммерческая организация «Союз производителей керамзита и керамзитобетона» и АО «НИИКерамзит»
  2. ООО «Самарский Стройфарфор»
  3. ООО «ИНКОН».
  4. ООО «Стройинвест».
  5. ООО СПКП «Регион».
  6. ООО «Строй-Гарант».
  7. ООО «Волгатрансстрой–9».
  8. ООО «АКСМ».
  9. ООО «Газпром трансгаз Самара».
  10. ООО «СтройЭконом».
  11. ООО «ХайдельбергЦемент Волга».
  12. ООО «Авиакор»;
  13. ООО «Древо»;
  14. ОАО «Самарский гипсовый комбинат»;
  15. ОАО «Самарский комбинат керамических материалов».

Кафедра «Производство строительных материалов, изделий и конструкций»

Наш адрес: 443001 г.Самара ул. Молодогвардейская 194, корп. 2, каб. 115

Кафедра: 8 (846) 242-37-02

Наш е-mail: [email protected]

Экологические материалы: современные технологии строительства

С каждым годом в мире увеличивается количество вредных выбросов, уничтожающих планету. Мегаполисы с автомобилями, заводами, котельными и электростанциями, своим существованием, наносят непоправимый вред экологии. Страдает не только природа.

С каждым годом человек становится, менее устойчив к влиянию окружающей среды. Новые заболевания требуют большей помощи врачей и новых медицинских препаратов.

Ученые всего мира работают над технологиями, призванными сохранить природу — уменьшить негативное влияние современных технологий на окружающую среду и здоровье людей. О достижениях в области экологически чистых технологий мы все чаще слышим и читаем:

  • энергосберегающие технологии;
  • приточно-вытяжная вентиляция с рекуперацией тепла и влаги;
  • переработка отходов;
  • геотермальная энергетика;
  • водородное топливо;
  • возобновляемые источники энергии,

и многое другое, постепенно внедряются по всему миру. Не обошли зеленые технологии и строительство.

Виды ультрасовременных строительных материалов.

Сегодня большинство задумок в области экологии находятся на стадии разработки, однако некоторые уже успешно испытаны и внедрены. Пено- и газоблоки являются самыми распространенными и востребованными материалами для строительства, которые можно отнести к экологически чистым материалам.

Арболит.

Заменой газоблокам мог бы послужить арболит – смесь опилок, щепок и бетона. Блоки из данного материала легки, прочны и просты в эксплуатации, при этом они обладают высокими тепло, звукоизоляционными характеристиками, что делает его прекрасным строительным материалом.

Биодинамический бетон.

Идея экологически чистого мегаполиса кажется фантастической, но это реальность. Биодинамический бетон – разработка итальянского архитектурного бюро, был впервые представлен на международной выставке в Милане. Благодаря своим уникальным свойствам, это вещество поглощает вредные частицы, содержащиеся в воздухе, преобразовывая их в инертные соли.

Самовосстанавливающийся цемент.

Еще одним достижением в области экологического строительства могут похвастаться голландские ученые. Им удалось создать самовосстанавливающийся цемент. При изготовлении, которого был добавлен специальный вид бактерий. Состав цемента обогатили лактатом кальция. При поглощении этого вещества бактерия производит известняк. Заполняя трещины продуктами своей жизнедеятельности, она восстанавливает целостность бетона. Такая технология позволяет увеличить долговечность конструкции, и сэкономит массу энергии, которую пришлось бы тратить для его восстановления.

Биобетон.

Биобетон – детище испанских ученых. В состав материала входят химические элементы, сохраняющие прочность, даже при условии прорастания живых растений. Более того, содержащийся в растворе фосфат магния создает кислотную среду, благоприятную для некоторых растений. Например: мох, лишайник, несколько видов грибов, не только придают оригинальный вид строению и прекрасно очищают воздух, они также служат отличным утеплителем и звукоизоляционным материалом.

Ракушечник.

Давно известен, но лишь сейчас достойно оценен ракушечник. Этот материал подарила нам сама природа. В отличие от кирпичей, газоблока, шлакоболока, этот камень добывается, открытым способом. С помощью специальной техники, пласт породы режется на готовые к эксплуатации блоки. Ракушечник состоит из раковин моллюсков, живших миллионы лет назад. Под воздействием времени и высокого давления, они спрессовались в прочный камень, и теперь мы можем использовать его для строительства. Ракушечник обладает неоднородной структурой и привлекательным цветом, поэтому его используют для изготовления отделочной плитки, при оформлении ландшафтного и аквариумного дизайна.

По уровню прочности ракушечник делят на три марки. В зависимости от прочности он хорошо подходит для строительства одно- и малоэтажных домов. Положительные характеристики: морозостойкость, экологичность, доступная цена. Стены из этого камня «дышат», хорошо удерживают тепло. Однако, пористость является и недостатком. Кладку необходимо изолировать от окружающей среды, иначе кирпич будет тянуть влагу в дом.

Дюрисол.

Еще одной довольно старой, но лишь сейчас получившей признание разработкой, является дюрисол. Этот строительный материал представляет собой крупную щепу хвойных деревьев, обработанную минеральными добавками и склеенную портландцементом в форме блоков. Благодаря небольшим воздушным кармашкам, дюрисол обладает отличными тепло и звукоизоляционными качествами. Он практически не горит, устойчив к морозам и влаге. Благодаря уровню кислотности, в этом материале маловероятна возможность развития плесени. Он хорошо подходит для строительства малоэтажных зданий.

Современные климатические системы TURKOV прекрасно сочетаются с передовыми материалами и технологиями строительства, превращая любое здание в энергонезависимый и энергоэффективный автономный экодом!

Ультрановые строительные материалы и технологии.

Новые технологии развиваются, постоянно повышая планку требований к строительным материалам. Ученые соревнуются, разрабатывая самовосстанавливающиеся материалы, системы охлаждения, отопления, очищения окружающей среды. Одним из таких материалов является кирпич, оснащенный системой охлаждения Cool Bricks. Он изготовлен новейшим способом – 3-D печатью.

Теплоизоляционные материалы изготавливаются из самых разных продуктов натурального происхождения: конопля, солома, мицелий. Они служат хорошим утеплителем, при этом абсолютно безопасны для человека и окружающей среды.

Самым прочным на планете, при этом легким и гибким признано углеродное волокно. Оно подходит для строительства, изготовления мебели и техники.

Удивительными качествами обладает аэрогель. Он прозрачен, при этом жаропрочен, обладает большой твердостью и совершенно не впитывает воду. К сожалению эти материалы еще не получили широкого применения, однако ученые предрекают новую революцию в строительстве с началом их использования.

Здоровый и безопасный дом – мечта любого жителя планеты земля. Поэтому экоматериалы так востребованы сегодня, а новые достижения не за горами.

«Новые строительные технологии и материалы и новые строительные профессии: проблемы и перспективы»

В работе семинара предполагается участие специалистов группы КНАУФ СНГ, образовательных учреждений, строительных организаций, организаций – производителей строительных материалов, Министерства образования и науки РФ, Министерства здравоохранения и социального развития РФ, Министерства строительного комплекса Московской области, РСПП, НАРК, Союза строителей, Российского общества инженеров строительства, Российского агентства по строительству и ЖКХ, Международной ассоциации «Трудовая миграция», Международной ассоциации делового сотрудничества и других государственных и общественных организаций.

Группа КНАУФ СНГ уже давно находится в авангарде процесса становления новой профессии, связанной с применением инновационных технологий «сухого строительства». И прежде всего это связано с обучением данной профессии. Фирма КНАУФ инвестирует в систему обучения и повышения квалификации профессионалов, работающих с современными строительными технологиями и материалами. Такая система является частью философии компании — неотъемлемым элементом «комплектных систем КНАУФ», что позволяет фирме постоянно совершенствоваться и обеспечивать высокое качество применения продукции КНАУФ.

В настоящее время в регионах деятельности КНАУФ в СНГ работает 14 базовых учебных центров: девять в России, один на Украине, два в Казахстане, один в Молдавии, один в Узбекистане. На сегодняшний день в них обучено около 35 тысяч специалистов. Число учебных центров — величина не статичная. Их количество будет увеличиваться за счет открытия новых центров в крупных городах экономически активных регионов России, стран СНГ и Монголии.

Учебные центры КНАУФ:

  • несут оптимизированные знания о новых современных и передовых технологиях и отделочных материалах;
  • обучают квалифицированно решать строительные задачи;
  • формируют потребность работать на качественно новом уровне, а именно используя современные инструменты и средства малой механизации отделочных работ, руководствуясь экономической целесообразностью и оптимальными сроками реализации проектов;
  • способствуют кадровому укреплению строительной отрасли в сегменте сухого легкого строительства, применения сухих строительных смесей, машинных технологий отделочных работ.

Учебные центры КНАУФ тесно сотрудничают с ведущими вузами, факультетами и кафедрами строительного профиля в России и странах СНГ, участвуя при этом в реформировании высшего профессионального образования, которое направлено на приведение структуры и содержания образовательных процессов в соответствие с социально-экономическими условиями.

Сотрудничество с высшими учебными заведениями включает в себя:

  • совместную разработку и внедрение в учебные планы тематических занятий, спецкурсов, лекций по применению современных технологий КНАУФ;
  • конкурсы курсовых и дипломных работ студентов;
  • организацию консультационных центров КНАУФ;
  • разработку учебных пособий;
  • организацию научно-практических семинаров, конференций, выездных лекций и поддержку международных проектов;
  • исследовательскую деятельность.

В настоящее время в 5 государствах СНГ действуют 6 консультационных центров по обучению технологиям КНАУФ. Это центры, созданные на базе вузов и учреждений послевузовского образования. В них силами сотрудников учреждений образования проводятся занятия по унифицированным программам КНАУФ и выдаются сертификаты КНАУФ. Помимо этого отдельные модули (лекции, семинары, курсовые и дипломные проекты, лабораторные работы, а также производственная практика) по обучению технологиям КНАУФ вносятся в базовые курсы и транслируются на гораздо большее количество потенциальных потребителей продукции КНАУФ.

Сотрудничество предприятий КНАУФ в России и СНГ с учреждениями начального и среднего профессионального образования осуществляется в настоящее время более чем с 60 профессиональными училищами, лицеями, колледжами, техникумами, при этом сотрудничество затрагивает следующие направления:

  • совместная разработка и внедрение в учебные планы кратко- и среднесрочных программ, курсов повышения квалификации и образовательных модулей по применению продукции КНАУФ;
  • создание учебно-методических пособий;
  • обеспечение информационной и технической документации для использования в процессе обучения;
  • помощь в подготовке преподавателей на базе учебных центров КНАУФ;
  • помощь в материально-техническом обеспечении учебного процесса;
  • подготовка и проведение региональных, окружных, национальных и международных конкурсов
  • профессионального мастерства учащихся и педагогов.

В настоящее время в 27 учреждениях начального и среднего образования на территории России, Украины, Казахстана и Кыргызстана созданы ресурсные центры КНАУФ. Ресурсные центры обучают по учебным программам начального и средне-специального образования. Они также имеют право выдачи сертификата КНАУФ.

На сегодняшний день в центрах обучения технологиям КНАУФ по краткосрочным программам подготовлено около 35 тысяч человек.

Одним из основных достижений образовательной деятельности группы КНАУФ стало то, что доля обучающихся в государственных учебных заведениях в настоящее время значительно превышает долю обучающихся в УЦ КНАУФ, при этом выдаются дипломы государственного образца и присваиваются признаваемые повсеместно разряды и категории. Это стало возможным благодаря принятию в 2004 г. Государственного образовательного стандарта по профессии 22.22 «мастер сухого строительства» при активной поддержке предприятий группы КНАУФ. Дальнейшему прогрессу как раз и будет способствовать внесение в ЕТКС и в перечень образовательных профессий новой рабочей профессии «монтажник каркасно-обшивных конструкций», а также внедрение профессионального стандарта по этой профессии.

В настоящее время группа КНАУФ проводит в рамках своей образовательной деятельности ряд мероприятий, нацеленных на внедрение этой новой профессии, в том числе и семинар «Новые строительные технологии и материалы и новые строительные профессии: проблемы и перспективы».

Скачать пресс-релиз

Строительные и строительные материалы — Материалы сегодня

Международный журнал, посвященный исследованию и инновационному использованию материалов в строительстве и ремонте .

Строительные материалы представляет собой международный форум для распространения инновационных и оригинальных исследований и разработок в области строительства и строительных материалов и их применения в новых работах и ​​ремонте.Журнал публикует широкий спектр инновационных исследовательских и прикладных статей, в которых описываются лабораторные и, в некоторой степени, численные исследования или отчеты о полномасштабных проектах. Бумаги, состоящие из нескольких частей, не приветствуются.

Строительство и строительные материалы также публикует подробные тематические исследования и несколько проницательных обзорных статей, которые способствуют новому пониманию. Мы делаем упор на документы по строительным материалам и исключаем статьи по строительному проектированию, геотехнике и несвязанным дорожным покрытиям.Строительные материалы , покрытые технологией и , включают: цемент, армирование бетона, кирпичи и строительный раствор, добавки, технологии коррозии, керамику, древесину, сталь, полимеры, стекловолокно, вторичные материалы, бамбук, утрамбованную землю, нетрадиционные строительные материалы. , битумные материалы и применение железнодорожных материалов.

Объем Строительные материалы включает, помимо прочего, материалы, неразрушающий контроль и аспекты мониторинга новых работ, а также ремонт и техническое обслуживание следующего: мостов, высотных зданий, плотин, инженерных сооружений гражданского назначения, силосы, тротуары, туннели, водонепроницаемые конструкции, канализация, кровля, жилье, береговые сооружения и железные дороги .

В то время, когда все инженеры, архитекторы и подрядчики вынуждены оптимизировать использование новых материалов и современных технологий, Construction and Building Materials предоставляет важную информацию, которая поможет повысить эффективность, производительность и конкурентоспособность в мире. рынки. Поэтому это жизненно важное чтение для всех профессионалов и ученых, занимающихся исследованиями или спецификациями строительных материалов.

Обязанности автора : Принятие рукописи для публикации в журнале подразумевает понимание того, что автор, по запросу, выполнит обязательство по внесению своего опыта в рецензирование рукописей других лиц.Авторам также предлагается назвать пять независимых рецензентов вместе с институциональными адресами электронной почты . Названные возможные судьи не должны быть из своего учреждения.

Редколлегия

Главный редактор

  • Майкл К. Форд
    Эдинбургский университет, Институт инфраструктуры и окружающей среды, Школа инженерии, Эдинбург, Соединенное Королевство

Старшие редакторы

  • Jose M .Адам
    Политехнический университет Валенсии, Валенсия, Испания
  • Масаюса Оцу
    Киотский университет, Высшая школа науки и технологий, Кумамото, Япония
  • Кент Харрис
    Питтсбургский университет, Питтсбург, Пенсильвания, США

Управляющие редакторы

  • Элиза Бертолези, доктор философии
    Политехнический университет Валенсии, Валенсия, Испания
  • Бранко Шавия
    TU Delft, Делфт, Нидерланды

Редакторы

  • Dimitrios VUB, Университет Dimitrios Aggelis
    , Бельгия
  • Марко Корради
    Нортумбрийский университет Департамент машиностроения и строительства, Ньюкасл-апон-Тайн, Соединенное Королевство
  • Кейт Крюс
    Технологический университет Сиднея, Сидней, Новый Южный Уэльс, Австралия
  • Алехандро Дуран-Эррера
    Автономный университет N uevo Leon, Мексика
  • Pan Feng Ph.D.
    Southeast University, Нанкин, Китай
  • Elke Gruyaert
    KU Leuven Факультет инженерных технологий Ghent Technology Campus, Гент, Бельгия
  • Карлтон Л. Хо
    Массачусетский университет Амхерст, Амхерст, Массачусетс, США
  • Хани Нассиф
    Университет Рутгерса, Департамент гражданской и экологической инженерии, Пискатауэй, Нью-Джерси, США
  • Чи-Сан Пун, доктор наук
    Гонконгский политехнический университет, Департамент гражданской и экологической инженерии, Гонконг, Гонконг
  • Lily Poulikakos
    Empa Materials Science and Technology, Дюбендорф, Швейцария
  • Александра Радлиньска
    Государственный университет Пенсильвании, Университетский парк, Пенсильвания, США
  • Сильви Россиньоль
    Лиможский университет, Лимож
  • Антонелла Саиси
    Polytec hnic of Milan, Милан, Италия
  • Erik Schlangen
    TU Delft, Delft, Нидерланды
  • George Sergi
    Vector Corrosion Technologies UK, Cradley Heath, United Kingdom
  • Rafat Siddique Ph.D. (BITS), доктор юридических наук (UWM-США), M.ASCE
    Тапарский инженерно-технологический институт, Патиала, Индия
  • Космас Сидерис
    Демокритский университет Фракии Факультет гражданского строительства, Ксанти, Греция
  • Скотт Смит
    Университет Аделаиды Инженерный факультет компьютерных и математических наук, Аделаида, Австралия
  • Мариос Соутсос
    Королевский университет Белфаст, Белфаст, Великобритания
  • Вивиан Там
    Школа инженерии Западного Сиднейского университета, Пенрит, Австралия
  • Мария Роза Валлуцци
    Падуанский университет, Падуя, Италия
  • Ким Ван Титтельбум
    Гентский университет, Гент, Бельгия
  • Кеджин Ван
    Государственный университет Айовы, Эймс, Айова, США
  • Yuhong Wang PhD
    Гонконгский политехнический университет, Гонконг, Китай
  • Feipen g Xiao
    Университет Тунцзи, Шанхай, Китай
  • Qingliang Yu
    Технологический университет Эйндховена, Эйндховен, Нидерланды

Редакционно-консультативный совет

  • G.Эйри
    Ноттингемский университет, Ноттингем, Соединенное Королевство
  • И. Л. Аль-Кади
    Иллинойсский университет в Урбана-Шампейн, Шампейн, Иллинойс, США
  • P.A.M. Башир
    Университет Лидса, Лидс, Великобритания
  • А.Дж. Boyd
    Университет Макгилла, Монреаль, Квебек, Канада
  • J.H. Bungey
    Ливерпульский университет, Ливерпуль, Великобритания
  • O. Buyukozturk
    Массачусетский технологический институт, Кембридж, Массачусетс, США
  • D.М. Франгопол
    Университет Лихай, Вифлеем, Пенсильвания, США
  • О. Гунес
    Стамбульский технический университет, Стамбул, Турция
  • P.C. Hewlett
    University of Dundee, Данди, Великобритания
  • K.C. Hover
    Корнельский университет, Итака, Нью-Йорк, США
  • C.K.Y. Леунг
    Гонконгский университет науки и технологий Департамент гражданской и экологической инженерии, Гонконг, Гонконг
  • P.Б. Лоуренко
    Университет Минью Департамент гражданского строительства, Гимарайнш, Португалия
  • А. Мирмиран
    Международный университет Флориды, Майами, Флорида, США
  • Дж. Мирза
    Технологический университет Малайзии, Скудаи, Малайзия
  • AS Nowak
    Обернский университет, Оберн, Алабама, США
  • С. Ризкалла
    Государственный университет Северной Каролины, Роли, Северная Каролина, США
  • C.Shi
    Колледж гражданского строительства Хунаньского университета, Чанша, Китай
  • N.G. Шрайв
    Университет Калгари, Калгари, Альберта, Канада
  • К. Соболев
    Висконсинский университет Милуоки, Милуоки, Висконсин, США
  • JG Teng
    Гонконгский политехнический университет, Департамент гражданской и экологической инженерии, Гонконг, Гонконг
  • ©. Б. Топчу
    Университет Эскишехира Османгази, Эскишехир, Турция
  • D.Van Gemert
    KU Leuven Департамент гражданского строительства, Левен, Бельгия
  • E. Verstrynge
    KU Leuven Association, Leuven, Бельгия
.

Руководство для авторов — Строительство и строительные материалы

перейти к содержанию
  • О Эльзевире
    • О нас
    • Elsevier Connect
    • Карьера
  • Продукты и решения
    • Решения НИОКР
    • Клинические решения
    • Исследовательские платформы
    • Исследовательский интеллект
    • Образование
    • Все решения
  • Сервисы
    • Авторы
    • Редакторы
    • Рецензенты
    • Библиотекарей
  • Магазин и Откройте для себя
    • Книги и журналы
    • Автор Интернет-магазин (Открывается в новом окне)
  • Поиск Поиск
  • Просмотр корзины

    0

.

строительство | История, типы, примеры и факты

Строительство , также называемое строительство зданий , методы и промышленность, задействованные в сборке и возведении конструкций, в первую очередь тех, которые используются для обеспечения укрытия.

Строительство многоквартирных домов Строящиеся многоквартирные дома в Кембридже, Англия. Эндрю Данн

Строительство — это древняя человеческая деятельность. Он начался с чисто функциональной потребности в контролируемой среде для смягчения воздействия климата.Построенные укрытия были одним из средств, с помощью которых люди могли адаптироваться к широкому спектру климатов и стать глобальным видом.

Приюты для людей сначала были очень простыми и, возможно, просуществовали всего несколько дней или месяцев. Однако со временем даже временные постройки превратились в такие изысканные формы, как иглу. Постепенно стали появляться более прочные конструкции, особенно после появления сельского хозяйства, когда люди стали оставаться на одном месте в течение длительного времени. Первые приюты были жилищами, но позже другие функции, такие как хранение еды и церемонии, были размещены в отдельных зданиях.Некоторые сооружения стали иметь как символическую, так и функциональную ценность, положив начало различию между архитектурой и зданием.

История строительства отмечена рядом тенденций. Во-первых, это повышение прочности используемых материалов. Ранние строительные материалы были скоропортящимися, такими как листья, ветви и шкуры животных. Позже стали использоваться более прочные натуральные материалы, такие как глина, камень и дерево, и, наконец, синтетические материалы, такие как кирпич, бетон, металлы и пластмассы.Другой — поиск зданий все большей высоты и размаха; это стало возможным благодаря разработке более прочных материалов и знанию того, как материалы ведут себя и как использовать их с большей выгодой. Третья важная тенденция касается степени контроля, осуществляемого над внутренней средой зданий: стало возможным более точное регулирование температуры воздуха, уровней света и звука, влажности, запахов, скорости воздуха и других факторов, влияющих на комфорт человека. Еще одна тенденция — это изменение энергии, доступной для процесса строительства, начиная с силы человеческих мышц и заканчивая мощной техникой, используемой сегодня.

Britannica Premium: удовлетворение растущих потребностей искателей знаний. Получите 30% подписки сегодня. Подпишись сейчас

В настоящее время строительство сложное. Существует широкий спектр строительных продуктов и систем, которые предназначены в первую очередь для групп типов зданий или рынков. Процесс проектирования зданий высокоорганизован и опирается на исследовательские учреждения, изучающие свойства и характеристики материалов, должностные лица кодекса, которые принимают и обеспечивают соблюдение стандартов безопасности, а также профессионалов-проектировщиков, которые определяют потребности пользователей и проектируют здание для удовлетворения этих потребностей.Процесс строительства также высоко организован; в нее входят производители строительных изделий и систем, мастера, которые собирают их на строительной площадке, подрядчики, которые нанимают и координируют работу мастеров, и консультанты, специализирующиеся в таких аспектах, как управление строительством, контроль качества и страхование.

Строительство сегодня является важной частью индустриальной культуры, проявлением его разнообразия и сложности и мерой его владения природными силами, которые могут создавать самые разнообразные застроенные среды для удовлетворения разнообразных потребностей общества.В данной статье сначала прослеживается история строительства, а затем рассматривается его развитие в настоящее время. Для рассмотрения эстетических соображений проектирования зданий, см. архитектура. Для дальнейшего изучения исторического развития, см. Искусство и архитектура, Анатолийский; искусство и архитектура, арабский; искусство и архитектура, египетский; искусство и архитектура, иранский; искусство и архитектура, месопотамский; искусство и архитектура, сиро-палестинский; архитектура, африканская; искусство и архитектура, Oceanic; архитектура, западная; искусство, Центральная Азия; искусство, восточноазиатские; искусство, исламское; искусство, коренные американцы; искусство, Южная Азия; искусство, Юго-Восточная Азия.

История строительства

Первобытное здание: каменный век

Охотники-собиратели позднего каменного века, которые перемещались по обширным территориям в поисках пищи, построили самые ранние временные убежища, которые упоминаются в археологических памятниках. Раскопки в ряде мест в Европе, датируемые периодом до 12000 г. до н.э., показывают круглые кольца из камней, которые, как считается, составляли часть таких убежищ. Они могли укреплять грубые хижины из деревянных шестов или прижимать стены палаток из шкур животных, предположительно поддерживаемых центральными шестами.

Палатка иллюстрирует основные элементы экологического контроля, которые важны для строительства. Палатка создает мембрану от дождя и снега; холодная вода на коже человека поглощает тепло тела. Мембрана также снижает скорость ветра; Воздух на коже человека также способствует потере тепла. Он контролирует теплопередачу, не пропуская горячие солнечные лучи и удерживая нагретый воздух в холодную погоду. Он также блокирует свет и обеспечивает визуальную конфиденциальность. Мембрана должна поддерживаться против сил тяжести и ветра; структура необходима.Кожаные мембраны обладают высокой прочностью на растяжение (напряжения, создаваемые растягивающими силами), но необходимо добавить полюса, чтобы выдержать сжатие (напряжения, создаваемые силами уплотнения). Действительно, большая часть истории строительства — это поиск более сложных решений тех же основных проблем, для решения которых была поставлена ​​палатка. Палатка используется по сей день. Палатка из козьей шерсти в Саудовской Аравии, монгольская юрта с ее разборным деревянным каркасом и войлочными покрытиями, а также вигвам американских индейцев с его многополюсными опорами и двойной перепонкой — более изысканные и элегантные потомки грубых убежищ ранних охотников-собирателей.

Сельскохозяйственная революция, датированная примерно 10 000 годом до н. Э., Дала большой толчок строительству. Люди больше не путешествовали в поисках дичи и не преследовали свои стада, а оставались в одном месте, чтобы ухаживать за своими полями. Жилища стали более постоянными. Археологические записи скудны, но на Ближнем Востоке можно найти остатки целых деревень с круглыми жилищами, называемыми толои, стены которых сделаны из утрамбованной глины; все следы крыш исчезли. В Европе толои строили из камня сухой укладки с куполообразными крышами; в Альпах до сих пор сохранились образцы (более поздней постройки) этих ульев.В более поздних средневосточных толоах появился прямоугольный вестибюль или вестибюль, прикрепленный к главной круглой камере — первые примеры прямоугольной формы в плане в здании. Еще позже круглая форма была заменена прямоугольной, так как жилища были разделены на большее количество комнат, и больше жилищ было объединено в поселения. Толои ознаменовали важный шаг в поисках долговечности; они были началом каменного строительства.

Свидетельства композитного строительства из глины и дерева, так называемого метода плетения и мазка, также можно найти в Европе и на Ближнем Востоке.Стены были сделаны из небольших саженцев или тростника, которые легко резать каменными орудиями. Они были вбиты в землю, связаны вместе с боков растительными волокнами, а затем покрыты влажной глиной для придания дополнительной жесткости и защиты от атмосферных воздействий. Крыши не сохранились, но строения, вероятно, были покрыты грубой соломой или тростником. Встречаются как круглые, так и прямоугольные формы, обычно с центральными очагами.

Более тяжелые деревянные постройки также появились в культурах эпохи неолита (нового каменного века), хотя трудности с рубкой больших деревьев каменными орудиями ограничивали использование древесины больших размеров для каркасов.Эти рамы обычно были прямоугольными в плане, с центральным рядом колонн для поддержки гребня и соответствующими рядами колонн вдоль длинных стен; от конька к балкам стены проложены стропила. Боковая устойчивость каркаса была достигнута за счет закапывания колонн глубоко в землю; Затем шест и стропила были привязаны к колоннам с помощью растительных волокон. Обычным кровельным материалом была солома: высушенная трава или тростник, связанные вместе небольшими пучками, которые, в свою очередь, были привязаны внахлест к легким деревянным столбам, которые натянуты между стропилами.Горизонтальные соломенные крыши плохо пропускают дождь, но, если они расположены под правильным углом, дождевая вода стекает раньше, чем успевает пропитаться. Первобытные строители вскоре определили уклон крыши, по которому будет проливаться вода, но не солома. В стенах этих каркасных домов использовались многие типы заполнения, в том числе глина, плетень и мазня, кора деревьев (которую предпочитают американские лесные индейцы) и солома. В Полинезии и Индонезии, где такие дома все еще строятся, они поднимаются над землей на сваях для безопасности и сухости; кровля часто делается из листьев, а стены в значительной степени открыты, чтобы обеспечить движение воздуха для естественного охлаждения.Другой вариант рамы был найден в Египте и на Ближнем Востоке, где пучки тростника заменили древесиной.

.

Строительные материалы будущего: нанокристаллы и умные окна

Бактериальные кирпичи. Нанокристаллы. Термоэлектрики из отходов в энергию. Самовосстанавливающийся бетон. Аэрогели. Термобиметаллы. Графен, лауреат Нобелевской премии.

Это лишь малая часть инноваций, которые происходят сейчас в области строительных материалов будущего. Наблюдается резкий взрыв исследований в области материалов на микроуровне и изменения основных молекулярных свойств, лежащих в основе многих вещей, включая строительные материалы.

Но вы должны задаться вопросом: что реально, а что вымысел?

«Аэрогели, графен, нанокристаллы, термоэлектрики.. . это реальные вещи », — говорит доктор Кристофер Спадаччини, директор Центра инженерных материалов, производства и оптимизации Ливерморской национальной лаборатории Лоуренса. «Однако эти материалы находятся на очень ранней стадии исследовательской работы. Например, графен — это углерод, состоящий из одной молекулы углерода. Недавно мы продемонстрировали, что можем печатать графеновый аэрогель на 3D-принтере.

Ученые из Лоуренса Ливермора создали микрорешетки графенового аэрогеля с инженерной архитектурой с помощью технологии 3D-печати, известной как прямое письмо чернилами.Иллюстрация любезно предоставлена ​​Райаном Ченом / LLNL.

«Зачем вам это нужно? Графен имеет очень большую площадь поверхности и очень интересные механические и электрические свойства, — продолжает Спадаччини. «Так что его можно использовать в суперконденсаторе или батарее. Обычно, когда у вас есть материалы с элементами наноразмерного масштаба, вы действительно влияете на физику таких вещей, как электрические и фотонные свойства. Могут быть достигнуты даже уникальные термические свойства ».

При работе на молекулярном уровне необходимо создавать новые термины для того, что по сути является языком новых материалов.Это элементы, которые после увеличения до приемлемого уровня можно сделать доступными для повседневного использования.

Нанокристалл, например, представляет собой кристаллическую наночастицу, имеющую по крайней мере один размер меньше 100 нанометров (наночастица) и состоящий из атомов в монокристаллической или поликристаллической структуре. Нанокристаллы намного меньше крупных кристаллов, так как же их можно использовать здесь и сейчас? Одним из примеров являются «умные окна», где компания Heliotrope Technologies в Калифорнии лидирует в области «умных окон».

«Основная технология, разработанная моими коллегами, по сути, представляет собой нанокристаллы, которые позволяют настраивать определенные части солнечного спектра», — говорит Джейсон Холт, бывший научный сотрудник Ливерморской национальной лаборатории Лоуренса и президент Heliotrope Technologies. «Мы можем контролировать передачу тепла — в ближнем инфракрасном диапазоне — независимо от видимого света. Замечательная возможность — иметь окно, в котором вы не меняете внешний вид с точки зрения человека, находящегося в помещении, или стороннего наблюдателя.Вы можете пропускать столько света, сколько хотите, но можете также предложить защиту от солнечных лучей.

В холодном режиме (слева) окна пропускают естественный свет, но блокируют тепло. В темном режиме (справа) окна ограничивают количество тепла и естественного света, попадающего в комнату. Нижнее среднее поле показывает включенный ток; электроны и ионы попадают в матрицу рабочего электрода. Предоставлено Heliotrope Technologies.

«Подавая напряжение на нанокристаллическую пленку, вы можете настроить ее свойства так, чтобы зимой вы могли пропускать часть этого тепла для пассивного солнечного нагрева, но вы можете блокировать его летом, когда вы не хотите. это, — продолжает Холт.«Как и при зарядке литий-ионного аккумулятора, вы, по сути, заряжаете свои устройства, чтобы контролировать состояние видимого или инфракрасного излучения через окно».

Холт объясняет невероятно малый масштаб нанокристаллов и их уникальные свойства. «Нанокристаллы, которые мы используем, имеют размер всего несколько нанометров. Для сравнения, человеческий волос имеет диаметр от 80 до 100 микрон, поэтому мы говорим о чем-то, что почти в 100000 раз меньше толщины человеческого волоса. Именно особые оптические свойства [нанокристалла] в этом небольшом масштабе обеспечивают характеристики теплового и светового контроля продуктов, которые мы разрабатываем.«Продукт Heliotrope, оконный узел, представляет собой динамическую стеклянную панель, которая будет составлять внешнюю панель в двухкамерном окне.

«В коммерческом приложении, если динамические окна позволяют избавиться от жалюзи и уменьшить размеры системы отопления, вентиляции и кондиционирования воздуха, надбавка к стоимости может быть существенно компенсирована», — говорит Холт. «Мы считаем, что наши преимущества с точки зрения производственных затрат могут снизить надбавку за динамические окна до такой степени, что вы будете практически нейтральны с точки зрения затрат с обычными окнами высокого класса».

Еще один наноматериал, аэрогель, — это странно знакомый термин, который не имеет ничего общего с лаком для волос и всего, что связано с суперконденсаторами.

Airgel

«Аэрогель — это чрезвычайно легкий пеноматериал», — поясняет Спадаччини. «Вы можете сделать это из разных материалов. Аэрогели могут обеспечить изоляцию; у них очень низкая теплопроводность, потому что структуры внутри них очень тонкие. Их называют «структурным дымом», потому что они легче воздуха. Если бы вы обернули его рамкой и вычислили плотность, она была бы очень низкой. Но это, по сути, случайные пены, чрезвычайно легкие, с очень тонкими элементами и элементами.

Спадаччини и его команда в Лоуренсе Ливерморе исследуют множество материалов, которые он называет «спроектированными или спроектированными микроструктурами» и которые он считает «одноэлементной ячейкой, а затем повторяют эту элементарную ячейку в космосе, чтобы создать материал. Таким образом, вы получите решетку из элементарных ячеек ».

Некоторые из этих материалов обладают особыми механическими свойствами, такими как очень высокая жесткость и прочность, но очень малый вес, или другими уникальными свойствами, такими как отрицательное тепловое расширение.

Пока ученые обмениваются идеями на таких веб-сайтах, как Materials360, и размышляют о будущем всех нано-, атомоподобных и молекулярных вещей, как насчет более крупномасштабных материалов?

«Эти вещи настолько узкоспециализированы, что трудно предсказать, сколько будет стоить производство больших партий», — говорит Спадаччини.«Сейчас они непомерно дороги, потому что команды докторов наук разрабатывают их в небольших количествах. Будет ли это масштабироваться до чего-то, что строительство может обрабатывать экономически, еще неизвестно. Вы можете увидеть небольшие, но ценные приложения раньше, чем такой товар, как строительный материал ».

.
Опубликовано в категории: Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *