Света датчики для уличного света: Фотореле (датчики света и освещенности)

Фотореле (датчики света и освещенности)

Полезная информация

Фотореле иначе называют сумеречным выключателем. В конструкции лежит фотодатчик, который реагирует на изменение попадающего на него светового потока и в зависимости от этого передает сигналы электронной плате. Цепь замыкается или размыкается, и автоматический прибор включает или выключает освещение.

Виды приборов

  • С выносным фотоэлементом – прибор, фотодатчик которого находится не в корпусе, а в отдельном блоке. Блок можно установить на расстоянии от основного корпуса в 100 – 150 м, в защищенном месте, например в электрощитке помещения.
  • С внутренним фотоэлементом – фотодатчик находится внутри корпуса, выполненного из прозрачного материала, ударопрочного и влагозащищенного для установки, например, снаружи дома.
  • С внутренним фотоэлементом и настройкой порога срабатывания – если изделия без этой функции включают освещение только в полной темноте, то приборы с этой функцией можно настроить на включение даже, например, в пасмурную погоду или в начале сумерек. Это корректирует освещение в зависимости времени года и от погоды.
  • С внутренним фотоэлементом и таймером – прибор с возможностью настройки определенного времени включения и выключения освещения. Это контролирует таймер, который может быть дневным, недельным или даже годовым. Он позволяет программировать режим работы устройства, например, на неделю вперед или в течение года только по выходным дням.

На что обращать внимание при выборе

Приборы могут устанавливаться внутри и снаружи помещений. В последнем случае следует смотреть на такие характеристики, как степень пыле- и влагозащиты корпуса и диапазон рабочих температур

.

Значительная экономия средств на оплате счетов за электричество – это датчики освещенности с возможностью регулировки времени и порога срабатывания, как и с наличием ручного выключателя, с помощью которого прибор отключается, если в его функционировании нет необходимости. Работа устройства контролируется в зависимости от ситуации.

Важна и возможность подключения датчика движения. В этом случае прибор будет срабатывать не только на освещение, но и приближение людей. Такие осветительные устройства удобно устанавливать возле подъезда, крыльца или гаража, на любой придомовой территории.

цены от 700 рублей, отзывы, производители, поиск и каталог моделей

Другой город Абакан Алдан Александров Алексин Анапа Ангарск Апрелевка Армавир Архангельск Асбест Астрахань Балабаново Балаково Балашиха Балашов Барнаул Батайск Бежецк Белгород Бердск Березники Березовский Бийск Благовещенск Бор Борисоглебск Братск Бронницы Брянск Бузулук Великие Луки Великий Новгород Верхняя Пышма Видное Владикавказ Владимир Волгоград Волгодонск Волжский Вологда Волоколамск Воронеж Воскресенск Выборг Вышний Волочек Вязники Вязьма Глазов Голицыно Горячий Ключ Грозный Гусь-Хрустальный Дзержинск Дмитров Долгопрудный Домодедово Донской Дубна Евпатория Егорьевск Екатеринбург Елабуга Елец Железногорск Железнодорожный Жуковский Звенигород Зеленоград Зеленодольск Зима Златоуст Иваново Ивантеевка Ижевск Иркутск Истра Йошкар-Ола Казань Калуга Каменка Пензенская обл. Каменск-Уральский Каменск-Шахтинский Касимов Кашира Кемерово Кимры Кингисепп Кинешма Киржач Кириши Киров Клин Клинцы Ковров Коломна Кольчугино Конаково Копейск Королев Костомукша Кострома Красногорск Краснодар Красноярск Кропоткин Кстово Курган Курск Кыштым Липецк Лиски Луховицы Лыткарино Люберцы Магнитогорск Майкоп Малоярославец Миасс Михайловск Мичуринск Можайск Москва Московский Мурманск Муром Мытищи Набережные Челны Нальчик Наро-Фоминск Нахабино Нефтекамск Нижнекамск Нижний Новгород Нижний Тагил Новокузнецк Новокуйбышевск Новомосковск Новороссийск Новосибирск Новочебоксарск Новочеркасск Ногинск Обнинск Обь Одинцово Озерск Октябрьский Омск Оренбург Орехово-Зуево Орск Орёл Пенза Переславль-Залесский Пермь Петрозаводск Печора Подольск Покров Псков Пушкино Пятигорск Раменское Реутов Ржев Россошь Ростов Ростов-на-Дону Рыбинск Рязань Салават Салехард Самара Санкт-Петербург Саранск Саратов Саров Сасово Севастополь Северодвинск Сергиев Посад Серов Серпухов Симферополь Славянск-на-Кубани Смоленск Солнечногорск Сортавала Сочи Ставрополь Старая Купавна Старый Оскол Стерлитамак Ступино Сургут Сходня Сызрань Таганрог Тамбов Тверь Темрюк Тольятти Томск Троицк Московская обл. Тула Тюмень Ульяновск Уфа Ухта Феодосия Фрязино Химки Чайковский Чебоксары Челябинск Череповец Черкесск Чехов Шатура Шахты Шуя Щекино Щелково Щербинка Электросталь Элиста Энгельс Ялта Ярославль

По популярностиПо отзывамПо возрастанию ценыПо убыванию ценыПо рейтингу  Фильтры

Перейти в рубрику

Показать еще

Полезная информация:

Фотореле 24 вольта в Самаре

Поможем в выборе фотореле 24 вольта в Самаре. На нашем сайте представлен широкий ассортимент моделей, даны основные характеристики и подробные описания. Также есть отзывы пользователей, которые помогут составить полное мнение о товаре. А если вам нужна консультация, позвоните или закажите звонок с сайта. Менеджер поможет определиться с выбором и оформит заказ на фотореле 24 вольта . Вы получите товар в кратчайшие сроки!

Ваш город
Самара

Выбрать город Другой город Абакан Алдан Александров Алексин Анапа Ангарск Апрелевка Армавир Архангельск Асбест Астрахань Балабаново Балаково Балашиха Балашов Барнаул Батайск Бежецк Белгород Бердск Березники Березовский Бийск Благовещенск Бор Борисоглебск Братск Бронницы Брянск Бузулук Великие Луки Великий Новгород Верхняя Пышма Видное Владикавказ Владимир Волгоград Волгодонск Волжский Вологда Волоколамск Воронеж Воскресенск Выборг Вышний Волочек Вязники Вязьма Глазов Голицыно Горячий Ключ Грозный Гусь-Хрустальный Дзержинск Дмитров Долгопрудный Домодедово Донской Дубна Евпатория Егорьевск Екатеринбург Елабуга Елец Железногорск Железнодорожный Жуковский Звенигород Зеленоград Зеленодольск Зима Златоуст Иваново Ивантеевка Ижевск Иркутск Истра Йошкар-Ола Казань Калуга Каменка Пензенская обл. Каменск-Уральский Каменск-Шахтинский Касимов Кашира Кемерово Кимры Кингисепп Кинешма Киржач Кириши Киров Клин Клинцы Ковров Коломна Кольчугино Конаково Копейск Королев Костомукша Кострома Красногорск Краснодар Красноярск Кропоткин Кстово Курган Курск Кыштым Липецк Лиски Луховицы Лыткарино Люберцы Магнитогорск Майкоп Малоярославец Миасс Михайловск Мичуринск Можайск Москва Московский Мурманск Муром Мытищи Набережные Челны Нальчик Наро-Фоминск Нахабино Нефтекамск Нижнекамск Нижний Новгород Нижний Тагил Новокузнецк Новокуйбышевск Новомосковск Новороссийск Новосибирск Новочебоксарск Новочеркасск Ногинск Обнинск Обь Одинцово Озерск Октябрьский Омск Оренбург Орехово-Зуево Орск Орёл Пенза Переславль-Залесский Пермь Петрозаводск Печора Подольск Покров Псков Пушкино Пятигорск Раменское Реутов Ржев Россошь Ростов Ростов-на-Дону Рыбинск Рязань Салават Салехард Самара Санкт-Петербург Саранск Саратов Саров Сасово Севастополь Северодвинск Сергиев Посад Серов Серпухов Симферополь Славянск-на-Кубани Смоленск Солнечногорск Сортавала Сочи Ставрополь Старая Купавна Старый Оскол Стерлитамак Ступино Сургут Сходня Сызрань Таганрог Тамбов Тверь Темрюк Тольятти Томск Троицк Московская обл. Тула Тюмень Ульяновск Уфа Ухта Феодосия Фрязино Химки Чайковский Чебоксары Челябинск Череповец Черкесск Чехов Шатура Шахты Шуя Щекино Щелково Щербинка Электросталь Элиста Энгельс Ялта Ярославль Продолжить

Датчик света для уличного освещения, его выбор и правильный монтаж

Уличное освещение придумано человечеством ещё на заре цивилизации и сопровождает человека в его повседневной жизни по сей день. Сегодня невозможно даже представить себе города и другие населённые пункты без уличного освещения, которое постоянно обновляется и совершенствуется. Оно должно полноценно освещать пространство в нужное время суток, работать в автономном режиме и желательно быть экономичным.

Затраты на уличное освещение составляют внушительную часть бюджетов, как муниципалитетов так и семейных, а применение датчиков позволяет экономить до 70 процентов электроэнергии и существенно улучшить качество уличного освещения. Поэтому в настоящее время уделяется большое внимание и привлекаются значительные средства для развития современных технологий в этой сфере.

Пути развития уличного освещения

Современные технологии позволяют значительно усовершенствовать управление и эффективность уличного освещения. Производители осветительного оборудования предлагают большой выбор экономичных ламп освещения и прожекторов с продлённым сроком эксплуатации, а также различные устройства автоматического управления. К таким устройствам относятся датчики наружного освещения, которые в свою очередь подразделяются на фотореле, датчики движения, реле времени с отложенной функцией включения.

Применение таких датчиков позволяет эксплуатировать светильники и прожекторы в экономичном режиме и включать и отключать уличное освещение по необходимости. Такие приборы работают автономно без вмешательства человека длительные сроки. Остановимся более подробно на некоторых их них.

Фотореле

Фотореле или сумеречный выключатель, является наиболее распространённым прибором включения и выключения уличных светильников, который применяется в основном на промышленных объектах и в муниципалитетах. В его состав входит фотодатчик, который реагирует на изменение светового потока. Принцип действия фотодатчика основан на изменении свойств вещества под влиянием светового потока. При этом изменяется его внутреннее электрическое сопротивление, а также возникают другие физические явления, такие как эмиссия электронов из катода электронной лампы или электродвижущая сила между проводниками.

Производителями предлагаются фотореле с различными фотодатчиками, но наиболее распространёнными являются фотодатчики с изменяемым фотосопротивлением.

В таких фотодатчиках фототранзисторное сопротивление возрастает под воздействием сумерек и падает с восходом солнца. Такие датчики бывают встроенными и выносными. Встроенные датчики устанавливаются в блок управления уличным освещением, а выносные отдельно от него. Такие приборы очень надёжны и имеют длительный срок эксплуатации.

Установка сумеречных выключателей производится только специализированными и аттестованными организациями, которые предложат наиболее оптимальные варианты и произведут монтаж в соответствии с требованиями заводов производителей. Зачастую такие организации осуществляют также сервисное обслуживание данного оборудования.

Немного о датчике света

Такие приборы применяются в основном в частном секторе, где нет особой необходимости в постоянном освещении прилегающей к жилым строениям территорий, чем достигается значительная экономия электроэнергии, продлевает срок эксплуатации осветительного оборудования. Датчики движения более сложные в изготовлении и в эксплуатации, но при правильной настройке и своевременном техническом обслуживании, эксплуатируются бесперебойно длительный срок.

Принцип действия основан на изменении инфракрасного излучения, которое возникает при движении человека. При дневном свете тело живого существа не светится, а в инфракрасном (ИК) диапазоне светятся.

Устройство датчика движения

Устроен датчик движения следующим образом: внутри находятся специальные фотоэлементы с мультилинзой и играют роль фотоприёмника. Мультилинза состоит из большого количества линз от 20 до 60 штук, каждая из которых фокусирует ИК свет на сенсорный фотоэлемент. Когда человек пересекает сектор оптической системы, на фотоэлементе появляется импульсный сигнал, который усиливается, преобразовывается в цифровой формат и подаётся на исполнительный механизм, который включает или отключает светильник или другой прибор освещения.

Виды приборов и их особенности

Основные функции данного прибора, это охранное освещение прилегающих к домам участков, где применяются датчики с пассивной функцией и освещение тротуаров и площадок для передвижения людей, датчики с активной функцией. Датчики, которые устанавливаются на опорах освещения, имеют дальность действия до 12 метров и большой угол охвата.

В зависимости от того, какие лампы применяются при освещении, датчики бывают трёх полюсные для всех видов ламп и двух полюсные для ламп накаливания.

Отличаются они друг от друга, также углом обзора. В горизонтальной плоскости угол обзора может быть от 60 до 90 градусов, а в вертикальной 15-20 градусов. Датчики движения отличаются друг от друга номинальной мощностью, которая подключается к ним, поэтому правильной подбор датчика света по этому параметру имеет немаловажное значение в долговечности прибора. Существуют также для наружной эксплуатации и внутренней. Наружные имеют усиленную защиту от влияния атмосферных осадков и возможного физического проникновения.

Основные производители

В России всё большую популярность получают датчики света от российской компании ВКС г. Казань, которая разрабатывает и производит автоматизированные системы управления уличным освещением, позволяющие на модульном принципе, использовать только необходимые элементы света, при этом имеется возможность плавно изменять яркость практически каждой лампы, в зависимости от потребности в освещении. Такая технология очень перспективна и пользуется заслуженным авторитетом.

Хорошим спросом пользуются в России датчики света немецкой компании Theben. Особенно популярны продукция theluxa, которые отличаются высокой чувствительностью и практически незаметны на фасаде здания. Известная во всём мире французская компания Legrand, поставляет на российские рынки современные датчики освещённости и движения с регуляторами чувствительности, света и временной задержки.

Монтаж и эксплуатация

Для того, чтобы установить датчики уличного освещения в домашнем хозяйстве, необходимо получить квалифицированную консультацию специалиста, который определит место установки датчиков и произведёт монтаж оборудования. Необходимо учесть, что при монтаже прибора имеются некоторые особенности, которые необходимо обязательно учитывать.

Прежде всего, датчики движения должны быть мало заметны или находиться вне пределов досягаемости, не должны подвергаться воздействию электромагнитного и излучения и высокой температуры, а также располагаться на высоте не менее одного метра от поверхности земли, чтобы исключить реагирование на домашних животных.

Длительный срок эксплуатации зависит от бережного отношения к приборам и своевременным техническим обслуживанием. Некоторые, более простые по своей конструкции датчики движения, при наличии определённых навыков можно смонтировать своими силами, соблюдая все технические требования, изложенные в прилагаемых инструкциях.

Датчики освещенности для включения света на улице

Уличные датчики освещенности

Компания B.E.G. предлагает автоматические датчики освещения, предназначенные для установки на улице. Все устройства имеют класс защиты IP54, являются пыле- и влагозащищенными, устойчивы к воздействию водяных брызг. Благодаря этому сенсоры для включения света могут монтироваться на улице (под навесом), во входных зонах, на фасадах и т. п.

Преимущества наружных датчиков освещенности от B.E.G.

Точность программирования. Настройка осуществляется как через поворотные регуляторы, так и удаленно, через ПДУ. Текущий уровень освещенности указывается при нажатии кнопки.

Удобная установка. Ряд уличных датчиков освещенности оснащен электронным модулем для монтажа на DIN-рейку. Это позволяет осуществлять регулировку через распределительный шкаф.

Наличие режимов энергосбережения. Встроенный таймер позволяет программировать периоды, в течение которых можно снизить уровень освещения, например в определенные ночные часы, в выходные или праздничные дни. Установка такой программы поможет уменьшить затраты на электричество.

Надежность. Все уличные датчики B.E.G. помещены в прочный корпус из поликарбоната, устойчивый к воздействию УФ-лучей. Рабочие характеристики сохраняются при температуре от -25 до +50 оС.

Универсальность. Датчики рассчитаны на установку с энергосберегающими и люминесцентными лампами, а также с лампами накаливания.

Для покупки продукции B.E.G. свяжитесь с официальными дилерами компании в ближайшем к Вам город. Список городов Вы можете найти в разделе «Где купить».

Обращаем внимание: мы также занимаемся разработкой систем автоматизированного освещения для объектов любой сложности – от загородных коттеджей до административных зданий.

Датчики освещения. Виды и устройство. Работа и применение

В настоящее время для включения внешнего освещения чаще всего используют датчики освещения. Они дают возможность экономить на потреблении электроэнергии, а также автоматизируют подключение освещения при наступлении темного времени суток.

Сумеречный выключатель (датчик освещенности) является устройством, входящим в систему автоматического управления приборами освещения, в зависимости от степени освещенности пространства. Он подключает и отключает свет в автоматическом режиме, чаще всего снаружи помещений: витрин магазинов, освещение автомобильных дорог, тротуаров, въездов в гаражи, подъезды домов.

Стоимость датчиков невысокая, поэтому быстро окупаются. Рассмотрим более детально их устройство, принцип работы и другие особенности, связанные с применением таких датчиков.

Устройство и принцип действия

Перед тем как выбирать датчики освещения, необходимо разобраться с их устройством и принципом работы. Чаще всего они изготавливаются на основе фотодиода, фоторезистора или фототранзистора. В обоих случаях принципиальная схема работы одна и та же.

Датчики уличного освещения для нормального функционирования должны подключаться к электрической бытовой сети. На клеммы датчика должны подходить фазный и нулевой проводники. В датчике имеется также третий вывод, подающий сигнал на линию освещения, который будет рассмотрен позже в разделе «подключение».

Датчик подключен к усилителю сигнала, который соединен с силовым реле, подающим питание на приборы освещения.

В зависимости от освещенности изменяется сопротивление чувствительного элемента. Чем меньше освещенность, тем больше его сопротивление. При достижении заданной величины напряжения датчик выдает сигнал на усилитель, который приводит в действие реле. Это реле замыкает цепь приборов освещения. Вследствие этого на них подается питание, и включается свет.

При наступлении светлого времени суток уровень освещенности повышается. В результате датчик размыкает контакты реле, которое выключает питание приборов освещения, и свет выключается.

Разновидности и выбор

По мощности до:
  • 1 кВт.
  • 2 кВт.
  • 3 кВт.
По типу установки:
  • Для установки в электрощит на дин-рейку.
  • Внешние, накладные (на стену).
  • С выносным чувствительным элементом.
  • Для уличной установки.
  • Для монтажа внутри помещений.
По типу нагрузки:
  • Для энергосберегающих ламп.
  • Для ламп накаливания.
По методу управления:
  • Программируемые.
  • С функцией энергосбережения в ночное время.
  • С принудительным отключением.
  • Автоматические.

Сначала необходимо выбрать эксплуатационное напряжение и степень защиты. Если датчик будет монтироваться снаружи помещения, то его класс защиты должен быть не менее, чем IР 44. Это означает защиту датчика от попадания посторонних предметов внутрь размером больше 1 мм, защиту от влаги.

Далее следует обратить внимание на режим эксплуатации по температуре. Нужно выбирать модели, которые способны работать при температуре в вашем регионе.

Мощность устройства также играет большую роль. Лучше выбрать датчики освещения с запасом по мощности.

Некоторые модели оснащены регулятором порога срабатывания. То есть, настраивается чувствительность датчика. Например, при выпадении снега лучше снизить чувствительность, так как снег отражает свет, который может повлиять на срабатывание датчика. Пределы настройки чувствительности также бывают разными.

Время задержки включения датчика также может регулироваться. Такая регулировка необходима для защиты от ложных срабатываний. Например, в темное время на чувствительный элемент может на короткое время попасть свет от случайного источника (фар автомобиля). При малом времени задержки датчик сработает и свет выключится. Если задержка достаточная, то датчик не сработает, свет будет продолжать гореть.

Место установки

При проектировании системы автоматического освещения большое значение имеет правильное расположение датчика освещения, для его корректной работы.

При выборе места монтажа датчика следует учесть следующие факторы:
  • Высота установки не должна быть слишком высокой, так как датчик придется периодически обслуживать: очищать от пыли и загрязнений, протирать.
  • Место установки должно исключать попадание на датчик света фар автомобилей.
  • Приборы освещения должны быть удалены как можно дальше.
  • Необходимо обеспечить беспрепятственное попадание света солнца на датчик, для его правильного срабатывания.

Иногда датчики освещения в виде эксперимента приходится располагать в разных местах, чтобы добиться его правильной работы.

Схемы подключения
Датчики освещения любых фирм изготовителей оснащены тремя выводами. Они имеют цвета: красный, синий и черный. Из них:
  • На черный провод подключается фаза.
  • К синему проводу подключают нулевой проводник.
  • Красный провод отходит на подачу питания на освещение.

Чаще всего все схемы изображают с соблюдением этих цветов.

Датчики освещения подключаются по схеме. На вход датчика поступают фаза и ноль, а выходит провод фазы на приборы освещения. Нулевой проводник на освещение подключают от шины сети.

Согласно правилам, провода нужно соединять в монтажных коробках. Сегодня не проблема купить любой вид коробки. При уличном монтаже лучше приобрести защищенную от влаги модель. Ее устанавливают в доступном месте. Датчик подключается по приведенной схеме.

Если датчик устанавливается для подключения мощного фонаря, имеющего дроссели, то в схему необходимо добавить магнитный пускатель, который способен функционировать при частом пользовании при выключении и включении освещения. Он рассчитан на прохождение пусковых значений тока.

Если освещение необходимо только при наличии людей, то в схему добавляют датчик движения. По такой схеме датчик движения сработает только в темноте.

Настройка чувствительности датчика

После монтажа датчика необходимо настроить его чувствительность. Чтобы отрегулировать границы срабатывания, внизу корпуса должен находиться регулятор. Вращая его, можно выполнить настройку чувствительности.

На корпусе датчика имеются изображения стрелок, обозначающих направление настройки для уменьшения или повышения чувствительности датчика.

При первой настройке лучше выставить минимальную чувствительность. При постепенном снижении освещения на улице, когда, по вашему мнению, должен уже включаться свет, производите подстройку, плавно поворачивая регулятор, пока свет не включится. На этом настройка закончена.

Достоинства
  • Автоматическое включение освещения и ручная регулировка экономят электроэнергию.
  • Увеличение уровня безопасности, так как работа освещения в автоматическом режиме отпугивает злоумышленников.
  • Оснащение многих моделей дополнительными функциями в виде таймеров и других функций.
  • Простая схема установки и подключения без привлечения квалифицированных специалистов.

Серьезных недостатков такие устройства не имеют, кроме расходов на их приобретение.

Похожие темы:

виды, технические параметры, подключение и настройка

Для повышения привлекательности, безопасности передвижения и снижения криминогенной ситуации на улицах города должна быть установлена функционирующая и надежная система освещения. С другой стороны, уличные фонари используются и для освещения придомовых территорий.

Яркие источники света приводят к существенным затратам электрической энергии, поэтому с целью экономии могут использоваться различные дополнительные устройства. Одним из таковых является датчик света для уличного освещения.

Данное оборудование пользуется огромным спросом среди населения и муниципального управления. Датчики размещаются в системах освещения придомовых территорий, второстепенных городских улиц. Существуют приборы, предназначенные для эксплуатации внутри помещений, рядом с лестницами, проходными дверями. Ниже будут рассмотрены принципы действия, устройства, технические параметры, допустимые схемы установки датчиков света.

Назначение и сфера применения

Датчиком света или датчиком движения прибор называется в народе. Специалисты могут именовать его светоконтролирующим выключателем или светочувствительным автоматом. Существуют и другие наименования, включая фотодатчик, сумеречный датчик, датчик дня и ночи и т. д. Во всех случаях имеют в виду одно и то же устройство, при помощи которого происходит автоматическое включение и выключение света с наступлением сумерек и рассвета, соответственно.

Для создания фотореле, являющегося основным компонентом датчика, используются специальные фототранзисторы или фоторезисторы, параметры которых изменяются в зависимости от уровня освещенности. Пока на фотоэлемент падает достаточное количество света, цепь питания остается в разомкнутом состоянии. С наступлением темноты происходят изменения параметров, и при достижении заданного уровня цепь замыкается, что приводит к включению светильников. Чувствительность прибора задается индивидуально.

В утреннее время наблюдается обратный процесс: цепь питания разрывается после регистрации достаточного количества естественного света.

Основные технические характеристики

Существует несколько основных технико-эксплуатационных параметров, на которые следует обращать внимание при выборе датчика света. Первым является напряжение. Датчики могут подключаться к сети переменного тока 220 В или постоянного 12 В. Во втором случае устройства являются менее мощными, но безопасными, питание происходит за счет подключаемого аккумулятора или понижающего транзистора, преобразующего переменное электричество в постоянное.

Следующая важная характеристика – класс защиты от попадания пыли и влаги. Поскольку мы говорим об уличном освещении, то прибор должен иметь надежную защиту – не ниже IP44, что указывает на повышенную герметичность (исключается попадание частиц пыли более 1 мм и брызг воды). Можно выбирать датчики с большим классом защиты, но ниже – нельзя. В доме нужно устанавливать приборы классом защиты от IP23.

Рекомендуем ознакомиться с допустимыми нормами температуры при эксплуатации оборудования (режимом эксплуатации). Нужно делать ставку на такие модели, которые с легкостью перекроют средние показатели плюсовой и минусовой температуры в вашем регионе.

Нужно помнить о мощности фотореле – допустимом количестве подключаемых ламп в зависимости от суммарной мощности. Датчик движения может функционировать и при большей нагрузке, чем задано в технической документации, но все-таки лучшим вариантом станет приобретение устройства с определенным запасом мощности (приблизительно 20 %).

Помимо основных параметров, рекомендуется обращать внимание на ряд дополнительных. Многие устройства имеют свой порог чувствительности (срабатывания). Например, при вероятности выпадения осадков (особенно снега) лучше всего понизить чувствительность оборудования, поскольку отраженный от снежинок свет может восприниматься изделием как рассвет. Это приведет к нежелательным включениям и отключениям устройства в течение коротких временных промежутков. Такое световое шоу будет лишним как на улице города, так и на придомовой территории.

Говоря о чувствительности, нужно искать параметры, определяющие верхнюю и нижнюю границу. Например, для одного датчика диапазон может составлять 5-100, для другого – 10-100 лк.

Чтобы исключить возможные ложные включения или отключения света, нужно настроить задержку срабатывания. К примеру, ночью на фотореле может попасть свет от фар машин, проезжающих мимо. Если установлена минимальная задержка, то это, скорее всего, приведет к отключению света. Достаточно установить задержку на 7-10 секунд, чтобы избежать нежелательной ситуации.

Виды фотореле

Фотореле выпускаются нескольких типов: одни имеют встроенный датчик освещенности, другие оснащены выносным элементом.

Перечислим основные разновидности датчиков света для уличного освещения:

  1. Фотореле со встроенным датчиком движения. Данные устройства подойдут лишь в том случае, если светильники должны включаться только во время нахождения человека в освещаемой области. Например, в туалете, на заднем дворе, у входных ворот и т. д.
  2. Фотореле с таймером. Если нужно добиться того, чтобы свет горел лишь в течение определенного отрезка времени, используйте данную модель. Установите на ней таймер, после чего встроенный датчик автоматически отключит освещение в указанное время. Отличный вариант для декоративной подсветки сада, клумбы, двора.
  3. Астротаймер – усовершенствованное фотореле, в память которого закладываются продвинутые параметры, например, время заката и восхода в зависимости от климатической зоны. Выполняя преднастройку оборудования, вам нужно установить часовой пояс, после чего прибор будет автоматически включать и отключать освещение в нужное время. Стоимость устройства значительно выше обычных фотореле, но оно позволяет исключить возможные засветки и проблемы с выбором места установки.

Если вас интересует только одна из перечисленных функций, то можно пойти другим путем. Например, купить обычное фотореле и последовательно подключить к нему либо датчик движения, либо таймер. Устройство будет выполнять аналогичные функции, но зато можно будет снизить затраты на обустройство системы, ремонт или замену элементов. Дело в том, что при выходе из строя любого элемента, встроенного в фотореле, придется менять все устройство, но если, к примеру, датчик движения подключен отдельно, то достаточно будет заменить только его.

Требования к месту установки

При выборе места для установки фотореле, подключаемого к системе уличного освещения, нужно ориентироваться на следующие требования:

  1. На фотореле или выносной датчик регистрации света при любых условиях должен попадать дневной свет.
  2. Все остальные приборы искусственного освещения, включая фонари, билборды и домашние светильники (свет бьет через окно) должны быть установлены как можно дальше от светового реле, что позволит исключить ложные срабатывания устройства.
  3. Вероятность попадания света от автомобильных фар должна быть минимальной.
  4. Высота монтажа – 1,5-2 м, что позволит настраивать нужные параметры, находясь на земле. В противном случае придется использовать стремянку или обычную лестницу, чтобы добраться до датчика.

Отыскать такое место, которое удовлетворит всем перечисленным требованиям, довольно сложно. Тем не менее, можно воспользоваться маленькими хитростями, облегчающими задачу:

  1. Воспользуйтесь куском пластиковой трубы (желательно черного цвета) длиной 15-20 см с увеличенным диаметром, чтобы оградить фотореле или датчик от света, бьющего из окон или от фонарей. Нижней части нужно задать такой угол, под которым труба будет направлена вверх. То, каким будет данный угол, зависит от места установки и особенностей расположения датчика, но обычно он составляет 30-45 градусов от вертикальной конструкции (стены, столба).
  2. Если фотореле устанавливается на мощном светильнике, то в идеале нужно размещать его позади плафона, куда попадает меньшее количество света.

Рекомендуется устанавливать датчики освещения на западной или восточной стороне дома, что существенно упростит настройку рабочих параметров оборудования. Главное условие – отсутствие расположенных поблизости ярких источников света. Если таковые имеются, то монтировать фотореле нужно на той стороне, где вероятность засветки ниже.

Возможные схемы подключения фотореле для уличного освещения

Итак, определено предназначение и принцип действия фотореле, по сути выполняющего функции автоматического выключателя света. Отсюда следует простая схема подключения: на датчик подается фаза, которая уходит из двух выходов и поступает на светильник или другой осветительный прибор. Поскольку устройство нуждается в питании, то один из контактов является нулевым. Для повышения безопасности при эксплуатации изделия в идеале желательно подключить заземление.

Чтобы понять, какой выбрать датчик, учитывается мощность нагрузки (суммарная мощность источников света, ламп). С повышением мощности оборудования возрастает его стоимость. Чтобы сэкономить, питание в цепи можно подавать через магнитный пускатель. Для этого по-прежнему потребуется фотореле, но в данном случае можно будет использовать устройство малой мощности, поскольку при последовательном подключении учитывается мощность магнитного пускателя, а не самого датчика. На выводы изделия подается желаемая нагрузка.

Если в электрической цепи будут использоваться дополнительные датчики (движения, времени), то они подключаются последовательно после фотореле. Порядок, в котором будут расположены датчики движения и времени, не имеет значения. Если в какой-то момент нужно будет избавиться от этих датчиков, достаточно просто изъять их из схемы, она все равно будет функционировать.

Подключение и настройка

Для начала нужно воспользоваться простой схемой подключения фотореле с силовым блоком и уличного светильника. Размещать датчик желательно в непосредственной близости с осветительным устройством. Каждому изделию прилагается инструкция, описывающая пошаговую установку и подключение. В большинстве случаев реле крепится прямо к столбу с фонарем на высоту не более 3 м.

Наличие выносного датчика не меняет последовательность монтажа. Реле крепится в нужном месте таким образом, чтобы на него падали солнечные лучи, и никакие другие объекты не становились между солнцем и изделием. Блок подключается внутри помещения рядом с электросиловой. В идеале нужно использовать устройства, которые способны самостоятельно регулировать рабочие характеристики. Впрочем, большинство моделей оснащены обычными механическими тумблерами, настраивающими порог световой чувствительности.

На корпусе качественного изделия обязательно имеются указатели, упрощающие процесс подключения и регулировки прибора. При вращении тумблера в сторону возрастания фотореле будет срабатывать быстрее и с наступлением сумерек включит фонарь. Если тумблер повернуть в другом направлении, то порог чувствительности уменьшится, что может привести к включению света только с наступлением полной темноты.

Фотореле можно собрать самостоятельно, причем сделать это довольно просто. Чтобы изделие было компактным, нужно исключить применение габаритных элементов. Не стоит брать эмиттерный повторитель в сборе, лучше всего сконструировать его из двух транзисторов для повышения входного тока.

Подключите в схему реле малой мощности, используемое в качестве транзисторного каскада. Чтобы исключить воздействие обратного тока, нужно воспользоваться диодами, проводящими электричество исключительно в одном направлении. Согласно простой истине, если напряжение повышается, изделие становится более чувствительным.

Советы и рекомендации

Процесс выбора усложнен большим разнообразием датчиков движения, характеризующихся разным функционалом. Чтобы выбрать подходящее фотореле, следует учесть ряд факторов. Первый и самый важный – условия будущей эксплуатации. На придомовых территориях загородных домов желательно использовать изделия с возможностью изменения порога светочувствительности. Отличным вариантом станет дополнительный монтаж датчика времени.

Нужно помнить о соответствии мощности, на которую обращалось внимание в начале статьи. Наконец, не стоит забывать о ценовой политике: не следует покупать устройство с лишним функционалом, который даже не будет использоваться. Но это повлияет на стоимость изделия и приведет к ненужной переплате.

Таким образом, фотореле для уличного освещения предназначены для автоматического управления осветительными системами и существенного продления рабочего ресурса отдельных приборов. Свет будет работать лишь в то время, когда это нужно. Автоматический контроль позволит создать максимально экономичную систему, а для управления ею не потребуется оператор сети.

Следует помнить, что схема подключения датчика света имеется на корпусе изделия. Это упрощает процесс ввода прибора в эксплуатацию.

Фотореле для уличного освещения: выбор, схемы установки

Владельцев частных домов при благоустройстве участка волнует вопрос, как сделать автоматическое включение света в сумерки и выключение его на рассвете. Для этого есть два устройства — фотореле и астротаймер. Первое устройство более простое и дешевое, второе — сложнее и дороже. Более подробно поговорим о фотореле для уличного освещения. 

Содержание статьи

Устройство и принцип действия

Это устройство имеет множество названий. Самое распространенное — фотореле, но называют еще фотоэлемент, датчик света и сумерек, фотодатчик, фотосэнсор, сумеречный или светоконтролирующий выключатель, датчик освещенности или день-ночь. В общем, названий много, но суть от этого не меняется — устройство позволяет в автоматическом режиме включать свет в сумерки и выключать на рассвете.

Схема фотореле для уличного освещения на фоторезисторе

Работа устройства основана на способности некоторых элементов изменять свои параметры под воздействием солнечного света. Чаще всего используют фоторезисторы, фототранзисторы и фотодиоды. Вечером, при уменьшении освещенности, параметры светочувствительных элементов начинают меняться. Когда изменения достигнут определенной величины, контакты реле смыкаются, подавая питание на подключенную нагрузку. На рассвете изменения идут в обратном направлении, контакты размыкаются, свет гаснет.

Характеристики и выбор

В первую очередь выбирают напряжение, с которым будет работать датчик света: 220 В или 12 В. Следующий параметр — класс защиты. Так как устройство устанавливается на улице, он должен быть не ниже IP44 (цифры могут быть больше, меньше — нежелательно). Это значит, что внутрь устройства не могут попасть предметы размером более 1 мм, а также что водяные брызги ему не страшны. Второе, на что стоит обратить внимание — на температурный режим эксплуатации. Ищите такие варианты, которые с запасом перекрывают средние показатели в вашем регионе как по плюсовой, так и по минусовой температуре.

Подбирать модель фотореле также необходимо по мощности подключаемых к нему ламп (выходная мощность) и току нагрузки. Оно, конечно, может «тянуть» нагрузку немного больше, но при этом могут быть проблемы. Так что лучше брать даже с некоторым запасом. Это были обязательные параметры, по которым надо выбирать фотореле для уличного освещения. Есть еще несколько дополнительных.

Пример характеристик фотореле для уличного освещения

В некоторых моделях есть возможность подстроить порог срабатывания — сделать фотодатчик более или менее чувствительным. Уменьшать чувствительность стоит при выпадении снега. В этом случае отраженный от снега свет может быть воспринят как рассвет. В результате свет будет то включаться, то отключаться. Такое представление вряд ли понравится.

Обратите внимание на пределы регулировки чувствительности. Они могут быть больше или меньше. Например, у фотореле AWZ-30 белорусского производства этот параметр  — 2-100 Лк, у фотоэлемента P02 диапазон подстройки 10-100 Лк.

Задержка срабатывания. Для чего нужна задержка? Для исключения ложных включений/отключений света. Например, ночью на фотореле попал свет фар проезжающего автомобиля. Если задержка срабатывания мала, свет отключится. Если она достаточна — хотя-бы 5-10 секунд, то этого не произойдет.

 

 

Выбор места установки

Для корректной работы фотореле важно правильно выбрать его местоположение. Необходимо учесть несколько факторов:

Как видите при организации автоматического освещения на улице выбрать место для установки фотореле — не самая простая задача. Иногда приходится переносить его несколько раз, пока найдешь приемлемое положение. Часто, если датчик света используют для включения фонаря на столбе, фотореле стараются расположить там же. Это совершенно не обязательно и очень неудобно — счищать пыль или снег приходится довольно часто и каждый раз залезать на столб не очень весело. Само фотореле можно разместить на стене дома, например, а к светильнику дотянуть кабель питания. Это наиболее удобный вариант.

Схемы подключения

Схема подключения фотореле для уличного освещения проста: на вход устройства заводится фаза и ноль, с выхода фаза подается на нагрузку (фонари), а ноль (минус) на нагрузку идет от автомата или с шины.

Схема подключения фотореле для освещения (фонаря)

Если делать все по правилам, соединение проводов необходимо делать в распределительной (монтажной коробке). Выбираете герметичную модель для расположения на улице, монтируете в доступном месте. Как подключить фотореле к освещению на улице в этом случае — на схеме ниже.

Подключение фотодатчика через распределительную коробку

Если включать/отключать необходимо мощный фонарь на столбе, в конструкции которого есть дросселя, лучше в схему добавить пускатель (контактор). Он рассчитан на частое включение и выключение, нормально переносит пусковые токи.

Схема подключения датчика день-ночь с пускателем

Если свет должен включаться только на время нахождения человека (в уличном туалете, возле калитки), к фотореле добавляют датчик движения. В такой связке лучше сначала поставить светочувствительный выключатель, а после него — датчик движения. При таком построении датчик движения будет срабатывать только в темное время суток.

Схема подключения фотореле с датчиком движения

Как видите, схемы несложные, вполне можно справиться своими руками.

Особенности подключения проводов

Фотореле любого производителя имеет три провода. Один из них — красный, другой — синий (может быть темно-зеленым) и третий может быть любого цвета, но обычно черный или коричневый. При подключении стоит помнить:

  • красный провод всегда идет на лампы:
  • к синему (зеленому) подключается ноль (нейтраль) от питающего кабеля;
  • к черному или коричневому подается фаза.

Если посмотрите на все выше приведенные схемы, то увидите, что они нарисованы с соблюдением этих правил. Все, больше никаких сложностей. Подключив так провода (не забудьте, что нулевой провод также надо подключить на лампу) вы получите рабочую схему.

 

Как настроить фотореле для уличного освещения

Настраивать датчик освещенности необходимо после установки и подключения в сеть. Для регулировки пределов срабатывания в нижней части корпуса имеется небольшой пластиковый поворотный диск. Его вращением и задается чувствительность.

Найдите на корпусе подобный регулятор — им настраивается чувствительность фотореле

Чуть выше на корпусе есть стрелочки, которыми обозначено, в какую сторону крутить для увеличения и уменьшения чувствительности фотореле (влево- уменьшить, вправо — увеличить).

Для начала выставляете наименьшую чувствительность — загоняете регулятор в крайнее правое положение. Вечером, когда освещенность будет такой, что вы решите, что уже надо бы включить свет, начинаете подстройку. Надо плавно поворачивать регулятор влево до тех пор, пока не включится свет. На этом можно считать, что настройка фотореле для уличного освещения закончена.

Астротаймер

Астрономический таймер (астротаймер) — это другой способ автоматизировать уличное освещение. Принцип его работы отличается от фотореле, но он тоже включает свет вечером и выключает его утром. Управление светом на улице происходит по времени. В данном устройстве заложены данные про то, в какое время темнеет/светает в каждом регионе в каждый сезон/день. При настройке астротаймера вводятся GPS координаты его установки, выставляется дата и текущее время. Согласно заложенной программе устройство и работает.

Астротаймер — второй способ автоматизировать свет на участке

Чем оно удобнее?

  • Оно не зависит от погоды. В случае с установкой фотореле велика вероятность ложного срабатывания — в пасмурную погоду свет может включаться ранним вечером. При попадании на фотореле света он может гасить свет посреди ночи.
  • Устанавливать астротаймер можно в доме, в щитке, в любом месте. Ему не нужен свет.
  • Есть возможность сдвигать время включения/выключения на 120-240 минут (зависит от модели) относительно заданного времени. То есть, вы сами сможете выставить время так, как вам удобно.

Недостаток — высокая цена. Во всяком случае, модели, которые есть в торговой сети, стоят довольно солидных денег. Но можно купить в Китае намного дешевле, правда, как он будет работать — вопрос.

Преобразование уличных фонарей в интеллектуальные датчики: зачем и как это делать

Авторы: Дэвид Шушан, инженер по полевым приложениям, Future Electronics, и Франсуа Миран, Future Lighting Solutions

Элементы управления, встроенные даже в более сложные уличные фонари, используемые сегодня, имеют довольно ограниченную область применения: они могут использоваться для затемнения, по расписанию или в ответ на измерения окружающего освещения; включать и выключать свет; и для поддержки операций по техническому обслуживанию и ремонту, предоставляя отчеты о состоянии и отмечая неисправности.

Сами по себе эти функции полезны, но есть потенциал, чтобы сделать гораздо больше и принести гораздо большую ценность владельцам и операторам уличных фонарей, пешеходам и участникам дорожного движения, а также организациям, имеющим коммерческие или иные интересы в городах. . Это связано с тем, что в последние месяцы технологические звезды сошлись во мнении, чтобы уличные фонари можно было легко и дешево подключать к интернет-шлюзу.

В этой статье исследуется потенциальная ценность, которую можно получить, когда город преобразует каждый уличный фонарь в Интернет-узел, а также подходы, которые производители уличных фонарей могут использовать для реализации дизайна новых подключенных уличных фонарей.

Самая ценная недвижимость

Ценности собственности являются постоянным источником восхищения для многих людей в процветающих обществах. В некоторых странах целые телевизионные программы посвящены тому, где, почему и как купить «дом мечты». Когда широкая публика думает о ценах на недвижимость, она обычно имеет в виду стоимость покупки дома или другого здания. И чем желательнее расположение, тем дороже будет недвижимость.

Но, возможно, самые ценные объекты недвижимости в любом городе, квадратный сантиметр на квадратный сантиметр, — это крошечные участки, в которые встроены его столбы уличных фонарей.Интересный мысленный эксперимент — представить себе, как коммерческое предприятие могло бы получить право устанавливать столбы высотой 8 м, расположенные на расстоянии 25 м друг от друга вдоль каждой улицы и тротуара во всем городе, и сколько ему, возможно, придется заплатить, чтобы купить эти столбы. земельные участки. Можно с уверенностью сказать, что стоимость будет астрономической. Сегодня эти столбы в этих фантастически ценных местах уже существуют, но их потенциал используется крайне недостаточно.

Городские столбы уличных фонарей занимают выгодное положение на оживленных улицах, заполненных пешеходами и транспортными средствами (см. Рис. 1).

Рисунок. 1. Линия уличных фонарей над движением в час пик в Атланте, США. (Изображение предоставлено Atlantacitizen по лицензии Creative Commons.)

Приподнятые, они обеспечивают обзор всей сети дорог и тротуаров города. И они подвергаются воздействию различных условий воздуха, погоды, света и окружающей среды в тысячах известных мест.

У этой недвижимости есть тысячи потенциальных применений, если она будет открыта для коммерческих и исследовательских организаций.Используя компоненты электроники, которые доступны сегодня и которые могут быть интегрированы в схему светильника, уличный фонарь может определять, например:

  • Экологические явления, такие как качество воздуха и концентрация загрязняющих веществ, концентрация пыльцы, уровни внешней освещенности. , температура, влажность, давление воздуха, шум и др.
  • Плотность и поток движения
  • Плотность и скорость движения пешеходов


Эти измерения могут быть исчерпывающими и детализированными, выявляя различия даже между одним концом улицы и другой.Датчики каждого уличного фонаря видят воздух и землю в зоне с радиусом обычно от 10 до 15 метров. Поле зрения каждого полюса прилегает к следующему, и вместе все поля зрения могут охватывать почти всю площадь города или города.

Это означает, например, что местные медицинские службы могут искать корреляции между измерениями качества воздуха и госпитализацией в результате тяжелого респираторного заболевания. Он сможет подробно проанализировать, связаны ли определенный уровень качества воздуха или конкретная концентрация переносимого по воздуху загрязнителя со значительным увеличением количества госпитализаций.

Еще одно возможное применение — измерение объема и скорости движения пешеходов. Розничные торговцы, например, представляют собой очень ценные места, где много пешеходов сосредоточено в плотной и медленно движущейся массе. Информация от пассивных инфракрасных (PIR) датчиков или гиперчастотных радаров, которые могут обнаруживать присутствие и движение тел, может быть проанализирована, чтобы предоставить данные о пешеходном движении по всем улицам города и произвести рейтинг или оценку относительной привлекательности каждой из них. Полюсное расположение для операторов торговых точек.

Эти два варианта использования представлены только для того, чтобы показать примеры ценности, которая может быть получена от интеграции компонентов датчиков в уличные фонари, подключенные к Интернету. Фактический диапазон типов данных, которые могут быть захвачены, и возможности их использования ограничены только воображением их потенциальных пользователей.

Беспроводная сетевая технология для подключения уличных фонарей

Представленное выше видение роли уличного освещения амбициозно.Итак, какие изменения сделали эту новую амбицию реалистичной?

Ключевым требованием нового уличного фонаря является подключение к Интернету: Интернет — это открытая универсальная сеть мира, обеспечивающая стандартный протокол, по которому любой компьютер в любом месте может взаимодействовать с любым адресуемым Интернет-узлом. В случае уличных фонарей это означает, что любой разрешенный системный оператор во всем мире сможет извлекать данные из любого подключенного к Интернету уличного фонаря, к которому владелец предоставил ему доступ.

Большое изменение, которое позволяет сегодня рассмотреть вопрос о подключении всех тысяч уличных фонарей города к Интернету, — это расширение доступности новой технологии Low-Power Wide-Area Networking (LPWAN). Две такие технологии конкурируют за доминирование:

  • Semtech LoRa ™ технология состоит из радиочастотных приемопередатчиков, встроенных в датчики и шлюзы, обеспечивающих возможность захвата и передачи данных на большие расстояния при небольшом потреблении энергии. Кроме того, LoRa Alliance ™ разработал открытый протокол, основанный на технологии LoRa, под названием LoRaWAN ™, чтобы гарантировать совместимость всех устройств и программных компонентов как в общедоступных, так и в частных сетях (см. Рисунок 2).
  • SIGFOX, сетевой протокол, реализованный в инфраструктуре общедоступной сети.

Рис. 2. Архитектура сети LoRaWAN ™, обеспечивающая подключение к Интернету для нескольких конечных узлов. (Изображение предоставлено: официальный документ LoRa Alliance)

Новым является способность LoRa и SIGFOX обеспечивать покрытие беспроводной сети с низким объемом данных, низким энергопотреблением и очень низкой стоимостью на больших территориях. Например, дальность действия передатчика-приемника в открытом пространстве для одного канала LoRa может достигать 15 км при низкой, но полезной скорости передачи данных.Один шлюз также может предоставить интерфейс до 10 000 узлов. Это означает, что все уличные фонари среднего размера могут быть подключены к Интернету через один центральный шлюз LoRa.

Технология LoRa может быть реализована в частной сети на основе LoRaWAN, предназначенной только для уличного освещения; это означает, что оператор уличного освещения оплатит стоимость установки датчиков и шлюзов на основе LoRa, а также настройку и обслуживание сети. Но благодаря усилиям LoRa Alliance общедоступные сети LoRaWAN возникают во многих городах, и некоторые операторы уличного освещения смогут использовать существующую инфраструктуру, что еще больше снизит свои затраты на подключение.

SIGFOX доступен пользователям только как общедоступная сеть с использованием инфраструктуры, установленной компанией SIGFOX в некоторых странах, а также ее партнерами-операторами сети в других.

Как для LoRa, так и для SIGFOX стоимость подключения узла, а также отправки и получения сигналов по сети значительно ниже. На фоне уже значительных затрат на материалы и сборку печатной платы, а также на установку и ввод в эксплуатацию нового светодиодного уличного фонаря дополнительные затраты на обеспечение подключения к Интернету через сеть LoRa или SIGFOX практически незначительны.Соотношение затрат и выгод исключительно благоприятное.

Это не только из-за случаев использования сбора данных, примеры которых были описаны выше. Подключение к Интернету также обеспечивает эксплуатационные преимущества для владельцев уличных фонарей:

  • Подключение к Интернету позволяет уличному фонарю загружать более подробную, своевременную и действенную информацию о состоянии, чем закрытые сети управления освещением. Это обеспечивает более эффективное профилактическое обслуживание и снижает потребность в дорогостоящем обслуживании в полевых условиях.
  • Связь через Интернет поддерживает более сложные методы управления, такие как освещение, активируемое движением, или освещение по запросу. Такие схемы управления освещением, запускаемые датчиками движения на нескольких соседних полюсах, требуют сложных взаимодействий между уличными фонарями и системой управления, взаимодействия, которые обычно не поддерживаются устаревшими сетями управления освещением, но легко допускаются через Интернет-соединение.

Требования к новым компонентам

Таким образом, муниципальные власти и коммерческие организации могут потребовать новое поколение интеллектуальных светодиодных уличных фонарей с подключением к Интернету.Какое влияние это окажет на архитектуру продукции производителей уличных фонарей?

Наиболее очевидный эффект — увеличение количества и типа компонентов на плате. Современные светодиодные уличные фонари обычно состоят из светового двигателя, оптики и водителя. Новые интеллектуальные уличные фонари потребуют дополнительных типов устройств:

  • Датчики для сбора данных о таких параметрах, как температура, газы, влажность, окружающее освещение и т. Д.
  • Мощный микроконтроллер, способный обрабатывать входные сигналы нескольких датчиков и обрабатывать интернет-протокол. транзакции
  • Система РФ.Модули конечных узлов для сетей LoRa или SIGFOX доступны от таких поставщиков, как Microchip и MultiTech, что обеспечивает полное сертифицированное решение для беспроводной связи (см. Рисунок 3).

Рис. 3. Комплект разработчика USB-ключа MultiConnect® xDot ™ для модуля xDot LoRa от MultiTech. (Изображение предоставлено MultiTech)

Спецификация этих компонентов и их интеграция в конструкцию конечного продукта выведут многих производителей осветительного оборудования на неизведанную техническую территорию.Это, однако, не означает, что им не хватит поддержки или дорожных карт, которыми они могли бы руководствоваться. Фактически, растущая сила Интернета вещей побуждает производителей многих типов промышленных, жилых и коммерческих устройств добавлять беспроводные сети и возможности обнаружения к «тупым» продуктам, которые ранее не были подключены к какой-либо сети.

Такие производители и их отраслевые партнеры смогли извлечь уроки из своего опыта, и эти знания доступны через сторонних экспертов, таких как Future Electronics, дистрибьютора компонентов электроники и осветительной техники.Фактически, структура подразделений Future Electronics, включающая ее операционные подразделения Future Connectivity Solutions, Future Lighting Solutions и Future Sensor Solutions, разработана специально для удовлетворения потребностей нового поколения производителей оборудования, поддерживающего IoT.

Таким образом, ценность добавления возможности подключения к Интернету для уличных фонарей очевидна, и недавно появилась технология компонентов, обеспечивающая их поддержку по невысокой цене. При экспертной поддержке производители уличных фонарей могут получить вознаграждение, превратив свое простое осветительное оборудование в интеллектуальный, подключенный к Интернету мультисенсорный узел, который также освещает городские дороги и тротуары.

Интеллектуальная система уличного освещения потребляет на 80 процентов меньше электроэнергии

Из всех существующих советов по энергосбережению, вероятно, наиболее часто мы слышим не оставлять свет включенным, когда выходим из комнаты. Это хороший совет, но города по всему миру не следуют ему одним ключевым способом — их уличные фонари горят всю ночь, даже когда на улице никого нет. Технологический университет Делфта в Нидерландах экспериментирует с новой системой уличного освещения в своем кампусе, в которой уличные фонари, оборудованные датчиками движения, тускнеют до 20% мощности, когда рядом с ними нет людей или движущихся транспортных средств.Считается, что система снижает потребление энергии и выбросы CO2 до 80 процентов, а также снижает затраты на техническое обслуживание и снижает световое загрязнение.

Выпускник Delft Management of Technology Чинтан Шах разработал систему, которая может быть добавлена ​​к любому уличному фонарю с регулируемой яркостью. Освещение происходит от светодиодных лампочек, которые срабатывают по датчикам движения. Когда человек или автомобиль приближается, их движение фиксируется ближайшим уличным фонарем, и его световой поток достигает 100 процентов. Поскольку все огни связаны друг с другом по беспроводной сети, окружающие огни также включаются и снижаются до 20 процентов только после того, как проезжающий пригородный поезд проезжает через них.По сути, это создает «лужу света», которая предшествует и следует за людьми, куда бы они ни пошли, поэтому любые головорезы, скрывающиеся в этой области, должны быть хорошо заметны заранее.

Система беспроводной связи фонарей также позволяет им автоматически уведомлять центральную диспетчерскую при возникновении сбоев (например, перегоревших лампочек). Это должно значительно упростить обслуживание, так как экипажи будут точно знать, куда и когда идти.

Некоторые тонкие настройки все еще продолжаются, чтобы свет не активировался такими вещами, как качающиеся ветки или блуждающие кошки.Тем временем Шах основал дочернюю компанию под названием Tvilight для продвижения технологии Делфта. Он утверждает, что муниципалитеты, использующие систему, должны окупить себя в течение трех-четырех лет использования.

Что такое умный уличный фонарь?

Умный уличный фонарь — это осветительный прибор для общественных мест, который включает в себя такие технологии, как камеры, светочувствительные фотоэлементы и другие датчики, для реализации функций мониторинга в реальном времени. Также называется адаптивным освещением или интеллектуальным уличным освещением , этот тип системы освещения признан значительным шагом в развитии умных городов.

В дополнение к тому, что города могут обеспечивать надлежащее количество уличного освещения для местных условий, установка интеллектуального освещения поможет повысить удовлетворенность граждан в отношении безопасности и защиты, одновременно принося муниципалитетам значительную экономию на потреблении энергии и обслуживании систем освещения. Кроме того, инфраструктура наружного освещения будет служить основой для ряда приложений Интернета всего (IoE), таких как мониторинг погоды, загрязнения и трафика.

По данным ABI Research, поскольку муниципалитеты переходят от традиционного освещения к светодиодам (LED), около 20% этой технологии можно считать интеллектуальной благодаря интеграции с системами управления освещением.Тем не менее, ABI прогнозирует, что к 2026 году центральные системы управления будут подключены к более чем двум третям новых светодиодных уличных фонарей.

Как работают умные уличные фонари

Технология умных уличных фонарей может различаться в зависимости от их функций и требований, но обычно она включает комбинацию камер и датчиков. При использовании в стандартных уличных фонарях эти устройства могут обнаруживать движение, что обеспечивает динамическое освещение и затемнение. Это также позволяет соседним приборам общаться друг с другом.Если обнаружен пешеход или автомобиль, все окружающие огни будут ярче, пока движение не перестанет фиксироваться.

Дополнительные возможности интеллектуальных уличных фонарей могут потребовать дополнительных технологий, таких как датчики изображения, сейсмические датчики, звуковые датчики, динамики, датчики погоды и обнаружения воды, а также беспроводные передатчики.

После того, как умные уличные фонари установлены, большинство поставщиков предлагают программное обеспечение, которое может помочь городам контролировать технологию и управлять ею. Это программное обеспечение также можно использовать для сбора любых данных, собранных уличными фонарями, и настройки их функций, таких как время затемнения.

Федеральное управление шоссейных дорог США опубликовало руководство по внедрению умных уличных фонарей в государственных учреждениях.

Характеристики умных фонарей

Хотя функции умных уличных фонарей зависят от конкретной технологии, используемой градостроителями, примеры общих функций включают следующее:

  • управление динамическим освещением на основе обнаружения движения;
  • экологический и погодный мониторинг;
  • Цифровая вывеска
  • , которую можно обновлять по мере необходимости, например, правила парковки или предупреждения об авариях;
  • управление парковкой, например, оповещение должностных лиц о незаконно припаркованных транспортных средствах или водителей открытых пространств;
  • расширенная сотовая и беспроводная связь;
  • управление трафиком с помощью потоков данных в реальном времени, отслеживающих загруженность и скорость; и
  • автоматическое экстренное реагирование в случае автомобильной аварии или преступления.

Преимущества умных уличных фонарей

Внедрение умных систем уличного освещения дает следующие преимущества:

  • снижение затрат на электроэнергию и использование благодаря гибкому управлению диммированием;
  • повысила удовлетворенность пешеходов за счет улучшения мер безопасности;
  • снизила затраты на ремонт и техническое обслуживание с помощью программного обеспечения для мониторинга;
  • снижение выбросов углерода и светового загрязнения;
  • увеличенный срок службы лампы и более короткое время реакции на отключение;
  • улучшенное архитектурное планирование на основе реальных моделей трафика и идей; и
  • увеличил возможности получения дохода, такие как аренда столбов для цифровых вывесок или других услуг.

Недостатки умных уличных фонарей

Несмотря на долгосрочную ценность модернизации сетей освещения, существует несколько проблем. Хотя умные уличные фонари экономят деньги с течением времени, первоначальные вложения являются значительными. Затраты на уличное освещение могут составлять более 40% затрат на электроэнергию в городе, хотя переход с галогенных на базовые светодиодные светильники дает до 80% мгновенной экономии.

Кроме того, существует множество приложений и технологических платформ, поэтому выбор подходящих может оказаться сложной задачей.Отсутствие общих стандартов для сетей также создает проблемы.

Еще одним препятствием является недостаток знаний потребителей о функциях и преимуществах умных уличных фонарей. Наконец, внедрение умных уличных фонарей требует соблюдения федеральных и коммунальных правил.

Примеры умных уличных фонарей

Города, инвестирующие в умные уличные фонари, получают прибыль. В то время как Лос-Анджелес получил прирост доходов от SmartPoles, которые предлагают прием Long-Term Evolution (LTE) и экономят энергию, Чикаго может сэкономить 10 миллионов долларов в год на расходах на электроэнергию благодаря четырехлетней инициативе по замене 270 000 городских огней на светодиоды и светодиоды. интеллектуальное управление.Кроме того, города в Испании вложили средства в зеленое уличное освещение с разработкой ветряного турбинного фонаря Eolgreen.

В Сан-Диего установлены умные уличные фонари с датчиками, которые помогают направлять водителей к свободным парковочным местам и предупреждать сотрудников дорожной полиции о незаконно припаркованных автомобилях. Эти интеллектуальные приспособления могут подключаться к системам, чтобы помочь определить, какие перекрестки являются наиболее опасными и нуждаются в перепроектировании. Подобные системы могут помочь муниципалитетам регулировать светофоры, отслеживая перекрестки и отмечая, когда движение увеличивается, а датчики, подключенные к уличным фонарям, также могут обнаруживать звуки, такие как стрельба, разбитое стекло или автомобильная авария.

Разработчики программного обеспечения создают приложения, используя данные, собранные уличной сетью Интернета вещей (IoT). Новые приложения включают одно, определяющее самый тихий пешеходный маршрут; «цифровая трость» для использования данных о дорожном движении и местоположении, чтобы помочь слабовидящим людям переходить улицу; приложение, позволяющее водителям грузовиков с едой находить места с доступными парковочными местами и интенсивным пешеходным движением; и приложение для выявления интересных событий в реальном времени.

Интеллектуальные системы уличного освещения и столбы умного города

Как неотъемлемая часть городской инфраструктуры, уличное освещение способствует безопасности дорожного движения.Огромное количество огней, необходимое для полного освещения дорожной системы, создает острую потребность в решениях по освещению, которые были бы как можно более экономичными, но в то же время обеспечивали бы улучшенную визуальную среду, обеспечивающую точную и удобную видимость в часы темноты. Это, в свою очередь, способствовало разработке интеллектуальных систем управления освещением и систем управления энергопотреблением, которые позволяют осветительным приборам работать автономно с использованием различных алгоритмов прогнозирования, основанных на астрологическом календаре, фотоуправлении или детекторах движения.Внедрение интеллектуального уличного освещения с центральной системой управления (CMS) через беспроводные и проводные сети завершает портфель возможностей, позволяющих экономить энергию и улучшать качество освещения.

Светодиодное уличное освещение

Отрасль освещения претерпевает радикальные преобразования, вызванные технологическими достижениями в области твердотельного освещения (SSL), основанного на технологии светоизлучающих диодов (LED). Светодиод преобразует электрическую энергию в световую за счет излучательной рекомбинации электронов и дырок, высвобождаемых из слоев полупроводникового соединения с противоположным легированием.Полупроводниковое устройство демонстрирует высокую эффективность розетки и длительный срок службы. Работая в твердом состоянии, а не за счет возбуждения газовой среды или нагрева нити накала, светодиоды обеспечивают высокую надежность систем уличного освещения, которые подвергаются повторяющимся вибрациям в дорожных условиях. Все эти особенности приводят к значительной экономии энергии и затрат на техническое обслуживание с помощью светодиодного уличного освещения и, следовательно, значительно большей окупаемости инвестиций по сравнению с традиционными системами освещения.

В отличие от традиционных источников света (например, люминесцентных и HID), которые создают ряд проблем, связанных с управлением освещением, светодиоды представляют собой устройства, управляемые током, которые мгновенно реагируют на изменения потребляемой мощности. Этот уникальный атрибут позволяет создавать плавные профили затемнения и программировать динамические сцены освещения в светодиодных уличных фонарях. Полупроводниковая природа светодиодов способствует цифровой трансформации уличного освещения. Возможность бесшовного управления светодиодами с помощью электронных логических схем или процессоров открывает дверь к широкому спектру интерактивных возможностей, которые устраняют разрыв между цифровым и физическим миром.

Управление освещением

На самом базовом уровне уличные фонари объединяются в сеть и адресуются группами или индивидуально, чтобы обеспечить удаленную настройку, управление и мониторинг. Сетевая система управления обычно состоит из CMS (иногда называемой станцией управления), одного или нескольких шлюзов, контроллеров, а также других оконечных устройств. CMS — это централизованная платформа, которая работает в облаке или на локальном сервере. Такая обычная CMS уличного освещения собирает и хранит данные об уличном освещении с помощью регистратора данных.Графический пользовательский интерфейс (GUI) создается пользовательским веб-приложением для помощи в удаленном управлении, настройке и мониторинге уличного освещения.

Контроллер уличного освещения предназначен для подачи команд для управления драйвером светодиода и, следовательно, работой светодиодов на основе модели управления и обратной связи датчиков. Обычные контроллеры конфигурируются для реализации заранее запрограммированного поведения или режима работы. Контроллер будет включать / выключать свет или регулировать интенсивность светового потока в соответствии с заданными пользователем настройками, тем самым максимизируя эффективность отдельного оборудования.Контроллер может быть реализован либо с использованием простой схемы управления, которая действует на входы датчиков, либо процессора, состоящего из одного или нескольких запрограммированных микропроцессоров и связанных с ними схем. Контроллер устанавливается внутри опоры или внутри светильника.

В случае, если уличный фонарь не может напрямую подключаться к CMS, шлюз может пересылать данные между CMS и светом. Шлюз оснащен технологиями и механизмами, необходимыми для преобразования информации между различными протоколами, такими как BACnet в DALI или DMX512 в 0-10 В постоянного тока.Шлюз может взаимодействовать с несколькими контроллерами уличного освещения и может реализовывать интеллектуальные возможности периферии. Шлюз может включать, например, транслятор протокола, часы реального времени, приемопередатчик, память, порт Ethernet, изолятор неисправностей и т. Д.

Конечные устройства могут быть датчиками, которые определяют определенные характеристики своего окружения и передают их контроллеру уличного освещения. Терминальные устройства также могут быть электронными схемами, которые взаимодействуют с контроллером с заранее запрограммированными последовательностями.Фотоэлемент обычно интегрируется в систему наружного освещения для обеспечения фотоконтроля от заката до рассвета. Датчики движения, такие как пассивные инфракрасные (PIR) датчики, микроволновые датчики и ультразвуковые датчики, могут использоваться для изменения состояния света при обнаружении движения. Датчики обеспечивают освещение по запросу, а таймеры и астрономические часы позволяют управлять освещением по заранее заданному расписанию. Оконечные устройства монтируются на светильники или опоры уличных фонарей. Они могут работать как автономное решение или использоваться вместе с сетевой системой.

Удаленное подключение обычных систем управления уличным освещением обеспечивается проводными или беспроводными коммуникационными сетями, включая Ethernet, оператора линии электропередач (PLC), сотовые сети 2G / 3G / 4G и собственные радиочастотные системы. В общем, ограниченное количество приложений и элементов управления не требует большой нагрузки на сеть связи. Поэтому надежность сети и низкая стоимость эксплуатации имеют приоритет при оценке технологии связи.

Интеллектуальное уличное освещение

Идея добавления элементов управления и возможности подключения к уличным фонарям изначально была вызвана необходимостью автоматизации основных элементов управления освещением, таких как включение / выключение и затемнение, а также обеспечения возможности записи данных и регистрации рабочих параметров и аномальных условий.Растущая тенденция к использованию интеллекта и сетевых технологий для устранения неэффективности операций способствовала появлению более сложных алгоритмов управления освещением и увеличению количества уличных фонарей в сети. Усовершенствованное управление освещением позволяет городским менеджерам автоматизировать критические, но трудоемкие задачи, открывать новые операционные идеи, обеспечивать более адаптивное освещение и значительно экономить средства. Технологии беспроводной связи развиваются, чтобы удовлетворить требования к масштабируемости и функциональной совместимости для обработки большого количества географически разбросанных уличных фонарей.

Интеллектуальные системы уличного освещения обеспечивают сложное взаимодействие с пользователем и расширенные функции затемнения и планирования. Интеграция элементов управления, датчиков и возможностей подключения позволяет интеллектуальным уличным фонарям формировать самоадаптирующуюся распределенную сеть, которая адаптирует уличное освещение к меняющимся условиям на дороге. Контроллер освещения можно запрограммировать на управление уличным фонарем в различных режимах в зависимости от трафика, времени и факторов окружающей среды. Беспроводной радиомодуль контроллера обычно работает в ячеистой сети.Топология ячеистой сети обеспечивает высокий уровень надежности, позволяя каждому узлу освещения связываться со своим соседом и, таким образом, обеспечивая более одного пути через сеть для любого беспроводного канала.

Адаптивное освещение по запросу, включенное сенсорным модулем, будет реагировать только на деятельность человека, например пешеходам, велосипедистам и машинам. Другие сенсорные устройства используются для определения и измерения переменных окружающей среды и состояния системы. Шлюз, поддерживающий многоадресную рассылку, собирает данные от уличных фонарей в своей сети и отправляет информацию в CMS, где данные анализируются и обрабатываются.Сетевой сервер сопоставляет события с действиями и триггерами, которые затем передаются шлюзом на контроллеры уличного освещения. Шлюз подключается к CMS с помощью проводной или беспроводной связи. CMS предоставляет безопасное веб-приложение для пользователей на различных настольных рабочих станциях и мобильных устройствах.

Интернет вещей (IoT)

Настоящая революция произошла, когда светодиодное уличное освещение было объединено с Интернетом вещей (IoT). Помимо возможностей расширенного управления освещением, добавление возможности подключения по Интернет-протоколу (IP) к уличным фонарям и расширение возможностей обнаружения светодиодных светильников позволило создать широкий спектр инновационных приложений, которые изменяют способ взаимодействия людей с окружающей средой.Интернет вещей соединяет физический и цифровой миры с помощью интеллектуальных устройств, которые могут собирать или передавать информацию. IoT — это не единичная технология. Это конвергенция датчиков, устройств, сетей и программного обеспечения, которые работают синергетически, чтобы извлекать знания и полезные идеи и превращать их в реальную рентабельность инвестиций. С помощью Интернета вещей объекты реального мира подключаются к Интернету и взаимодействуют друг с другом, мобильными и веб-приложениями. При этом эти связанные «вещи» становятся интеллектуальными устройствами, которые могут создавать, обмениваться данными, агрегировать, анализировать или воздействовать на информацию.

IoT дает значительные преимущества уличному освещению. Сгенерированные датчиками аналитические данные обеспечивают глубокую осведомленность о сетке и обратную связь в режиме реального времени, которые можно использовать для оптимизации управления и повышения эффективности систем уличного освещения. Программные приложения, предоставляемые платформами Интернета вещей, позволяют администраторам удобно контролировать, управлять и программировать серию сложных, чувствительных ко времени инструкций по регулировке яркости. Расширенное управление освещением предоставляет широкий спектр функций управления и позволяет удаленно создавать пользовательские сцены по зонам, расписанию или действиям.Активный мониторинг, измерение и управление осветительными узлами позволяют автоматически идентифицировать отказы ламп и сообщать о них, а также прогнозировать и упреждающее планирование технического обслуживания. Комбинация сенсорных технологий, аналитических подходов, программных платформ и вычислительной мощности способствует критически важной динамике, такой как масштабируемость, совместимость, безопасность, внутренняя интеграция, обновления микропрограмм и программного обеспечения.

Светодиодное уличное освещение готово сыграть важную роль в Интернете вещей. Уличные фонари повсеместно присутствуют в городских районах и большинстве сельских жилых домов.Расположенные через каждые 30-80 м почти на каждой дороге и улице приподнятые источники света имеют опорную конструкцию и источник электроэнергии. Эти функции делают сети уличного освещения легкодоступной и выгодной с географической точки зрения платформой для развертывания устройств IoT. Уличное освещение с поддержкой Интернета вещей не только позволяет реализовать сложные стратегии освещения и обеспечивает дополнительную экономию энергии, но и создает магистральную сеть, поддерживающую ряд приложений умного города.

Умные города

Под умным городом понимается городская среда, в которой используется технология IoT для эффективного управления активами и ресурсами города, тем самым повышая его жизнеспособность, устойчивость и возможность подключения.Используя распределенную сеть интеллектуальных узлов, можно собрать огромный объем данных, чтобы получить ценную информацию о том, как работает город. Чтобы реализовать обещание умного города, необходима общегородская инфраструктура с доступом к источникам питания, средствам управления и коммуникациям, на которой можно разместить широкий спектр датчиков и устройств Интернета вещей. Сети уличного освещения предлагают такую ​​инфраструктуру для развертывания интеллектуальных устройств в городских районах. Множество приложений умного города выигрывают от использования одной и той же сетевой инфраструктуры для уличного освещения.

Управление движением

Интеллектуальные системы управления дорожным движением используют аналитику трафика, собираемую счетчиками и классификаторами трафика, для оптимизации движения транспортных средств и пешеходов. Динамическое взаимодействие между детекторами трафика и светофором позволяет адаптировать освещение движения к уровням заторов, погодным условиям, авариям или другим событиям, которые могут повлиять на транспортный поток.

Управление парковкой

Датчики свободного места на парковке, установленные на столбах уличных фонарей, отслеживают занятость парковочных мест и информируют центр управления, который затем может направить автомобиль к незанятому месту.Эту технологию также можно использовать для отслеживания транспортных средств на предмет нарушений правил парковки и выставления счетов водителям за время парковки.

Мониторинг окружающей среды

Датчики окружающей среды отслеживают изменения качества воздуха, атмосферных условий, погодных условий и температуры. Эти устройства используют оборудование связи в уличных фонарях для отправки данных на платформу IoT и отправки предупреждений о неблагоприятных погодных условиях, чтобы предупредить людей об аномальном климате или потенциальных опасностях, таких как быстро движущиеся торнадо или лесные пожары.

Сдерживание преступности

Уличные фонари, оборудованные IP-камерами и аудиозаписывающими устройствами, позволяют органам безопасности записывать, проверять и контролировать действия в районах, подверженных авариям, и районах с высоким уровнем преступности.

Общедоступные сообщения / цифровые вывески

Сеть уличного освещения может использоваться как сеть общественной информации за счет включения цифровых рекламных щитов и громкоговорителей для оповещения и рекламных целей.

Инфраструктура связи

Точки беспроводного доступа и базовые станции для малых сот могут быть установлены на столбах уличных фонарей для улучшения широкополосного подключения и поддержки сетей 5G соответственно.

Умные уличные фонари

Что такое умный уличный фонарь? От управления на основе расписания до адаптации на основе активации датчиков до интеллектуальных и сетевых систем — концепция интеллектуального уличного освещения постоянно развивается. На данный момент интеллектуальный уличный фонарь можно определить как интеллектуальную систему наружного освещения, которая учитывает контекст своей среды и может подключаться, обмениваться данными и взаимодействовать с другими интеллектуальными устройствами, подключенными по беспроводной сети, и центральной платформой.В контексте Интернета вещей интеллектуальный уличный фонарь или интеллектуальный столб — это хост-терминал для устройств Интернета вещей с функциями обнаружения, срабатывания, идентификации, управления или мониторинга. Конвергенция информации и коммуникаций в реальном времени в структуру IoT приводит к беспрецедентной управляемости, которая позволяет муниципалитетам и государственным службам раскрыть весь потенциал энергосбережения светодиодного уличного освещения. В то же время уличные фонари и опоры становятся активами Интернета вещей, которые могут поддерживать широкий спектр инициатив умных городов за счет использования их повсеместного покрытия в городских районах и доступа к источникам питания и подключению.


Топология интеллектуального уличного освещения от Huawei Technologies Co., Ltd.

Архитектура Интернета вещей для умного уличного освещения

Умные уличные фонари вносят свой вклад в уровень восприятия архитектуры IoT, который также включает в себя уровни сети, транспорта, промежуточного программного обеспечения и приложений. Уровень восприятия — это физический уровень, который занимается идентификацией и сбором объектно-ориентированной информации о физической среде. Сетевой уровень — это уровень передачи, который соединяет вещи вместе и обрабатывает IP-адресацию для устройств IoT и маршрутизацию IP-пакетов.Транспортный уровень предназначен для организации надежной доставки пакетов данных между адресуемыми узлами и обеспечения безопасности приложений и служб, построенных на основе протокола TCP или UDP. Уровень промежуточного программного обеспечения — это уровень обработки, который хранит, анализирует и обрабатывает данные, поступающие с транспортного уровня. На прикладном уровне данные превращаются в ценность. Он определяет и предоставляет различные приложения для управления и мониторинга различных аспектов системы IoT.

Уличные фонари с поддержкой Интернета вещей делают по-настоящему умными не только интеграция элементов управления и датчиков.Не менее полезными являются возможности этих устройств Интернета вещей обмениваться данными по беспроводным или проводным сетям и извлекать знания и полезные идеи из детализированных машинно-генерируемых данных. Эти способности можно разделить на «Общение» и «Платформа». Датчики, исполнительные механизмы, приемопередатчики, шлюзы, маршрутизаторы, встроенные системы, вычислительные серверы и другое оборудование и устройства Интернета вещей образуют аппаратный строительный блок модели Интернета вещей. «Коммуникация» и «Платформа» — это два других основных строительных блока модели IoT.

Платформа Интернета вещей

Платформу IoT часто называют структурой промежуточного программного обеспечения, где разработчики приложений могут использовать подмножество ее компонентов и создавать свои приложения для уличного освещения IoT. Надежный IoT должен иметь возможность 1) управлять перемещением данных и обменом информацией между устройствами IoT и приложениями IoT, 2) выполнять аналитику данных для уточнения, мониторинга и анализа структурированных и неструктурированных данных и 3) обеспечивать аутентификацию, авторизацию и конфиденциальность. , целостность сообщений, целостность контента и безопасность данных для защиты системы IoT.Платформы Интернета вещей упрощают управление данными из различных узлов и упрощают обмен данными, поток данных, управление устройствами, поддержку безопасности и включение приложений. Платформа оптимизирует и автоматизирует управление инфраструктурой во всем стеке Интернета вещей для безопасного и надежного взаимодействия, совместной работы и совместного использования ресурсов. Программные компоненты платформы IoT могут быть размещены в облаке, локально или размещены в гибридной модели.

Коммуникационные технологии

Потенциал интеллектуального уличного освещения можно раскрыть только тогда, когда устройства IoT могут обмениваться данными.Коммуникационный блок состоит из сетевого и транспортного уровня. Технология IoT расширяет связь по интернет-протоколу (IP) от компьютерных сетей до различных типов конечных точек и устройств, соединяя коммуникационные интерфейсы через Интернет и открывая эти «вещи» для интернет-сервисов. Транспортный уровень — это уровень сеанса, который генерирует сеансы IoT между приложениями, работающими на двух концах сети. Сетевой уровень — это то место, где работает IP и исходит IP-адрес.Это основной уровень коммуникационного блока.

Для работы на сетевом уровне было разработано множество протоколов и технологий беспроводной связи. Уличное освещение Интернета вещей требует подключения в основном на двух уровнях: глобальные сети с низким энергопотреблением на большие расстояния (LPWAN) и беспроводные локальные сети ближнего действия (WLAN). Решения дальнего радиуса действия IoT включают NB-IoT, LTE-M, LoRa, Sigfox и Ingenu. Технологии связи ближнего действия работают в промышленных, научных и медицинских (ISM) диапазонах и включают ZigBee, Z-Wave, Thread, Bluetooth Low Energy (BLE), Wi-Fi и Li-Fi.

Рекомендуемые товары

Вот обзор некоторых примечательных продуктов для вашей справки. (Отказ от ответственности: мы не связаны ни с одним из получателей ссылок на внешние продукты в этом списке.) Это постоянно обновляемый список. Мы приветствуем предложения по продуктам от тех, кто гордится тем, что делает свою продукцию привлекательной. (Владельцы перечисленных здесь продуктов имеют право использовать наш значок для рекламы ваших достижений. Включите ссылку на эту страницу для проверки листинга.)

Лампы Huawei Smart Streer

Huawei предоставляет решение NB-IoT с индивидуальным управлением с одним переходом, в котором оператор создает и управляет сетями для клиентов. Технология NB-IoT позволяет распределенным уличным фонарям получать доступ к сети в любое время для достижения крупномасштабного межсетевого взаимодействия. Это решение освобождает клиентов от необходимости строить и обслуживать сети и обеспечивает высокую надежность. NB-IoT использует единые глобальные стандарты и способствует плавному переходу к 5G.В отличие от таких решений, как PLC, ZigBee, Sigfox и LoRa, в которых рассредоточенные сети строятся клиентами, решение интеллектуального уличного освещения NB-IoT работает в сетях операторов. Он использует уличные фонари plug-and-play для передачи данных за один прыжок на выделенную платформу управления облаком. Решение Huawei для уличных фонарей NB-IoT включает устройства мониторинга уличных фонарей, сетевые соединения NB-IoT, центральную платформу IoT и облачную платформу управления операциями. Более четкая сетевая структура и простой протокол приложений повышают стабильность и надежность системы без использования шлюзов.Платформа Huawei OceanConnect IoT оснащена для координации с сетями NB-IoT в обеспечении доставки команд в реальном времени, автономного управления доставкой команд, периодической и безопасной отчетности по данным и удаленного пакетного обновления устройств. При этом платформа использует только половину энергии, потребляемой традиционными решениями, и продлевает жизненный цикл устройств.

Смарт-столбы Signify BrightSites

BrightSites от Signify признает, что руководители муниципальных образований ищут способы улучшить свои города, улучшив возможности подключения к Wi-Fi и IoT уже сегодня, чтобы сделать возможным преобразование в более умный и подключенный город будущего.Имея это в виду, мы разработали полную линейку интеллектуальных опор, использующих Wi-Fi, IoT, Sigfox, оптоволоконные концентраторы, технологии 4G, 5G и 5G mm LTE. Световые опоры BrightSites разработаны с учетом преимуществ небольших ячеек и точек доступа Wi-Fi с новой технологией 5G. Он также обеспечивает инновационный комплексный подход к предоставлению расширенного доступа к мобильным данным для жителей города. Светодиодное освещение Philips представляет собой экономичную и не требующую особого обслуживания альтернативу традиционному уличному освещению, что очень важно для городов.Столбы BrightSites доступны разной высоты, цвета и стиля, что позволяет интегрировать их в любой городской пейзаж с оптимальным визуальным эффектом. Некоторые из дополнительных функций, предлагаемых интеллектуальными полюсами BrightSites, включают: 1) датчики для обеспечения актуального мониторинга окружающей среды, такого как качество воздуха, шум и обнаружение инцидентов, и которые собирают данные для поддержки решений, которые могут улучшить общую жизнеспособность в городах. области; 2) камеры, которые могут наблюдать за дорожными условиями, чтобы помочь улучшить транспортные потоки, направить решения по техническому обслуживанию и развертыванию аварийной бригады; 3) интеллектуальные микрофоны, оснащенные расширенным распознаванием образов, которые могут быть вызваны шумами, связанными с антиобщественным поведением, такими как крики, автосигнализация, бьющееся стекло или даже выстрелы.Затем они автоматически увеличивают яркость света, записывают звук и оповещают службы экстренной помощи, а также 4) экраны дисплеев, которые могут предлагать важные экстренные сообщения, а также выступать в качестве источника дохода в качестве целевых рекламных щитов.

Sternberg Lighting IntelliStreets

IntelliStreets — это интегрированный набор решений, предлагающих возможность видеть, слышать и записывать то, что происходит на ваших улицах, с помощью камер и аудиодатчиков. Уникальная конструкция может включать в себя не только энергоэффективный светодиодный светильник, способный настраивать уровни освещенности и беспроводное управление через Интернет, но также содержать надежный динамик, светодиодную систему обмена сообщениями и двустороннюю связь с системой безопасности на месте.Этот же столб может объединять сейсмические, атмосферные, огнестрельные или водяные датчики. Он может содержать относительно небольшую камеру, способную записывать дневные HD-изображения и видео, или использовать инфракрасную технологию, позволяющую ей «видеть» и записывать в тени и за листвой, где обычная камера не может. Включение дополнительных цифровых баннеров и вывесок обеспечивает потенциальный поток доходов, который делает эти решения экономически жизнеспособными. Уведомление RGBA обеспечивает визуальные подсказки в сочетании с динамиком на 360 градусов, чтобы дать пешеходам и автомобилистам важную информацию в критических ситуациях.Динамический двусторонний цифровой знак обеспечивает поиск пути, направление движения, рекламу, рекламу мероприятий и праздников. Кроме того, система Push Blue обеспечивает гораздо более высокий уровень снижения угроз для защиты тех, кто находится в опасных ситуациях.

Система Smart Pole System Sansi

Системы интеллектуальных столбов

Sansi — это полностью интегрированные системы освещения, которые соединяют информационные и коммуникационные технологии между несколькими сторонами посредством использования реальных систем, данных и датчиков.Интеллектуальная опора — это кульминация интеграции шести крупных технологических функций. Это светодиодное освещение, сбор информации, передача информации, распространение информации, обработка данных и выполнение контроля. Эти операционные функции станут важными характеристиками в развитии умных сообществ и городов. Интеллектуальные системы уличного освещения SANSI объединяют системы управления движением, инструкции по парковке, потоки движения, мониторинг транспортных средств, аварийно-спасательные работы, сбор незаконных доказательств и сетевые системы транспортных средств, а также передает данные о наземном движении в командный центр в режиме реального времени для анализа и обработки.Система поставляется со всеми необходимыми функциями для мониторинга людских потоков, безопасности людей, дорожного движения и может обеспечивать раннее и своевременное предупреждение в чрезвычайных ситуациях. Мультимедийные устройства, загруженные в систему «умный столб», могут публиковать рекламу государственных услуг, корпоративные рекламные видеоролики, различные рекламные объявления, информацию об удобных услугах и т. Д.

Умные уличные фонари: как освещение с помощью Интернета вещей повышает общественную безопасность

Для городов, которые хотят окунуться в воду подключенных к Интернету вещей технологий, модернизация интеллектуального уличного освещения оказывается хорошей отправной точкой.

Обновление уличного освещения со светодиодными лампами, беспроводной технологией, датчиками движения, которые активируют свет, когда прохожие находятся рядом, и подключенной технологией, которая может предупреждать город, когда необходимо заменить лампочки, может помочь сделать улицы более безопасными, при этом экономя правительствам кучу денег. в затратах на электроэнергию.

Министерство транспорта Чикаго, например, недавно приступило к реализации проекта интеллектуального уличного освещения стоимостью долларов США и стоимостью 160 миллионов долларов, большая часть которого окупится сама собой. Согласно городскому пресс-релизу, светодиодные лампы и устройства, подключенные к Интернету вещей, будут на на 50-75 процентов эффективнее, чем традиционные методы освещения , а это означает, что экономия затрат на электроэнергию в значительной степени покроет стоимость проекта модернизации.

Между тем, Лос-Анджелес, один из первых внедривший эту технологию, за последние несколько лет оборудовал более 80 процентов своих улиц подключенными фонарями со светодиодными лампами и беспроводной технологией 4G LTE . Город уже видит преимущества перемен.

Городские власти сообщили о 63-процентной экономии на счетах за электроэнергию за первый год использования новых источников света, и, помимо других преимуществ, он использует подключенные опоры для улучшения обслуживания сотовых сетей.

Но Лос-Анджелес не останавливается на достигнутом.Он также использует преимущества технологии таким образом, чтобы помочь решать проблемы, характерные только для города, оснащая уличные фонари датчиками, которые могут обнаруживать выстрелы или другие шумы, которые могут представлять угрозу общественной безопасности .

В дальнейшем городские власти изучают идею расширения этой возможности до распознавания загрязнения воздуха и землетрясений .

ПОДПИСАТЬСЯ : Получайте больше новостей из информационного бюллетеня StateTech в свой почтовый ящик каждые две недели

Schenectady стремится максимально использовать преимущества умных световых столбов

Более того, в Скенектади, Н.Y., городские власти сделали умное уличное освещение основополагающим элементом общей трансформации умного города. В рамках инициативы «Умный город», осуществляемой в рамках партнерства с Cisco Systems и GE, город модернизировал более 5000 существующих уличных фонарей до экологичных светодиодных ламп, сделав всю сеть доступной через безопасный веб-браузер .

Schenectady уже видит значительную экономию энергии и затрат от обновления, а также улучшения общественной безопасности, но стремится расширить роль, которую умные уличные фонари могут играть еще больше, заявил мэр Гэри Маккарти на конференции Smart Cities Week в Вашингтоне. Д.С., на прошлой неделе.

Вы можете использовать способность определения движения, чтобы затемнить свет , чтобы получить первоначальную экономию энергии от развертывания светодиодных фонарей, но вы получите дополнительную экономию, если свет будет более тусклым, когда на улице нет автомобилей. улица или люди, идущие по улице », — сказал Маккарти.

Город изучает, как применить одни и те же датчики и функцию затемнения к городскому освещению и в деловом районе для дальнейшей экономии энергии и затрат.

«Наоборот, если есть активность, все огни загораются.Итак, если вы гуляете с собакой в ​​22:00. ночью и когда вы идете вниз, на улице горят все огни, вы получаете дополнительный уровень безопасности », — добавил Маккарти.

Но освещение — это не единственное, что могут предложить подключенные световые столбы. В Скенектади городские власти также оборудуют световые посты HD-камерами , чтобы улучшить транспортный поток и лучше контролировать улицы в целях технического обслуживания.

«Сегодня вы должны послать кого-нибудь для визуального осмотра.Они помещают числовое значение на поверхность улицы, и это входит в программу, которая может классифицировать его по управлению дорожным покрытием. Все это можно автоматизировать с более высокой степенью точности, используя доступные сегодня камеры высокой четкости, которые могут устанавливаться на световой столб », — сказал Маккарти.

Чтобы произвести революцию в этом процессе, Маккарти предложил, чтобы камеры могли делать один снимок в месяц уличной поверхности в течение трех-пяти лет , чтобы определить, начинает ли она ухудшаться, и позволить городу лучше спланировать, что делать. поддержание.

Однако это всего лишь верхушка айсберга того, как интеллектуальные технологии уличного освещения могут в конечном итоге преобразовать городские процессы и жизненный опыт жителей.

«Световые столбы — это действительно самая ценная недвижимость в ваших сообществах сегодня и в будущем», — сказал Маккарти, указывая на роль, которую опоры будут играть в предстоящем развертывании умных городов на основе беспроводных и сенсорных технологий, а также 5G.

Маккарти сказал, что для того, чтобы воспользоваться преимуществами этой недвижимости, городам следует начать формировать партнерские отношения со всеми заинтересованными сторонами, которые могут как разрабатывать, так и использовать технологию в полной мере, — такими партнерами, как коммунальные предприятия, школы, медицинские организации и бизнес-сообщество.

«Когда вы соберете все это вместе, это действительно даст вам силу и полное влияние этих новых технологий », — сказал Маккарти.

Программа «Умные уличные фонари

» | Устойчивость

Фон

Проект «Умные уличные фонари» начался как попытка городских властей сократить расходы по замене высокоэнергетических уличных фонарей на более эффективные светодиодные. Он превратился в развертывание одной из крупнейших сенсорных платформ умного города.Платформа обеспечивает подключенную цифровую инфраструктуру, предоставляя городским властям новые возможности для лучшего обслуживания жителей и предприятий с помощью процессов, инструментов и возможностей, управляемых данными.

Анонимные данные, собранные датчиками, могут быть использованы для разработки приложений и систем, приносящих пользу городу и сообществу. Эти датчики генерируют данные о событиях (статические данные о парковке, количестве транспортных средств, велосипедах, пешеходах, температуре, влажности, давлении).

Датчики загружают данные о событиях в облачную базу данных CityIQ, предоставленную технологическим партнером города. Разработчики приложений и общественность могут загружать данные из облака с помощью инструментов программирования. Делая данные доступными, разработчики могут создавать новые приложения, которые помогают улучшить городские услуги, такие как планирование транспорта и реагирование на чрезвычайные ситуации, а также поддерживать такие инициативы, как безопасность пешеходов.

Интеллектуальные датчики

Датчики позволяют городским властям и горожанам получать данные о движении транспортных средств, пешеходов и велосипедистов по Сан-Диего в режиме реального времени.Эти датчики также собирают данные об окружающей среде с пространственной детализацией, которая обычно недоступна. Эти данные, будучи общедоступными, позволяют использовать бесконечное количество приложений. Эта платформа может улучшить качество жизни в нашем городе и ускорить экономический рост, от улучшенного управления обочинами, повышения общественной безопасности и мониторинга окружающей среды, улучшенного планирования велосипедных маршрутов до улучшенного планирования развития городов и недвижимости.

Презентация форумов сообщества

Городские власти провели несколько общественных форумов, чтобы обсудить, что могут и чего нельзя делать уличные фонари и как будет защищена конфиденциальность.Вот копии слайдов, которые были представлены во время этих встреч:

Как получить доступ к данным об уличном освещении для новаторов в сообществе и других заинтересованных сторон

ПРИМЕЧАНИЕ : По состоянию на 30 июня 2020 года доступ API к данным событий CityIQ временно приостановлен, пока городские власти работают через административный процесс, чтобы продолжить обслуживание.

Любой, кто хочет получить доступ к данным о событиях (агрегированная информация о парковках, количестве транспортных средств, пешеходах, велосипедах, температуре, влажности и давлении) от городских интеллектуальных датчиков уличного освещения, может использовать общедоступный ключ интерфейса прикладного программирования (API).

Данные, полученные с помощью API, имеют формат JSON. Структура и поля, возвращаемые каждым API, показаны в этом документе API-Maps-SD.

Обзор API и стартовый код для доступа к API доступны на сайте CityIQ GitHub. CityIQ рекомендует изучать API с помощью Postman, а соответствующие файлы Postman, ответы на часто задаваемые вопросы и другую информацию можно найти на сайте GitHub. Полная документация по API находится по адресу https: // docs.cityiq.io.

Городские власти в сотрудничестве с местной группой добровольцев Open San Diego предоставили сценарии Node.js и Python для исследования и загрузки данных, а также пошаговое руководство Postman. Они доступны на сайте Open San Diego GitHub

.

Используйте указанные ниже общедоступные учетные данные для доступа к системе:

  • Идентификатор клиента: PublicAccess
  • Секрет клиента: qPKIadEsoHjyh326Snz7

Войдите на страницу EULA, чтобы просмотреть дополнительную информацию об учетной записи, а также просмотреть лицензионное соглашение с конечным пользователем.

Обратите внимание:

  • Секрет клиента будет изменяться и публиковаться здесь каждые 3 месяца (15 января, 15 апреля, 15 июля, 15 октября).

Если вы разработчик или хотите получить долгосрочный доступ, свяжитесь с отделом устойчивого развития для получения индивидуального ключа API: [email protected]

Если у вас есть технические вопросы, обратитесь в службу технической поддержки CityIQ: [email protected]

Чтобы узнать больше о CityIQ, посетите http: // developer.currentbyge.com/cityiq

Примечание о конфиденциальности

Хотя этот проект является огромным технологическим преимуществом для города и наших граждан, мы признаем и ценим важность конфиденциальности. Необработанные данные видео и изображений недоступны для городского персонала или каких-либо представителей общественности. Эти необработанные данные хранятся только нашим технологическим партнером локально на датчике (не в своей облачной базе данных) в течение 5 дней, а затем перезаписываются / удаляются. Основная цель видеоинформации и изображения — это использование программой для генерации анонимных агрегированных данных, таких как количество транспортных средств.Специальный и ограниченный доступ к данным видео / изображений существует исключительно для полицейского управления Сан-Диего. Уполномоченный персонал SDPD может запросить доступ к определенным видео / изображениям в течение 5-дневного периода по усмотрению начальника полиции только для уголовных расследований.

См. Ниже текущую политику конфиденциальности, гарантирующую, что персонал города не имеет доступа и не передает данные видео или изображений. Поскольку это новый рубеж для технологий умных городов и городских операций, мы ожидаем развития этой политики по мере получения информации от граждан и других пользователей данных.

Дополнительная информация

Энергоэффективное уличное освещение

В дополнение к установке интеллектуальных датчиков, около 25 процентов уличных светильников Сан-Диего модернизируются, чтобы снизить потребление энергии и выбросы парниковых газов. Город Сан-Диего модернизировал около 38 000 осветительных приборов с энергоэффективным освещением. Эти модификации также уменьшают воздействие ночного неба и восходящее освещение как минимум на 90 процентов на каждую лампу.

Проекты оплачиваются за счет предотвращенных затрат, связанных с энергосбережением, скидками, федеральными грантами, штатом Калифорния и частным финансированием под низкие проценты.

Возможные приложения в будущем:

Улучшенная парковка

Сенсорная платформа для интеллектуального города Сан-Диего может упростить для жителей поиск парковки. На основе других применений аналогичных технологических решений можно ожидать сокращения времени, затрачиваемого на поиск парковки, на 40 процентов.

Улучшенный транспортный поток

Интеллектуальные датчики

San Diego могут предоставить ценные данные для увеличения транспортного потока. Исследования, проведенные поставщиками приложений, показывают, что существует потенциал увеличения трафика на 10-20 процентов. Меньшее движение также означало бы снижение выбросов парниковых газов и улучшение качества воздуха.

Велосипедные полосы

Данные о велосипедах могут помочь планировщикам убедиться, что они строят велосипедные дорожки там, где это необходимо, для повышения мобильности по всему городу.

Повышение общественной безопасности

Датчики

«умного города» Сан-Диего могут служить сдерживающим фактором для преступлений, поскольку использование датчиков, как было доказано, напрямую влияет на общественную безопасность. Данные интеллектуальных датчиков могут предоставить дополнительные подсказки, которые помогут правоохранительным органам правильно идентифицировать преступников.

Создание нового приложения

Поскольку данные датчиков в реальном времени становятся доступными для независимых разработчиков приложений, можно создавать новые приложения, которые решают конкретные задачи городских департаментов, жителей, посетителей и владельцев бизнеса.

Никакая личная информация не собирается, поэтому городские власти и частные разработчики имеют доступ только к таким данным, как трафик, парковка, использование пешеходов, велосипедисты и погода.

Постановления

Постановление № O-20186

Постановление № O-20235

Статья 2: Общие правила разработки

Часть 7: Уличное освещение и системы дорожной сигнализации, Раздел 700 — Материалы

Новости

Как работают датчики светофора

У каждого светофора есть таймер или датчик, которые помогают направлять потоки трафика.В больших городах, где транспортные средства круглосуточно пересекают перекрестки, движение обычно определяется светофорами с таймерами.

С другой стороны, в пригородах и на окружных дорогах датчики светофора (детекторы) обычно предпочтительны, потому что они не только эффективно управляют непостоянным транспортным потоком, но также обнаруживают, когда автомобили прибывают на перекрестки, когда несколько автомобилей стоят друг над другом. на перекрестке и, когда автомобили выезжают на полосы поворота.

В этих датчиках используются различные технологии, от индукционных петель, радаров, камер, лазеров до резиновых шлангов, заполненных воздухом.

Индукционные петли

Основными, надежными и наиболее распространенными датчиками светофора являются индукционные петли. Индукционные петли — это катушки из проволоки, которые были встроены в поверхность дороги для обнаружения изменений индуктивности, а затем передачи их в схему датчика для генерации сигналов.

В петлю обычно подается заданная частота от генератора, что приводит к индуцированному магнитному полю. Поскольку магнитное поле продолжает нарастать из-за непрерывного протекания тока, катушки будут создавать более сильное поле, которое может сохраняться в течение определенного периода времени даже после размыкания переключателя.

Подробнее здесь

Чтобы индукционная петля обеспечивала большую индуктивность и была более надежной при обнаружении трафика, она должна иметь несколько катушек и сердечник из железа (магнитного материала). Сердечник — это материал, на который намотаны катушки с проволокой.

Когда катушки помещены в канавки и покрыты резиновым составом, они создают определенную величину индуктивности, которую можно измерить с помощью измерителя индуктивности.
Но когда автомобиль останавливается или проезжает по петле, более крупный стальной (металлический) материал, составляющий корпус автомобиля, будет действовать как сердцевина индукционной петли.Поскольку сталь является магнитным материалом, она увеличивает индуктивность контура и вызывает изменение тока, протекающего через схему датчика.

Следовательно, когда изменения магнитного поля передаются контроллеру сигналов с помощью катушек проводов, они вызывают изменение сигнала трафика.

Индукционные петли обладают рядом преимуществ. На них не влияет погода, и они совершенно невосприимчивы к случайным ложным срабатываниям.

Они также могут охватывать протяженные участки полос движения и могут быть локализованы в соответствии с потребностями пользователя.
Тем не менее, они могут не обнаруживать велосипедное движение из-за небольшого металлического компонента велосипедов.

Микроволновые радарные детекторы

Эти устройства обнаруживают большой объект, движущийся к ним или от них, и их использование увеличивается по сравнению с индукционными петлями. Они не обнаруживают свет, что, вероятно, является сюрпризом для всех таксистов, которые сидят и мигают фарами в надежде ускорить переключение света.

Микроволновые извещатели, используемые «над землей», предназначены для обнаружения движения транспортных средств в заранее заданном поле зрения, если скорость транспортного средства превышает три мили в час.
На выбор систем индукционной петли по сравнению с системами СВЧ влияет ряд различных факторов. Обычно метод обнаружения определяется преобладающими эксплуатационными соображениями, которые могут варьироваться от места к месту.

Например, там, где преобладают препятствия в виде подвешенных над головой предметов или экстремальных погодных условий, обычно используются индукционные петли.

Однако для менее обременительных ситуаций все чаще используются микроволновые радарные системы, поскольку их легче установить, а процедуры обслуживания более экономичны.

Обнаружение видео

Обнаружение видео включает использование камер, подключенных к специализированным картам, которые снабжены «зонами обнаружения», определенными специализированным программным обеспечением для обнаружения транспортных средств. Например, установленные на столбах камеры видеодетектирования используют видеотехнологию для обнаружения автомобилей. Видеодатчики идеально подходят для дорожных покрытий, на которых невозможно установить индукционные петли, например, на гравийных и плохих дорожных покрытиях.

Однако видеодатчики менее популярны, потому что они более уязвимы к плохой погоде, имеют тенденцию регистрировать ложные срабатывания из-за бликов автомобильных фар и теней от транспортных средств на соседних полосах движения и требуют более дорогих карт.

Другие датчики светофора

Геомагнитное обнаружение транспортных средств использует изменения в магнитных полях систем светофора для обнаружения автомобилей, радарный метод обнаруживает движущиеся транспортные средства (хотя он часто используется для обнаружения пешеходов, поскольку радары редко бывают неподвижными) и лазер Методика измеряет расстояние от транспортного средства до перекрестка (или поверхности дороги).

Для получения дополнительной информации о светофорах или расценок на установку вашей собственной светофорной системы, пожалуйста, не стесняйтесь обращаться к нам по телефону, факсу или электронной почте;

Телефон: 01254 234248

Факс: 08707 554 600

Электронная почта: sales @ automatesystems.co.uk

Twitter: @automatesystems

Instagram: automatesystems

Facebook: www.

Опубликовано в категории: Разное

Добавить комментарий

Ваш адрес email не будет опубликован.