Схема подключение светодиодной ленты к сети 220в схема: схема сборки ленты, выбор драйвера и блока питания

схема сборки ленты, выбор драйвера и блока питания

Один из современных источников декоративного и основного освещения –светодиодные ленты. Но большинству таких изделий необходимо питание: постоянное напряжение DC12В, а в розетках – переменное AC220В. Однако, кроме таких устройств, производители выпускают аппараты, предназначенные для работы от бытовой сети.

Светодиодная лента 220В

Светодиодная лента 220В

Конструкция светодиодной ленты

Полоса со светодиодами представляет собой печатную плату на гибкой основе из изоляционного материала. Вдоль этой полосы нанесены две токопроводящие полоски с контактными площадками. Между полосками расположены группы из светодиодов и токоограничивающего сопротивления. Все элементы соединяются последовательно и выполнены в корпусе SMD.

В самых распространённых полосах количество светодиодов в группе – три, и напряжение питания =12В. Эти группы отделены контактными площадками с отметкой линии отреза. Разрезать полосу можно только в этих местах. Если отрезать в другом месте, то разрезанная группа работать не будет.

Размер светодиодов и их количество в метре ленты может быть различным. От этого зависят яркость света и потребляемая мощность.

Устройство светодиодной ленты

Устройство светодиодной ленты

Важно! Напряжение питания светодиодов должно быть постоянным и без пульсаций, иначе свет будет мерцать, что неприятно и вредно для глаз.

Светодиодная лента на 220В

Кроме лент 12В, есть полосы, рассчитанные на 24, 48, 110 и 220В. Количество диодов в неделимых отрезках, соответственно, 6, 12, 30 и 60 штук. Без трансформатора или другого блока питания, только через выпрямитель, в розетку включаются только ленты 220В.

Собираются такие устройства из светодиодов SMD 3528, 5050, 2835, 3014 и особоярких 5630. Режутся такие полосы только отрезками по 50 сантиметров или 60 последовательно соединённых диодов. Внешне эти устройства отличаются от обычных только маркировкой.

Основные параметры LED-лент 220В

Основными параметрами этих устройств являются:

  • длина минимального отрезка;
  • количество диодов, мощность и ток одного метра полосы;
  • защищённость от погодных условий;
  • цветовая температура белого света.

Устройства с питанием от сети 220В

В полосах с питанием от 220В используются SMD светодиоды, которым необходимо питание 3,5В. Поэтому они подключаются последовательно в количестве 60 штук. Режется такая полоска на отрезки, кратные 0,5 или 1 метру.

Полосы из светодиодов SMD 5630 потребляют мощность более 10 Вт/м и монтируются на металлическое основание, отводящее тепло. Повышенная яркость получается также установкой диодов в два ряда.

Хотя питающее напряжение равно напряжению сети, при включении в розетку свет будет моргать с частотой 50Гц. Даже при использовании выпрямительного моста свет будет мерцать. Необходимо дополнительно использовать конденсатор, сглаживающий пульсации и преобразовывающий пульсирующее напряжение в постоянное.

Если есть светодиодная лента 220в RGB, то подключение производится через такой же RGB-контроллер. Распространённые модели контроллеров рассчитаны на использование с =12В, поэтому желательно приобретать эти устройства в комплекте.

Схема подключения светодиодной ленты RGB

Схема подключения светодиодной ленты RGB

Как подключить светодиодную ленту к 220 вольт

Подключение устройства 220В аналогично подключению обычных лент. Длина отрезанного куска, в зависимости от модели, кратна 0,5 или 1 метру.

Выпрямитель состоит из четырёх диодов и конденсатора. Его можно изготовить своими руками или приобрести готовый в магазине или на радиорынке. Без конденсатора свет будет моргать с частотой 100Гц, что, согласно СаНПИНУ, недопустимо в жилых помещениях. Такие конструкции можно устанавливать в кладовке, лестничной клетке и других вспомогательных помещениях.

Подключение к сети 220В

Подключение к сети 220В

Особенности

У этих устройств есть преимущества перед обычными, 12 вольтовыми приборами:

  • не нужен дорогой блок питания;
  • небольшой ток позволяет подключаться тонкими проводами;
  • в продаже есть полоски со встроенным блоком питания, которые просто включаются в розетку.

Как и у любых устройств, у этих тоже есть недостатки:

  • на всех элементах присутствует высокое напряжение, что требует тщательной изоляции;
  • дешёвые устройства быстро выходят из строя и их нельзя отремонтировать заменой маленького участка из трёх диодов;
  • длина отрезка может быть только кратной 100 или 50 сантиметрам;
  • мерцание с частотой 100Гц не заметно глазам, но утомляет и вызывает головную боль.

Способы подключить светодиодную ленту 12В к сети 220В

При включении светодиодной полосы 12В просто в розетку она сгорит. Поэтому для включения таких устройств в бытовую сеть необходимы дополнительные устройства.

Импульсный блок питания

Такие устройства есть самодельные или фабричного производства – это лучший, хотя и самый дорогой вариант. Эти блоки обеспечивают постоянную величину напряжения и отсутствие видимых пульсаций.

Более дорогие устройства опционально оснащаются регулятором яркости света (диммером) и пультом ДУ.

Интересно. В качестве источника постоянного напряжения можно использовать компьютерный блок питания.

Питание устройств от трансформатора

В этих аппаратах находятся понижающий трансформатор 220/12, выпрямительный мост и конденсатор, сглаживающие пульсирующее напряжение после диодного моста.

Такой блок питания можно изготовить самостоятельно из питающего трансформатора от старого лампового приёмника или телевизора, если намотать на нём вторичную обмотку 12В и собрать в корпусе вместе с диодным мостом и конденсатором.

Бестрансформаторный блок питания

Короткий отрезок ленты, например, для ночника или настольной лампы, можно подключить без понижающего трансформатора, через токограничивающий конденсатор. По похожей схеме собраны недорогие светодиодные лампы.

Недостаток этих конструкций в том, что если обычное питающее устройство потребляет из сети ток, приблизительно в 20 раз меньше необходимого для питания светодиодов (за счёт понижающего трансформатора), то бестрансформаторное устройство потребляет полный ток светодиодной ленты. Поэтому подключать к такому блоку длинную LED-полосу нецелесообразно.

Емкость конденсатора С1 необходима 1,4mkF на 0,1А тока ленты, а напряжение от 300В. Тип – МГБО или К73. Требуется фильтрующий конденсатор С2 ёмкостью 20mkF на 0,1А тока и напряжением 15В.

Ток потребления уменьшается при соединении кусочков ленты последовательно. В этом случае он равен току отдельного кусочка. При соединении нескольких отрезков последовательно напряжение конденсатора С2 умножается на их количество.

Для определения тока конструкции необходимо:

  1. Количество светодиодов в метре ленты разделить на 3. Получится число неделимых отрезков;
  2. Мощность метра ленты разделить на число отрезков с тремя светодиодами и на 12В – напряжение питания. Получится ток потребления одного участка;
  3. Умножить ток одного отрезка на количество таких участков. Получается общий ток конструкции.

Ток диодов в выпрямительном мосте определяется током устройства, а напряжение 300В.

Например, в метре ленты SMD3528 плотностью 60 диодов содержится 10 участков по три светодиода. Один участок имеет мощность 4,8Вт/10-0,48Вт и ток, 0,48Вт/12V – 0,04А. В куске длиной 0,5 метра таких участков 5 общим током 0,2А. Следовательно, емкость С1 2.8mkF или меньше, а C2 – не меньше 40mkF.

Бестрансформаторный блок питания

Бестрансформаторный блок питания

Важно! На всех элементах такой конструкции, в том числе и на LED-ленте, присутствует высокое напряжение.

Последовательное подключение

Последовательное подсоединение отрезков светодиодной ленты позволяет обойтись без блока питания. Это получится при соблюдении некоторых условий:

  • Количество светодиодов должно делиться на 60. Это необходимо, чтобы после разрезания получилось 20 отрезков по три диода;
  • Все отрезки должны быть одинаковыми, с одним количеством одинаковых светодиодов. Иначе на куске с меньшим количеством или менее яркими диодами будет большее напряжение, и он быстро выйдет из строя.

Подключается конструкция через диодный мост и фильтрующий конденсатор, аналогично безтрансформаторному блоку питания.

Подключение 12 вольтовой ленты к сети 220В

Подключение 12 вольтовой ленты к сети 220В

Светодиодная лента 220 вольт – это удобное осветительное устройство, которое имеет множество применений, благодаря своим преимуществам, а питание таких приборов от выпрямителя вместо блока питания позволяет сэкономить на его приобретении.

Видео

Как подключить светодиодную ленту к 220 В: способы, схемы

При создании подсветки потолка, ниши, полки, предметов декора при помощи светодиодной ленты, приходится вспоминать о том, что в сети у нас 220 В, а не 12 или 24 вольта, как надо для этой подсветки. О том, как подключить светодиодную ленту к 220 В и будем говорить дальше.

Содержание статьи

Способы подключения к сети 220 В

В зависимости от количества светодиодов в ленте, им требуется питание на 12 или 24 В. Но в обычной квартире или доме такого питания нет, а есть обычно однофазная сеть. Подключение возможно при помощи двух вариантов:

  1. Специальная лента, которая напрямую подключается к сети 220 В. Она представляет собой 20 шт светодиодов, подключенных параллельно. При таком способе соединения им для нормальной работы как раз и нужны 220 В. Но это речь идет о специальных лентах. Они, как правило, идут сразу в комплекте с вилкой. Когда все готово, выглядит несложно

    Когда все готово, выглядит несложно

  2. Обычная светодиодная лента с последовательным соединением большого количества светодиодов подключается через адаптеры (преобразователи напряжения), которые 220 В понижают до 12 В или 24 В (адаптеры разные).

Так как ленты с непосредственным подключением в 220 В в особых средствах не нуждаются, дальше говорить будет о подключении тех, которым необходимо пониженное напряжение.

Схемы для одной ленты

Светодиодная лента идет обычно куском длиной в 5 метров. Если вам достаточно такой длины, отлично, Просто берете преобразователь 220/12 В или 220/24 В. Ко входу подключаете сетевой шнур с вилкой, к выходу ленту. В этом случае схема подключения выглядит (рисунок ниже) как последовательное подключение (один за одним) всех элементов.

Схема подключения одной светодиодной ленты к 220 В

Схема подключения одной светодиодной ленты к 220 В

При подключении соблюдайте полярность. Плюс — к плюсу, минус — к минусу. Эти обозначения (плюс и минус, есть как на блоке питания, так и на ленте. Не перепутайте, иначе работать не будет. Для подключения одной ленты можно взять медные провода в защитной оболочке (например, витую пару), сечением 1,5 мм².

Если длина должна быть более 5 метров (2, 3 ленты и более)

Часто для подсветки потолка или других объектов необходима светодиодная лента длиной более 5 метров. Это может быть 10, 15 или 20 метров, то есть надо подключить две ленты и более. Последовательно (одну за другой) их соединять нельзя. Через светодиоды, находящиеся ближе других к блоку питания, будет проходить повышенный ток, что приведет к их перегреву. Они быстро потеряют яркость, а потом вообще гореть перестанут. В этом случае надо подключить светодиодную ленту к 220 В параллельно: от блока питания протянуть провод к одной и к другой.

Как подключить две светодиодные ленты к 220 В. Один из вариантов

Как подключить две светодиодные ленты к 220 В. Один из вариантов

Если физически одна лента должна находится за другой, просто от блока питания тянем длинный провод. Обратите внимание: его сечение 1,5 мм². Если подключить требуется три или четыре ленты, их тоже подсоединяем к выходу блока питания отдельной парой проводов.

При таком подключении все ленты будут светиться одинаково. Только будьте внимательны: надо выбрать адаптер, который выдает нужное напряжение 12/24 В с  силой тока, достаточной для питания всех лент (о том, как посчитать нужную мощность чуть ниже).

Это способ хорош всем, кроме того, что мощный блоки питания имеет большие размеры, больший вес и значительно большую стоимость. Вес и размеры — проблема, если делаете подсветку потолка. Ведь надо придумать где это оборудование установить, Что далеко не всегда легко. Да и цена, тоже немаловажна. Потому стоит рассмотреть вариант с двумя адаптерами меньшей производительности.

Вариант подключения с двумя адаптерами

Вариант подключения с двумя адаптерами

На схеме показано подключение двух лент к двум адаптерам. Если вам надо подключить три ленты, не обязательно использовать три адаптера. Один может быть более мощный, он может питать две ленты (подключение параллельное, как на рисунке выше).

Как запитать мощные ленты

Однако, если по этой схеме подключить к 220 В светодиодные ленты большой мощности (от 14 Вт/м и более), на каждом из светодиодов происходит заметное падение напряжения, в результате дальний край ленты светится намного слабее. Если по такой схеме подключена многоцветная RGB лента, она может светить не теми цветами. Чтобы избавится от этого явления, каждую ленту подключают к источнику питания с двух сторон.

Как подключить светодиодную ленту к 220 В и не потерять в яркости свечения

Как подключить светодиодную ленту к 220 В и не потерять в яркости свечения

При таком способе возрастает расход провода, но зато светятся светодиоды более равномерно. По опыту замечено, что этот способ подключения увеличивает и срок службы светодиодов — они медленнее деградируют. Это решение не обязательное, но оно действительно продлевает срок жизни и выравнивает неравномерное свечение.

Подключение цветной RGB ленты

Принцип подключения остается тем же. В схему добавляется контроллер (еще его называют диммер), при помощи которого изменяется цвет свечения светодиодов. Еще одно отличие в количестве проводов. После контроллера их не два, а четыре. В остальном отличий нет.

Как подать 220 В на светодиодную ленту RGB

Как подать 220 В на светодиодную ленту RGB

Как видите, и на контроллере, и на ленте, есть обозначения 12B / V+ — это фазный провод, R — для подключения красных светодиодов, G — зеленых, B — голубых. Чтобы не путаться, лучше использовать провода тех же цветов. Все будет проследить проще, меньше будет шансов запутаться.

Подключение двух RGB лент к одному блоку питания и контроллеру

Подключение двух RGB лент к одному блоку питания и контроллеру

Если подключать надо несколько цветных лент, их тоже подключают параллельно. Параллели начинаются от выходов контроллера (к выходным клеммам подключают по два провода). При таком подсоединении обе ленты будут менять свечение одновременно.

Мощности контроллера (диммера) не всегда хватает для управления всеми лентами. В этом случае используют усилитель. Схема становится более сложной, но на ней указываются разъемы, к которым надо подключать провода, что существенно упрощает ее сборку. Обратите внимание, на рисунке подключение лент указано четырьмя линиями, а питание на входы усилителей двумя, и берется это питание с выходов адаптеров.

Схема подключения лент RGB с усилителем и отдельным блоком питания

Схема подключения лент RGB с усилителем и отдельным блоком питания

К диммеру (контроллеру) подключается столько лент, сколько он может запитать. На рисунке это только одна лента длиной 5 метров, потому для каждой последующей используется свой усилитель. В действительности на один контроллер «вешают» и по две ленты. Главное, чтобы он мог ими управлять (в характеристиках контроллера указывается ленты какой длины к нему можно подключить).

Также обратите внимание, что контроллер и один усилитель питаются от одного адаптера, два других усилителя от другого. Это тоже не обязательно. Если мощности блока питания достаточно для питания всех устройств (лент, диммера, усилителей), то питание будет подаваться только от одного преобразователя. Другое дело, что стоит такой источник питания очень много, да и греется и шумит сильно. Потому, действительно, лучше реализовать раздельное питание двумя менее мощными блоками.

Выбор производительности адаптеров

В описании каждой ленты есть технические данные. Там обязательно указывается напряжение, которое необходимо подать (12 или 24 В) и потребляемый ток. Вот только ток обычно указывают на 1 метр ленты. Если вы подключать будете 5 метров, соответственно, надо будет умножить эту цифру на 5. Если будете подключать к этому блоку питания 10 метров, умножаете на 10, и т.д.

Если вы пока прикидываете, во сколько вам обойдется подсветка и ленты пока нет или вы еще не выбрали, можно воспользоваться усредненными данными. Потребление тока монохромными лентами самого распространенного типа приведены в таблице. Их можно брать для примера.

Потребляемый светодиодными лентами SMD3528 и SMD5050 ток в зависимости от количества светодиодов на одном метре длины

Потребляемый светодиодными лентами SMD3528 и SMD5050 ток в зависимости от количества светодиодов на одном метре длины

Полученная цифра — минимальное значение силы тока, которое должен выдавать искомый блок питания. Но постоянная работа на пределе возможностей очень сокращает срок службы электротехнических изделий. Потому, к найденной цифре добавляем 20-25% запаса (умножаем на 1,2 или на 1,25), полученную цифру округляем в большую сторону до целого. Это и будет тот ток, который должен выдавать адаптер.

Чтобы было понятнее, приведем пример. Пусть метр ленты потребляет 0,8 А, подключать к адаптеру будем 18 метров. Ищем суммарный потребляемый ток: 0,8 А * 18 = 14,4 А. Добавляем запас: 14,4 А * 1,2 = 17,28 А. Итак, искать будем адаптер, который будет выдавать не менее 17 Ампер.

В случае с цветными RGB светодиодными лентами, к найденной цифре добавляется ток, который необходим контроллеру (диммеру) и усилителям (если они питаются от этого источника). Эти данные есть в техническом описании устройств.

Процесс сборки схемы

Для того чтобы подключить LED ленту к 220 В, нужны будут сами ЛЭД ленты, блок питания, контроллер (если нужен) провода требуемых цветов и  длины. Провода желательно медные многожильные (они мягче, но тяжелее паяются) или из одной проволоки. Провода берите цветные, так проще будет правильно подключить светодиодную ленту к 220 В.

Нужны будут еще следующие инструменты:

Ножницы нужны, если вам потребуется отрезать кусок от бобины с LED лентой. Резать можно только в определенных местах. На ленте они обозначены вертикальной чертой, рядом находится обычно схематичное изображение ножниц. Еще один отличительный признак — контактные площадки для пайки, которые находятся с обеих сторон от линии разреза.

Светодиодные ленты резать надо только в определенных местах

Светодиодные ленты резать надо только в определенных местах

Далее берем провода, зачищаем их концы от изоляции (2-3 мм), лудим. а подготовленный провод надеваем кусочек термоусадочной трубки такого размера, чтобы она в исходном состоянии надевалась на ленту. Далее ватой, смоченной в спирте, очищаем контактные площадки, лудим их (нагретый паяльник опускаем в канифоль, прогреваем площадку пару секунд. Она должна покрыться тонким слоем олова. К подготовленным площадкам припаиваем провода. Будьте аккуратны и много олова при пайке не берите. Площадки расположены очень близко, посадив кляксу из олова, легко их соединить (особенно в цветных лентах).


После того как все провода припаяны, опускаем термоусадочную трубку так, чтобы она закрыла все контакты, прогреваем ее. Сжавшись, она хорошо закроет все контакты. Вообще, эту операцию проводить лучше после проверки работоспособности схемы. Если все будет гореть-светиться, можно изолировать.

Просто зажать между двумя пластинами

Просто зажать между двумя пластинами

Припаяв к ленте провода, подключаем их к выходу адаптера или контроллера. Тут все просто. Есть прижимной винт и контактные пластины. Ослабляем винт, между пластинами заправляем оголенный провод (3-4 мм), винт затягиваем. Пару раз слегка дергаем провод, проверяя контакт — если держится, то все хорошо.

Подключение светодиодной ленты к сети 220В схема

Чтобы запитать светодиодную ленту от сети обычной бытовой сети переменного тока 220В 50Гц нужно выполнить три условия:

  • преобразовать переменное напряжение сети в постоянное;
  • выровнять уровни напряжений: снизить сетевое напряжение до 12В или изменить схему подключения светодиодов, чтобы на них можно было подавать высокое напряжение;
  • стабилизировать параметры электрического питания.

Проще всего использовать готовый блок питания для светодиодной ленты 12В, он рассчитан на безопасное напряжение. Но в применении этого блока питания есть и минусы: он стоит денег и собрать его не так просто, кроме того из-за низкого напряжения светодиодные ленты не стоит располагать далеко от блока питания, для компенсации потерь напряжения придется использовать толстые провода.

Второй вариант: переделать светодиодную ленту и вместо последовательно-параллельного включения светодиодов использовать последовательное.
При такой схеме включения светодиодная сборка питается малым током, но при большом напряжении. Кроме того, если пожертвовать гальванической развязкой, то схема драйвера питания сильно упрощается.
Внимание!!! Схемы без гальванической развязки от сети можно применять там, где нет опасности поражения электрическим током, например в сухом помещении на потолке.

Самое интересное, что схему подобного драйвера можно сделать из деталей отслуживший свой срок энергосберегающей лампочки!

Рассмотрим подключение светодиодной ленты к сети 220В схема приведена на рисунке.

Таблица номиналов элементов схемы:

  • C1 – 2,2 мкФ 400 В
  • R1 – 1,3 кОм
  • R2 – 4,3 кОм
  • R3 – 47 Ом
  • VD1 .. VD4 – 1N4007
  • VT1, VT2 — 13002

На схеме можно выделить три узла:

  • выпрямитель переменного напряжения и фильтр на элементах C1, R1, VD1 – VD4;
  • стабилизатор тока на R2, R3, VT1, VT2;
  • сборка из светодиодов HL1 – HLN.

Про работу выпрямителя можно почитать здесь. В данной схеме кроме диодного моста из 4-х диодов добавлены токоограничивающий резистор R1 защищающий от бросков тока, фильтрующий конденсатор C1.
При подаче на вход данного выпрямителя сетевого напряжения 220В / 50Гц, на выходе выпрямителя (на конденсаторе С1) появиться постоянное напряжение равное примерно 300В с пульсацией частотой 100Гц. Чем больше будет емкость конденсатора, тем меньше будет пульсация.

Светодиоды требуют питания стабилизированным током, часто их питают стабилизированным напряжением через резистор ограничивающий ток, например как в светодиодных лентах. Но зачем нам идти на компромиссы, если сделать стабилизатор тока, работающий при больших напряжениях проще, чем стабилизатор напряжения. Работа схемы стабилизатора тока рассматривалась тут.

И последний элемент это последовательная сборка светодиодов из ленты. Стандартная светодиодная лента собирается по схеме из трех последовательных светодиодов и одного токоограничивающего резистора. Такой участок подключается параллельно куче других таких же участков и все это подключается к 12 В. На каждом диоде падает напряжение от 3,3 В до 3,6 В, таким образом на токоограничивающий резистор остается около полутора Вольт.

Чтобы повысить напряжение участки из трех диодов включаем последовательно с друг другом, а резистора можно выпаять, закорачивать или заменять перемычками, т.е. как будет удобнее с точки зрения топологии.
Внимание!!! Соблюдайте полярность, при ошибка в полярности подключения светодиода при таком напряжении будет для светодиода фатальной.

Ток которые протекает через тройку светодиодов можно примерно посчитать, разделив полтора Вольта на сопротивление токоограничивающего резистора. То есть при сопротивлении 150 Ом, ток через светодиоды составит 10 мА.

Именно такая лента со светодиодами на 10 мА попалась мне, для неё и были рассчитывать параметры драйвера. Если нужно уменьшить ток, то придется пропорционально увеличивать значение сопротивления резистора R3.

При сетевом напряжении в 220 В, описанная схема способна обеспечить последовательное подключение до 25 групп из трех диодов или 75 единичных. Если напряжение в сети часто бывает пониженным, то лучше снизить количество групп светодиодов до 20 или даже 15.

А вот и плата от энергосберегающей лапочки, откуда можно получить нужные радиоэлементы.

Лампочка разбилась, а плата осталась в рабочем состоянии.

Кстати полярность подключения диодов, выводы транзисторов можно срисовать прямо с этой платы, все что нужно там помечено.
Добываем элементы из этой платы и собираем новую схему. На фото видно, что транзисторы в маломощном корпусе TO-92 такой корпус не рассеет мощность больше 600 мВт. И суммарная мощность схема с таким транзистором не позволит отдавать в нагрузку более пары Ватт. Если потребуется собрать схему для более мощной нагрузки, то транзистор VT2 должен быть в более мощном корпусе и желательно с радиатором.

Подключение Светодиодной Ленты К Сети 220в Схема

При необходимости соединения двух участков лент можно воспользоваться двусторонним коннектором или спать фрагменты.


То есть, к концу первой припаивается начало второй.

Расчет для подключения светодиодной ленты RGB и монохромной не различаются. Общие сведения Светодиодные устройства являются довольно экономичными осветительными приспособлениями.
Светодиодная лента 220 Вольт достоинства и недостатки. Обзор.

Потребляемая мощность Существует определенная схема подключения светодиодной ленты к В.

Зачем нужен блок питания? Без него не эксплуатируется светодиодная лента.

Укладка прибора в профиле Нюансы монтажа Как выполнить подключение схемы светодиодной ленты в к сети, хорошо знают специалисты. Освещение Подключение светодиодной ленты к сети в схема Светодиодная лента представляет собой узкую и гибкую полосу, на которой расположены светодиоды и контролирующие ток резисторы.

Это контроллер, к которому подсоединяется светодиодная лента В. Далее нужно от этой распредкоробки в штробе, гофрорукаве или в кабельном канале проложить кабель к будущему месту установки блока питания.

В результате каждая лента будет подключена отдельно.

Как подключить светодиодную ленту в сеть 220 вольт

Блок питания

Светодиодные ленты могут освещать пространство перед зеркалом или монтироваться за зеркала. Полезная информация! Варианты подсветки потолка светодиодной лентой Из-за компактности для монтирования световой дорожки на потолок не нужны значительные пазы. Таким образом, необходимо определиться по световому потоку метра диодной ленты с учетом имеющихся в продаже моделей.


Евгений Для разрезания ленты используют обычные ножницы, разрез делается по специально обозначенным контурам.

При соединении нескольких отрезков последовательно напряжение конденсатора С2 умножается на их количество.

Нюансы монтажа Как выполнить подключение схемы светодиодной ленты в к сети, хорошо знают специалисты.

В результате, вместо параллельного соединения, получится цепочка из последовательно включённых отрезков светодиодной ленты, способная выдержать напряжение вольт.

Отличается разнообразием световая температура и цветовая палитра свечения. Обычно такие ленты хорошо защищены от внешних воздействий, но, с увеличением надежности защиты резко уменьшается возможность охлаждения.

Для приборов на 24В плотность LED-элементов достигает штук. Импульсный блок питания Такие устройства есть самодельные или фабричного производства — это лучший, хотя и самый дорогой вариант.
Расчет и подключение блока питания для светодиодной ленты.

Общие сведения

Действительно их можно встретить фактически во всей электронной китайской продукции, работающей от сети В настенные часы, люстры с ПДУ, реле напряжения и т.


Размер LED-элементов при этом выбран Выпрямитель состоит из четырёх диодов и конденсатора. До 5 метров Очень часто рядовых пользователей интересует вопрос о том, как подключить светодиодную ленту длиной до 5 метров?

Схема подключения 2 лент Рассмотрев подключение светодиодной ленты В , следует уделить внимание схеме с двумя такими осветителями.

Эффектно смотрятся специально подсвеченные картины, портьеры или шторы. Затем проводят пайку, а по окончанию работы надвигают трубку и слегка разогревают феном. В их число входят: отсутствие выпрямителя. Но на каком участке схемы должен находиться выключатель, чтобы эксплуатация всей осветительной системы была безопасной?

От количества диодов зависит также потребление лентой электроэнергии. Описание расчета Конкретную технику расчета нужно использовать перед тем, как подключать светодиодную ленту к электросети Вольт. Светодиодные полоски придают объем полкам и стеллажам, при подсвечивании их с торцевой части.

Общая характеристика


Для фиксации конструкции убирается защитный слой и липкой стороной фиксируется к поверхности. Обычно такие ленты хорошо защищены от внешних воздействий, но, с увеличением надежности защиты резко уменьшается возможность охлаждения. Аналогичным образом выполняют параллельное подключение нескольких отрезков к одному блоку питания. Это является еще одной причиной преимущественного использования на улице.

При подключении большей длины ленты или нескольких лент одновременно, потребляемую мощность необходимо пересчитывать, принимая коэффициент запаса 1,1…1,3. В этом случае он равен току отдельного кусочка. Скажите, обязательно ли использование этого коннектора или можно обрезать его и сделать обычное подключение через стандартный соединитель проводов, как везде в квартире — розетках и тп пружинные клеммы? Емкость конденсатора С1 необходима 1,4mkF на 0,1А тока ленты, а напряжение от В.

Для подсветки потолков не нужно выбирать лампы с ярким свечением, так как такое освещение не будет использоваться в качестве основного источника света, а лишь немного обозначит контуры. Выбор ленты следует производить в первую очередь по техническим характеристикам.
Как подключить светодиодную ленту на 220 Вольт

Преимущества

Схема подсоединения двух лент Подключение светодиодной ленты Вольт можно выполнить своими руками.

Для корректного подключения используют параллельное подключение двух светодиодных лент. Зачем требуется блок питания? Способы подключить светодиодную ленту 12В к сети В При включении светодиодной полосы 12В просто в розетку она сгорит.

Стильно смотрится подсветка с двух сторон С помощью такого способа освещения можно отделить рабочую зону на кухне. Буду подключать параллельно. В данном случае нагрузка подается непосредственно на прибор освещения.

Они обычно имеют надпись и обозначаются как Output Led. Кроме того, по правилам безопасности на прибор освещения подается ток только через адаптер. Подсветка шкафов изнутри становится популярной из-за удобства и функциональности.

Замените блок питания и контроллер на новый. Если при первом включении обнаруживаются какие-либо недостатки, устранение также производится при отключенном питании. Это объясняется плотностью светодиодов на одном метре ленты.

Это плохо по двум причинам. В этом случае используют следующую схему соединения: первая лента подключена к отдельному блоку питания и контроллеру, вторая лента подсоединяется к своему блоку и усилителю RGB. Простейший классический вариант бестрансформаторного блока питания показан на рисунке выше.

Подсоединение с пультом управления является более комфортным. Вначале к блоку питания подводится сетевой провод с вилкой. Цена этих устройств доступна любому потребителю. Режется такая полоска на отрезки, кратные 0,5 или 1 метру. Но доверять только цветовой маркировке нельзя!

Принципиальная схема запитывания предполагает: лента длиной 5 м и рабочим напряжением 12в, режется на 20 отрезков; напряжение сети в выпрямляется при помощи диодного моста VD1-VD4 ; отрезки ленты собираются между собой, таким образом, чтобы плюсовый выход отрезка соединялся с минусовым выходом последующего куска; возможное мерцание сглаживают конденсатором в, мф. Аналогичным образом выполняют параллельное подключение нескольких отрезков к одному блоку питания. В блок питания входит напряжение от сети. Если выключатель установить в цепи постоянного тока, то блок питания будет всегда оставаться под напряжением.
Подключение светодиодной ленты к 220 v

Как подключить светодиодную ленту для дома к сети 220В схема. Подключение светодиодной ленты к 220 своими руками.

В этой статье будут рассмотрены различные варианты как подключить светодиодную ленту к бытовой электросети 220 Вольт своими руками. Светодиодные ленты питаются постоянным током с напряжением 12 или 24 Вольта, поэтому их нельзя подключать напрямую в розетку 220V, необходим соответствующий блок питания.

Светодиодная лента, как правило, продается в катушках по 5 метров. Простая схема подключения 5 метров светодиодной ленты к сети 220В будет выглядеть так:

Входные провода блока питания подключаются к сети 220V: коричневый — фаза, синий – ноль, и желто-зеленый — заземление (часто не используется). Выходные провода подключаются к светодиодной ленте. При подключении ленты к блоку питания важно соблюдать полярность: плюс к плюсу, минус к минусу. На шлейфе ленты всегда есть обозначение полярности, провода на катушках с лентой так же маркированы цветом: красный – плюс, черный – минус. Если перепутать полярность – лента работать не будет.

Далее, схемы подключения будут различаться в зависимости от используемых компонентов и количества подключаемой ленты.

Параллельное подключение светодиодной ленты.

При подключении более 5 метров важно помнить: катушки светодиодной ленты подключаются к питанию только параллельно. Последовательное подключение не гарантирует нормальной работы ленты.

Что это значит. Нельзя подключать к концу первой ленты начало второй. При таком подключении, ток для питания второй ленты потечет по токопроводящим дорожкам первой ленты, которые на этот избыточный ток не рассчитаны. Первая лента начнет перегреваться, что значительно сократит срок её службы.

При параллельном подключении, каждый участок ленты подключается к блоку питания независимо от остальных. Для этого достаточно подсоединить каждый участок ленты к блоку питания отдельными проводами.

Есть еще один вариант параллельного подключения светодиодной ленты — протянуть от блока питания одну линию, к которой будут подключаться участки ленты в нужных местах. Схема такого способа подключения будет выглядеть так:

Как подключить светодиодную ленту для дома

Потери напряжения

На схеме выше можно заметить, что каждый участок светодиодной ленты подключен к линии с двух сторон. Это необязательное условие, которое поможет избежать некоторых проблем. При использовании мощной светодиодной ленты (14,4W/м и более), по всей длине её участков происходят потери напряжения, которые выражаются в снижающейся яркости свечения ближе к концу участка. А при использовании многоцветной RGB ленты, могут возникнуть искажения цветов. Для устранения данных проблем, каждый участок следует подключать с обеих сторон.

Как подключить светодиодную ленту к диммеру.

Диммеры для светодиодных лент питаются от 12/24V и подключаются к цепи между блоком питания и светодиодной лентой. К выходу блока питания подключается вход диммера, затем к выходу диммера подключается светодиодная лента. Важно помнить о соблюдении полярности. Рассмотрим схему, как подключить светодиодную ленту для дома к диммеру:

Схема подключения диммера

Мощность диммера должна быть достаточной для подключения необходимого количества ленты. Если же мощность диммера меньше суммарной мощности подключаемой ленты – необходимо использовать усилитель.

Схема подключения светодиодных лент с усилителем.

Мощности диммера для светодиодных лент бывает недостаточно, тогда вместе с диммером используется усилитель. К диммеру подключается лента, суммарной мощностью, не превышающей мощность диммера, затем выход диммера подключается к входу (“Input”) усилителя. К выходу (“Output”) усилителя подключается оставшаяся лента, если её суммарная мощность не превышает мощность усилителя. Затем к входу питания (“Power”) усилителя подключается блок питания 12V. Это может быть второй отдельный блок питания или подключение к первому блоку питания, если его мощности достаточно для питания всей ленты. Рассмотрим схему подключения светодиодной ленты к усилителю своими руками:

Подключение усилителя светодиодной ленты

Таким образом, с помощью усилителей можно подключить любое количество ленты к одному диммеру.

Подключение многоцветной светодиодной RGB ленты.

Обязательным условием, при использовании RGB ленты, является наличие RGB контроллера. В отличие от одноцветной ленты, светодиодная лента RGB подключается четырьмя проводами, а не двумя. Это обусловлено спецификой работы такой ленты – в каждом диоде находятся три кристалла разных цветов: красный (R — red), зеленый (G — green) и синий (B — blue). Три провода отвечают за управление соответствующими цветами, четвертый отвечает за питание. Смешивая эти три цвета в разных пропорциях, можно добиться практически любых оттенков. Таким смешением и занимается RGB контроллер. Провода светодиодной ленты RGB обычно маркированы цветами: красный – R, зеленый – G, синий – B, черный или белый – питание «+». На шлейфе ленты так же всегда имеется маркировка. Четыре провода RGB ленты подключаются к соответствующим разъемам RGB контроллера, контроллер подключается двумя проводами к блоку питания.

Подключение многоцветной светодиодной RGB ленты

Необходимо помнить, что мощность RGB контроллера, как и в случае с диммерами, должна быть достаточной для подключения необходимого количества светодиодной ленты.

Подключение RGB усилителя.

Если мощности RGB контроллера недостаточно для подключения всей необходимой ленты, используется RGB усилитель. Принцип подключения такой же, как и в случае с одноцветным усилителем, но с поправкой на 4 контакта у RGB ленты. К RGB контроллеру подключается светодиодная лента, суммарной мощностью, не превышающей мощность контроллера, затем выход RGB контроллера подключается к входу (“Input”) RGB усилителя. К выходу (“Output”) RGB усилителя подключается оставшаяся лента, если её суммарная мощность не превышает мощность усилителя. Затем к входу питания (“Power”) усилителя подключается блок питания 12V. Это может быть второй отдельный блок питания или подключение к первому блоку питания, если его мощности достаточно для питания всей ленты.

Подключение светодиодного RGB усилителя

Таким образом, с помощью RGB усилителей можно подключить любое количество RGB ленты к одному RGB контроллеру.

Подключение управляемой ленты SPI.

Для использования управляемой SPI ленты необходим специальный SPI контроллер. На управляемой ленте имеются 4 контакта: DIN+ (сигнал управления), +12V (питание «+»), и два контакта GND (земля, питание «–»). DIN+ , +12V и один GND подключаются к соответствующим выходам SPI контроллера, а +12V и второй GND каждой катушки подключаются к соответствующим выходам блока питания. Следует обратить внимание на стрелки на управляемой ленте – они указывает направление сигнала, порядок подключения таких лент должен соответствовать направлению сигнала.

Подключение светодиодной ленты SPI

Как самому подключить светодиодную ленту к 220в без блока питания

Особенности самостоятельного подключения ЛЕД ленты к сети 220В без блока питания. Подробная инструкция и разновидности лент. +ТЕСТ для самопроверки

ТЕСТ:

Небольшой тест
  1. Без блока питания ЛЕД лента подключается сразу в электросеть?

а) для подключения ленты к 220 В потребуется использовать маленький выпрямитель, а уже через него лента подсоединяется к розетке.

б) Лента подключается к сети без дополнительных приспособлений.

  1. Почему не рекомендуют покупать китайские модели лент для подсоединения к 220 В?

а) Китайские модели собираются из самых дешёвых материалов и не всегда соблюдаются технологии изготовления.

б) Покупателя могут обмануть. Внешне диоды на 220 В очень похожи на обычные. Поэтому, чтобы убедиться в правильности ленты, потребуется проверить маркировку.

  1. На куски какой длины режутся ЛЕД при продаже?

а) 50, 100, 200 см

б) 30, 80, 140 см.

  1. Чем отличается процесс подключения мощной ленты SMD 5630 от обычных вариантов на 220 В?

а) Ничем. Процесс аналогичен

б) Потребление энергии этой ленты больше, чем у обычных, поэтому дополнительного придётся подключить алюминиевый  профиль или радиатор. Так сборка не перегреется при эксплуатации.

  1. Почему ленты на 220 В не рекомендуется устанавливать в местах для чтения?

а) Наблюдается мерцание 100 герц. Человеческий глаз не заметит этого, но подобный эффект воздействует на сознание человека — появятся головные боли или утомляемость.

б) Свет слишком сильный и будет ослепить человека.

Ответы:

  1. а) Чтобы подсоединить LED к сети без блока питания, придётся дополнительно подключить выпрямитель.
  2. б) Посылка может прийти с неправильной моделью. Все ленты очень похожи. И чтобы не ошибиться, нужно проверять маркировку.
  3. а) При продаже лента на 220 В режется на куски по 50, 100 и 200 см.
  4. б) Мощные ленты сильно греются, а потому приходится подсоединять охлаждающую систему.
  5. а) От ленты исходит мерцание. Оно незаметно для человека, но отрицательное воздействие на него все равно оказывается.

Когда встает вопрос о подключении ЛЕД ленты, немногие знают, что бывают светодиоды, рассчитанные на 220 В. Но в этом случае для подключения к сети даже не потребуется использовать блок питания на 12 В. Достаточно взять маленький выпрямитель, через который лента подключится напрямую к розетке. К преимуществам этого способа относится простота использования, а также легкость подсоединения к сети. Но есть и свои недостатки. Чтобы разобраться в нюансах, нужно внимательно изучить материал и некоторые нюансы.

Определение: Светодиодные ленты – это источник света, распространяющийся через лампочки. Образец на 220 В служит для подсоединения к электросети через розетку.

Разновидности светодиодной ленты на 220 В

ЛЕД ленты на 220 В делятся на несколько разновидностей. В них используются светодиоды:

  1. 3528.
  2. 2835.
  3. 5050.
  4. 3014.

Также имеется более мощные образцы — SMD 5630. Самой большой популярностью пользуются ленты 3528 или 5050. Их достаточно просто приобрести в российских магазинах. А вот остальные модели придётся приобретать через интернет-сайты у китайцев. Но профессионалы подобные модели приобретать не советуют, поскольку покупателей могут обмануть. Дело в том, что внешне диоды очень похожи на обычные Но на них печатается маркировка, где обозначается напряжение, в котором лента может работать.

Особенностью конструкции считается то, что лента на 220 В нарезается только по одному метру или 50 см, также есть вариант на 200 см. То есть отрезок 80 или 30 см получить не получится.

Основные параметры ленты на 220 вольт

Лед на 220 В отличается следующими параметрами:

  1. Нарезается по 50, 100 и 200 см.
  2. Мощность ватт на метр.
  3. Имеется защита от влаги.
  4. Цветовая температура.

Как и любые другие ленты, эта выпускается в разных модификациях по степени защиты от проникновения влаги. Используют IP 67 и 68. Это защита — прочная трубка из силикона. При использовании такой герметичной ленты, разрешается устанавливать диоды во влажных помещениях, к примеру, на улице и в бане.

Если изучить отзывы потребителей, то можно сделать вывод, что светодиодная лента подходит для эксплуатации в условиях низких и высоких температур.

Основание ленты достаточно жесткое, но при этом гибкое. Из-за того, что светодиод имеет жесткое основание, кусок ленты превращают в светодиодный модуль и линейку. Из подобной линейки собирается светильник.

Монтаж бывает самоклеящийся, и не имеющий клеевого основания.

Ответы на 5 часто задаваемых вопросов

  1. Как лента питается от сети 220 В? — Вставляются светодиоды с обычным напряжением 3,3 — 3,5 В. Для них используют полярное питание, обеспечивающее диодный мост. Если не соблюдать этого требования, то лампочки начнут мигать.
  2. Почему нарезают ленты только по 50, 100 и 200 см? — Нарезается по 50 или 100 мм из-за того, что лампочки подключаются последовательно по одной цепи. В одном метре выходит 60 светодиодов.
  3. Как повысить надежность устройства? – Для повышения надежности используют подключение диодов парами. В результате, если из строя выйдет один, то ток всё равно сможет пройти через остальные.
  4. Как подключать мощную ленту SMD 5630? – У подобной ленты потребление больше 10 Вт на метр, поэтому дополнительно следует подсоединить алюминиевый профиль или радиатор, служащие в качестве охлаждающего элемента при эксплуатации устройства.
  5. Лампы на 220 В выпускаются одним цветом? – Нет, имеются все те же цвета, что и на обычных LED.

Нюансы устройства на 220 В

Большую мощность получают даже на слабых диодах.

Чтобы не использовать две приклеенные штуки рядом, покупают двойную ленту. У нее очень широкое основание. И это даже полезно — тепло будет легче отводиться при работе диодов.

Двойная и одинарная лента

Светодиодные ленты на 220 В выпускается в таких же вариантах цвета, как и обычные ленты.

Как самому подключить светодиодную ленту к 220в без блока питанияКак самому подключить светодиодную ленту к 220в без блока питанияЦвета

При подключении ленты RGB на 220 В, необходимо также поставить дополнительный контроллер, управляющий яркостью каждого цвета. Но их очень сложно найти, потому приобретать желательно готовым комплектом.

Подключение светодиодной ленты к 220 вольт

Как самому подключить светодиодную ленту к 220в без блока питанияКак самому подключить светодиодную ленту к 220в без блока питанияСхема

Схема подключения очень проста — нужно позаботиться только о подключении нескольких проводов. Соблюдаем нужные полярности и никаких проблем не возникнет. Если подключается к сети цветная ЛЕД лента, то используем цветовую маркировку в качестве «карты» соединения.

Как избежать 5 ошибок при подключении ленты

Чтобы избежать ошибок при подключении, следуем инструкциям и делаем всего 5 шагов:

  1. Отрезаем нужную длину. Не забываем, что резать можно только по 50, 100 или 200 см.
  2. Если лента герметичная, то отрезанные концы необходимо обработать при помощи герметика, а после надеть на него коннектор из силикона. Он выпускается в виде кольца.
  3. Подключаем конвектор и закрепляем его при помощи герметика.
  4. Соблюдаем понятность и соединяем провод от выпрямителя.

    Как самому подключить светодиодную ленту к 220в без блока питанияКак самому подключить светодиодную ленту к 220в без блока питанияВыпрямитель

  5. Проверяем, чтобы вся лента была максимально герметичная. Внутрь не должна попасть вода.

Питание ленты своими руками обеспечено.

Выпрямитель будет состоять из диодного моста со своей мощностью. Она может составлять 700 Вт. В таком случае можно смело использовать 100 метров обычной светодиодной ленты, или 40 метров очень мощной. Этого вполне достаточно, чтобы осветить очень большое помещение.

Выпрямитель стоит довольно дешево, но если нет желания его приобретать, то можно изготовить своими руками. Потребуется 4 диода, или же готовая сборка в абсолютно любом магазине, специализирующимся на продаже радиодеталей.

В отличие от обычных ЛЕД, не нужно обращать внимание на толщину проводов питания. Даже если использовать провод в 0,75 квадратных миллиметров, то он всё равно очень легко справиться с мощностью в 1500 W.

Поскольку в устройстве не предусмотрен конденсатор, то вся лента будет мерцать частотой 100 герц из-за того, что сглаживать пульсации не получится. СаНПИН запрещает использовать такие пульсации в рабочих помещениях или там, где читают люди. Именно поэтому в квартире устанавливать такое приспособление нежелательно.

Подключаем диодную ленту в сеть 220 в

Достоинства и недостатки ленты 220В

Светодиоды, рассчитанные на подключение к сети 220 В обладают, как плюсами, так и минусами. Изучив эти вопросы, получится решить для себя, куда именно ставить подобные ленты. Выбор места эксплуатации очень важен, поскольку светодиодная лента на 220 В подойдет не для каждого помещения. Выбор комнаты в доме сильно ограничен из-за одного существенного недостатка.

Плюсы:

  1. Используется LED лента без блока питания.
  2. При подключении несколько метров диодов просто втыкаются в ближайшую розетку, и они будут работать.
  3. Подключение производят любыми проводами, даже тонкими, поскольку сила тока будет по ним подходить довольно низкая.
  4. Цельный собранный кусок в длину достигает и 100 метров. Это очень удобно для освещения больших площадей.
Как самому подключить светодиодную ленту к 220в без блока питанияКак самому подключить светодиодную ленту к 220в без блока питанияБез блока питания Как самому подключить светодиодную ленту к 220в без блока питанияКак самому подключить светодиодную ленту к 220в без блока питанияДлинная лента Как самому подключить светодиодную ленту к 220в без блока питанияКак самому подключить светодиодную ленту к 220в без блока питанияДля розетки

Минусы:

  1. Придется соблюдать особую осторожность при монтаже и включении, поскольку потребуется высокое напряжение.
  2. Лампочки вскоре могут выйти из строя, если приобрести некачественные китайские образцы.
  3. Герметичную ленту очень тяжело чинить – придется полностью избавляться от герметика, менять детали и снова герметизировать.
  4. Имеется мерцание частотой в 100 герц. Человеческий глаз просто не заметят этого, но это всё равно воздействует на сознание человека — появятся головные боли или утомляемость.

Из-за этих недостатков сферу применения приходится ограничивать. Устанавливать светодиодные ленты на 220 В необходимо только во второстепенных помещениях, где человек не отдыхает, читает или проводит большое количество времени. К примеру, ЛЕД используют в качестве подсветки на кухне, кладовке или гараже, очень удобно устанавливать ленту для освещения растений. Также можно ставить подсветку на рекламных щитах – уличная лампа в силиконе не боится погодных условий.

Лента на кухне

Ещё важно знать 2 нюанса об управлении яркостью

Чтобы изменить уровень свечения светодиодной ленты на 220 В, обычно применяют диммер.

Если используется многоцветные ЛЕД, тогда устанавливают контроллер. Без него не обойтись.

Топ 2 лучших производителя ЛЕД лент на 220 В

В магазинах, специализирующихся на продаже электрических товаров, не сложно найти большое разнообразие лент. Но не все они подходят для подключения к электросети в 220 В. Именно поэтому придется выбирать и искать производителей, выпускающих нужные образцы. Качественные фирмы, хорошо зарекомендовавшие себя на рынке:

  1. Elektrostandart.
  2. Sveteco.

Компании не только выпускают ЛЕД ленты на 220 В, но и отличаются хорошим качеством своей продукции.

Приобретайте продукцию проверенных брендов, следуйте советам и рекомендациям, не отступайте от инструкций и тогда ленту без проблем получится подключить к сети 220 В даже новичку, что никогда прежде не работал с электрикой и освещением.

принцип работы, схема подключения, преимущества и недостатки

Наиболее популярной среди светодиодных лент уже около 10 лет остается 12-вольтная. На 220 В – ее основной конкурент. Давайте разберемся, в каких местах она лучше подходит, а где ее использовать нельзя. В статье также будут рассмотрены базовые сведения о монтаже и эксплуатации такой ленты.

Принцип работы сетевой светодиодной ленты

Обычно светодиоды не работают в цепях переменного тока. Их используют с драйверами или блоками питания. Это применимо как для отдельных элементов, так и для конструкций, собранных на плате, ленте или другими способами. Но в продаже имеется светодиодная лента, которую можно подсоединить напрямую к сети переменного тока 220 В.

На деле все обстоит не совсем так. Схема не имеет понижающих трансформаторов и фильтрующих сглаживающих конденсаторов. Конструкция работает без блока питания в его классическом понимании, его функции выполняют ограничительные резисторы и выпрямительный диодный мост.

Контроллер для подключения светодиодной ленты на 220 вольтКонтроллер для подключения светодиодной ленты на 220 вольт

Давайте разберемся, из чего состоит лента:

  • SMD-светодиоды;
  • резисторы для ограничения тока;
  • гибкая печатная плата;
  • самоклеящаяся основа;
  • двухполупериодный выпрямитель;
  • вилка для подключения в розетку.

С одной стороны, такая конструкция ведет к удешевлению и упрощению схемы, с другой – лимитирует возможности применения в жилых помещениях. Но об этом мы расскажем позже, в разделе о преимуществах и недостатках.

к содержанию ↑

Применение

Светодиодная лента 220 В дает яркий свет. Но яркий не всегда значит хороший. Главный недостаток — пульсация светового потока. Она возникает из-за подключения без блоков питания со стабилизацией, через обычный диодный выпрямитель. Это ограничивает область применения. Идеальный вариант — уличное освещение, вывески, подсветка фасадов домов, архитектурных строений, приусадебных участков. В жилых помещениях использовать можно, но только в декоративных целях, например, на кухне или в подвесном потолке, расположив светодиодную ленту в нише или профиле.

Мерцание светодиодной ленты на 220 WМерцание светодиодной ленты на 220 W

Мерцание света может быть незаметно глазу, но, работая при таком освещении, вы начнете быстрее уставать, могут появиться головные боли. Значения коэффициентов пульсации для освещения установлены в нормативных документах – ГОСТах и СНИПах.

к содержанию ↑

6 отличий и критериев выбора ленты на 220 В

Рассмотрим 6 параметров выбора и отличий светодиодных лент.

  1. Форма продажи.

Чаще всего в магазинах встречается два вида ленты:

  • с выпрямителем и вилкой;
  • в бухте.

Для быстрого монтажа небольшой подсветки подойдет комплект на 220 В. Обычно это отрезок ленты от 1 до 5 м со всем необходимым для работы. Светодиодная лента в бухте — отличное решение для крупных проектов. Только не забудьте купить выпрямительный диодный мост для запитки, рассчитанный на напряжение не ниже 400 В. Его можно собрать своими руками, например, из диодов 1n4007, которые вы легко найдете в зарядных устройствах от мобильных телефонов или в сгоревших энергосберегающих лампах.

Светодиодная лента в бухте с вилкойСветодиодная лента в бухте с вилкой

  1. Цвет свечения:
  • белый;
  • одноцветный;
  • RGB.
  1. Тип светодиода

От этого зависят яркость и потребляемая мощность:

  • 3528;
  • 5050;
  • 2835;
  • 5730 (5630).
  1. Количество светодиодов.

Основные номиналы:

  1. Класс защиты от воздействия внешних факторов. Обозначается как IPxx, где xx – это цифры от 0 до 8. Чем они больше, тем лучше. Например, IP68 может применяться на улице и не боится воды.
  2. Кратность резки.

Ленту можно резать только в строго обозначенных местах согласно кратности отреза. Поэтому при покупке обратите внимание на этот параметр. Обычно это 1 м, или 60 светодиодов, но бывают другие, например 0,5 м и 60 диодов для 120 led/м.

Резка ленты допускается только в определенных местахРезка ленты допускается только в определенных местах

к содержанию ↑

Управление яркостью

Чтобы создать соответствующие световые эффекты, нередко приходится прибегать к регулировке яркости. Для работы с 220 В моделями подсоедините специализированный диммер. Особый вид ленты – RGB, для ее работы и регулировки не обойтись без RGB-контроллера для светодиодной ленты на 220 В. Главное – не перепутать с контроллерами для 12-24 В.

Подключение в сеть

Чтобы собрать схему, нужно сделать следующее:

  • отрезать ленту нужной длины;
  • в случае необходимости соединить несколько отрезков, используя проходные коннекторы;
  • подключить диодный мост;
  • присоединить кабель с вилкой;
  • включить в сеть.

К вышеперечисленному добавится RGB-контроллер, если у вас соответствующая модель.

Совет! При монтаже светодиодной ленты не сгибайте ее резко, чтобы не повредить. Промазывайте места соединений и разрезов герметиком для защиты от влаги. Во избежание потерь электроэнергии и лишнего нагрева маломощную ленту (например, из светодиодов 3528) можно соединять в линию не более 100 м длиной. Если лента мощная (5730) – 40 м.

Вариант подключения светодиодной ленты на 200 вольтВариант подключения светодиодной ленты на 200 вольт

к содержанию ↑

Преимущества и недостатки в сравнении с 12 В лентой

Светодиодные ленты для подключения в электросеть 220 В обладают следующими преимуществами:

  1. Простота подключения. В отличие от 12 В моделей им не нужен дорогой блок питания, только розетка. Меньше элементов в цепи — больше надежность.
  2. За счет предыдущего пункта – снижается стоимость готовой конструкции.

В остальном достоинства такие же, как у низковольтных аналогов. Но есть два существенных недостатка:

  1. 220 вольт — это высокое напряжение, опасное для человека, не стоит применять такую ленту в бассейне.
  2. Из-за пульсации светового потока 220 В ленту нельзя применять как источник освещения.

Кроме того, при скачке или повышенных значениях напряжения в питающей сети 220 В лента, в отличие от низковольтной, быстро выйдет из строя.

Светодиодная лента на 220 В: принцип работы, схема подключения, преимущества и недостатки

Как сделать рождественскую светодиодную цепь и цепь мигающей лампы в домашних условиях?

Схема цепи светодиодной гирлянды / ленты с использованием PCR-406

Это очень интересная схема мигающей / танцующей и мигающей светодиодной гирлянды / ленты. Сделать это дома может любой, потому что это очень просто, а базовые компоненты можно найти в любом магазине электронных компонентов. Эта светодиодная лента / струнная схема (танцующая / мигающая светодиодная схема) представляет собой интересную схему, в которой светодиодные лампы загораются и светятся по-разному, например, «Танцуют» и «Мигают», и наиболее подходят для X-MAS, дня рождения, юбилейных вечеринок, праздников и прочего. связанное светлое украшение дома.How to Make Christmas LED & Bulb Blinking Light String Circuit at Home How to Make Christmas LED & Bulb Blinking Light String Circuit at Home

Эта цепь мигания светодиода мигает и светится в следующей последовательности.

  • Комбинация
  • Волны
  • Последовательная
  • Slo-Glo
  • Преследование / Мигание
  • Замедление / затухание
  • Мерцание / мигание
  • Постоянно горит.

Связанный проект: Электронный проект управления светофором с использованием таймера IC 4017 и 555

Ниже приведено пошаговое руководство по созданию схемы мигающей и танцующей светодиодной ленты.

Внутри коробки основная схема на печатной плате общего назначения. (Задняя сторона печатной платы) LED String / Strip Circuit Diagram Using PCR-406 LED String / Strip Circuit Diagram Using PCR-406

Это лицевая сторона схемы светодиода (вид спереди без коробки).

How to Make Christmas LED String & Bulb Strip Light Circuit at Home How to Make Christmas LED String & Bulb Strip Light Circuit at Home

Теперь обернитесь, чтобы увидеть базовую и очень простую схему этой забавной светодиодной цепочки. Видно, что схема сделана своими руками (сделай сам), и любой, кто знает основные функции электронных компонентов, может сделать ее дома.

Базовая схема массива светодиода X-MAS

Щелкните изображение, чтобы увеличить

Basic X-MAS LED Flashing String Array Circuit Basic X-MAS LED Flashing String Array Circuit

Компоненты, необходимые для Рождество Схема светодиодной строки

  • SCR 1 и SCR 2 = PCR 406 PNPN
  • D1 = IN 4007
  • C = 10 мкФ, 16 В
  • R1 = 2 МОм
  • R2 = 150 кОм
  • Светодиод = 60 номеров
  • IC / Chip (программируемый) = Y803A
  • Тактильный переключатель = изменение шаблона
  • Входное напряжение
  • 220 В, 50-60 Гц

Связанный проект: Дизайн печатной платы схемы светодиодного мигающего сигнала.Шаг за шагом

, когда вы собираете схему на печатной плате общего назначения или макетной плате, затем подключаете 60 светодиодов (белого или любого другого цвета). Теперь подайте напряжение 230 В переменного тока (Великобритания) или 120 В переменного тока (США), и светодиодная цепочка начнет светиться и мигать. Вы также можете контролировать способ мигания, нажав кнопку управления на монтажной коробке.

Ниже представлены светодиоды разных цветов и форм, а также лампы накаливания и светодиоды, протестированные с помощью схемы.

Щелкните изображение, чтобы увеличить

Вы также можете прочитать:

.

Бестрансформаторная схема драйвера постоянного тока для светодиодов

В этом посте мы узнаем, как всего одну микросхему MBI6001 можно использовать в качестве бестрансформаторной схемы светодиодного драйвера постоянного тока для освещения цепочки из многих последовательно соединенных светодиодов.

ИС серии MBI6001 предназначены для работы с сетевыми входами переменного тока и преобразования его в выход постоянного тока с более низким напряжением, который может использоваться для управления группой последовательно соединенных светодиодов.

Микросхема оснащена выходом PWM с импульсным током, который позволяет устанавливать ток на точном уровне в соответствии с номиналом светодиодов.

Микросхемы с маркировкой N1x предназначены для работы с входами 110 В переменного тока, а серия N2x — с входами 220 В.

Использование IC MBI6001

Обращаясь к стандартной бестрансформаторной схеме драйвера светодиода постоянного тока с использованием IC MBI6001, мы почти не можем увидеть какие-либо внешние компоненты, кроме нескольких резисторов.

Здесь резисторы R1, R2 и R3 помогают определить правильную настройку ШИМ для достижения заданного постоянного тока на выходе ИС.

Номиналы резисторов рекомендованы производителем и могут использоваться в соответствии с данными инструкциями.Об этом мы поговорим в более поздней части статьи.

Сколько светодиодов можно использовать на выходе.

Количество светодиодов, которые можно безопасно использовать на выходе этой ИС, практически не критично. Можно использовать любое количество светодиодов на показанных выходных контактах ИС, напряжение на серии автоматически регулируется внутренней схемой ИС.

Однако максимальное комбинированное прямое напряжение подключенной серии светодиодов не может превышать значение входного переменного напряжения, в противном случае свет от светодиодов может стать слабым и тусклым.

Выбор постоянного предела тока для светодиодов

Как объяснялось ранее, ИС использует ШИМ для управления током светодиода, и это может быть установлено в соответствии с требованиями или максимальным безопасным пределом строки светодиодов.

Вышеупомянутое определяется различными резисторами, включенными в ИС извне, и реализуется либо увеличением рабочего цикла ШИМ, либо уменьшением рабочего цикла ШИМ.

Однако 90 мА — это максимальное значение тока, которое может быть достигнуто с помощью этой ИС, что означает, что светодиоды высокой мощности не могут использоваться с этой бестрансформаторной схемой ИС драйвера постоянного тока.

Кроме того, при токе выше 23 мА ИС может начать нагреваться, снижая общий КПД схемы, поэтому выше этого предела ИС должна быть прикреплена куском алюминиевого радиатора для обеспечения оптимального отклика.

Таблица спецификаций светодиодов

В следующей таблице показаны значения R2, ​​которые могут быть надлежащим образом выбраны пользователем в соответствии с предпочтительными характеристиками светодиодов.

Резистор R1 может быть заменен резистором 1 кОм и не является критичным, хотя его цель предназначена для точной настройки интенсивности подключенной цепочки светодиодов, поэтому его можно немного настроить для получения желаемой интенсивности от светодиодов.

R3 не является обязательным и может быть просто опущен, его использование ограничено для некоторых дополнительных требований и может игнорироваться для общего применения, как описано выше.

Использование полевого МОП-транзистора

Если вы обнаружите, что вышеупомянутая ИС устарела, вы можете попробовать следующую универсальную бестрансформаторную схему драйвера светодиода на основе полевого МОП-транзистора с постоянным напряжением и постоянным током.

ПОЖАЛУЙСТА, ВЫВЕДИТЕ C1 ИЗ УКАЗАННОГО ПОЛОЖЕНИЯ И ПОСТАВЬТЕ ЕГО ЧЕРЕЗ ВЫХОДНЫЕ КЛЕММЫ ЦЕПИ

Серийную лампу можно отключить, если ток нагрузки находится в пределах допустимой нагрузки MOSFET.

R2 можно рассчитать по следующей формуле:

R2 = (Напряжение питания после моста — общее прямое напряжение светодиода) / Ток светодиода

О Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, схемотехник / Разработчик печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть какие-либо вопросы, связанные со схемой, вы можете взаимодействовать с ними через комментарии, я буду очень рад помочь!

.

10 цепей автоматического аварийного освещения

В статье описаны 10 простых цепей автоматического аварийного освещения с использованием ярких светодиодов. Эта схема может использоваться при сбоях питания и на открытом воздухе, где любой другой источник питания может быть недоступен.

Что такое аварийная лампа

Аварийная лампа — это цепь, которая автоматически включает лампу, работающую от батареи, как только пропадает входная сеть переменного тока или при отключении и отключении сетевого питания.

Это предотвращает попадание пользователя в неудобную ситуацию из-за внезапной темноты и помогает пользователю получить доступ к мгновенному переключению аварийного освещения.

В описанных схемах вместо лампы накаливания используются светодиоды, что делает устройство очень энергоэффективным и более ярким с его светоотдачей.

Кроме того, в схеме используется очень инновационная концепция, специально разработанная мной, которая еще больше увеличивает экономичность устройства.

Давайте познакомимся с концепцией и схемой более подробно:

ПРЕДУПРЕЖДЕНИЕ — МНОГИЕ ЦЕПИ, ПРЕДСТАВЛЕННЫЕ НИЖЕ, НЕ ИЗОЛИРОВАНЫ ОТ СЕТИ ПЕРЕМЕННОГО ТОКА, И ПОЭТОМУ ОЧЕНЬ ОПАСНЫ В ПИТАНИИ, НЕКРЫТОМ ПОЛОЖЕНИИ.

Теория автоматического аварийного освещения

Как следует из названия, это система, которая автоматически включает лампу при пропадании обычного источника переменного тока и выключает ее при восстановлении сетевого питания.

Аварийный свет может иметь решающее значение в областях, где часто случаются перебои в подаче электроэнергии, поскольку он может предотвратить возникновение неудобной ситуации при внезапном отключении сетевого питания. Это позволяет пользователю продолжить выполнение текущей задачи или получить доступ к лучшей альтернативе, такой как включение генератора или инвертора, до восстановления электроснабжения..

1) Использование одного транзистора PNP

Концепция: мы знаем, что светодиоды требуют определенного фиксированного прямого падения напряжения, чтобы загореться, и именно на этом уровне, когда светодиод находится в лучшем состоянии, то есть напряжения, которые находятся примерно в прямом направлении падение напряжения позволяет устройству работать наиболее эффективно.

По мере увеличения этого напряжения светодиод начинает потреблять больше тока, а скорее рассеивает дополнительный ток, нагреваясь сам, а также через резистор, который также нагревается в процессе ограничения дополнительного тока.

Если бы мы могли поддерживать напряжение вокруг светодиода, близкое к его номинальному прямому напряжению, мы могли бы использовать его более эффективно.

Это именно то, что я пытался исправить в схеме. Поскольку здесь используется батарея на 6 В, это означает, что этот источник немного выше, чем прямое напряжение используемых здесь светодиодов, которое составляет 3,5 В.

Повышение напряжения на 2,5 В может вызвать значительное рассеяние и потерю мощности из-за тепловыделения.

Поэтому я подключил несколько диодов последовательно к источнику питания и убедился, что изначально, когда аккумулятор полностью заряжен; три диода эффективно переключаются, чтобы сбросить лишнее 2.5 вольт на белых светодиодах (потому что каждый диод теряет 0,6 вольт на себе).

Теперь, когда напряжение батареи падает, серия диодов сокращается до двух, а затем до одного, гарантируя, что только желаемое значение напряжения достигает банка светодиодов.

Таким образом, предлагаемая схема простой аварийной лампы становится высокоэффективной с точки зрения потребления тока и обеспечивает резервное копирование на гораздо более длительный период времени, чем при обычных подключениях.

Однако вы можете удалить эти диоды, если вы не хотите их включать.

Принципиальная схема

Как работает эта белая светодиодная цепь аварийного освещения

Обращаясь к принципиальной схеме, мы видим, что схема на самом деле очень проста для понимания, давайте оценим ее по следующим пунктам:

Трансформатор, мост и конденсатор образуют стандартный источник питания для схемы. Схема в основном состоит из одного транзистора PNP, который используется здесь как переключатель.

Мы знаем, что устройства PNP относятся к положительным потенциалам и действуют для них как земля.Таким образом, подключение положительного источника питания к базе устройства PNP будет означать заземление его базы.

Здесь, пока сетевое питание включено, положительный вывод от источника питания достигает базы транзистора, удерживая его выключенным.

Следовательно, напряжение от батареи не может достигать группы светодиодов, поэтому она остается выключенной. Тем временем аккумулятор заряжается от напряжения источника питания, и он заряжается через систему непрерывной зарядки.

Однако, как только питание от сети пропадает, положительный полюс на базе транзистора исчезает, и он смещается вперед через резистор 10 кОм.

Транзистор включается, мгновенно загораясь светодиодами. Первоначально все диоды включены в цепь напряжения и постепенно отключаются один за другим по мере того, как светодиод становится более тусклым.

ЕСТЬ СОМНЕНИЯ? НЕ стесняйтесь комментировать и взаимодействовать.

Список деталей

  • R1 = 10K,
  • R2 = 470 Ом
  • C1 = 100 мкФ / 25 В,
  • мостиковые диоды и D1, D2 = 1N4007,
  • D3 — D5 = 1N5408,
  • T1 = BD140
  • Tr1 = 0-6 В, 500 мА,
  • Светодиоды = белые, высокоэффективные, 5 мм,
  • S1 = переключатель с тремя переключающими контактами.Использование бестрансформаторного источника питания

Представленная выше конструкция может быть также выполнена с использованием бестрансформаторного источника питания, как показано ниже:

Здесь мы обсудим, как можно построить аварийную лампу без трансформатора, используя несколько светодиодов и несколько обычных компонентов.

Основные особенности предлагаемой автоматической бестрансформаторной схемы аварийного освещения, хотя и очень идентичны более ранним конструкциям, отсутствие трансформатора делает конструкцию довольно удобной.
Потому что теперь схема становится очень компактной, недорогой и простой в сборке.

Однако цепь, которая полностью и напрямую связана с сетью переменного тока, очень опасна для прикосновения в открытом положении, поэтому очевидно, что конструктор применяет все необходимые меры безопасности при ее изготовлении.

Описание схемы

Возвращаясь к идее схемы, транзистор T1, являющийся PNP-транзистором, имеет тенденцию оставаться в выключенном состоянии, пока сеть переменного тока присутствует через его базовый эмиттер.

Фактически здесь трансформатор заменяется конфигурацией, состоящей из C1, R1, Z1, D1 и C2.
Вышеупомянутые части представляют собой симпатичный небольшой компактный бестрансформаторный источник питания, способный держать транзистор выключенным во время присутствия сети, а также подзаряжать соответствующую батарею.

Транзистор возвращается в состояние смещения с помощью R2 в момент отключения питания переменного тока.

Теперь аккумуляторная батарея проходит через T1 и загораются подключенные светодиоды.

На схеме показана батарея на 9 вольт, однако может быть встроена батарея на 6 вольт, но тогда D3 и D4 необходимо будет полностью снять с их позиций и заменить их проводной связью, чтобы энергия батареи могла течь напрямую через транзистор и светодиоды.

Схема цепи автоматического аварийного освещения

Видеоклип:

Список деталей
  • R1 = 1M,
  • R2 = 10K,
  • R3 = 50 Ом 1/2 Вт,
  • C1 = 1 мкФ / 400 В PPC,
  • C2 = 470 мкФ / 25 В,
  • D1, D2 = 1N4007,
  • D3, D4 = 1N5402,
  • Z1 = 12 В / 1 Вт,
  • T1 = BD140,
  • светодиоды, Белый, высокоэффективный, 5 мм

Макет печатной платы для указанной выше схемы (вид сбоку дорожки, фактический размер)

Список контактов

  • R1 = 1M
  • R2 = 10 Ом 1 Вт
  • R3 = 1K
  • R4 = 33 Ом 1 Вт
  • D1 — D5 = 1N4007
  • T1 = 8550
  • C1 = 474/400 В PPC
  • C2 = 10 мкФ / 25 В
  • Z1 = 4.7 В
  • Светодиоды = 20 мА / 5 мм
  • MOV = любой стандарт для 220 В

2) Автоматическая аварийная лампа с защитой от перенапряжения

В следующей схеме аварийной лампы с защитой от перенапряжения используется 7 последовательных диодов, подключенных в прямом смещенном состоянии через линию питания после входной конденсатор. Эти 7 диодов падают около 4,9 В и, таким образом, создают идеально стабилизированный и защищенный от перенапряжения выход для зарядки подключенного аккумулятора.

Аварийная лампа с автоматической активацией LDR «день — ночь»

В ответ на предложение одного из наших заядлых читателей, приведенная выше схема автоматического светодиодного аварийного освещения была модифицирована и улучшена с добавлением второго транзисторного каскада, включающего систему триггера LDR.

Этап делает работу аварийного освещения неэффективной в дневное время, когда доступно достаточное окружающее освещение, тем самым экономя драгоценную энергию батареи, избегая ненужного переключения устройства.

Модификации схемы для работы со 150 светодиодами, по запросу SATY:

Список деталей для цепи аварийного освещения на 150 светодиодов

R1 = 220 Ом, 1/2 Вт
R2 = 100 Ом, 2 Вт,
RL = Все 22 Ом, 1/4 Вт,
C1 = 100 мкФ / 25 В,
D1,2,3,4,6,7,8 = 1N5408,
D5 = 1N4007
T1 = AD149, TIP127, TIP2955, TIP32 или аналогичный,
Трансформатор = 0 -6 В, 500 мА

3) Цепь автоматической аварийной лампы с отключением при низком заряде батареи

Следующая схема показывает, как в приведенную выше схему можно включить цепь отключения по низкому напряжению для предотвращения чрезмерного разряда батареи.

4) Схема источника питания с приложением аварийного освещения

Четвертая схема, показанная ниже, была запрошена одним из считывателей, это схема источника питания, которая непрерывно заряжает аккумулятор при наличии сети переменного тока, а также питает выход с необходимая мощность постоянного тока через D1.

Теперь, в момент выхода из строя сети переменного тока, батарея мгновенно подключается к резервному питанию и компенсирует отказ выхода своим питанием через D2.

Когда присутствует входная сеть, выпрямленный постоянный ток проходит через R1 и заряжает батарею желаемым выходным током, а D1 передает постоянный ток трансформатора на выход для одновременного включения нагрузки.

D2 остается смещенным в обратном направлении и не может проводить из-за более высокого положительного потенциала, создаваемого на катоде D1.

Однако при сбое в сети переменного тока катодный потенциал D1 становится ниже, и, следовательно, D2 начинает проводить ток и обеспечивает постоянный ток аккумулятора мгновенно для нагрузки без каких-либо перебоев.

Список деталей для цепи резервного питания аварийного освещения

Все диоды = 1N5402 для батареи до 20 Ач, 1N4007, два параллельно для батареи 10-20 Ач и 1N4007 для менее 10 Ач.

R1 = напряжение зарядки — напряжение аккумулятора / ток зарядки

Ток трансформатора / ток зарядки = 1/10 * batt AH

C1 = 100 мкФ / 25

5) Использование транзисторов NPN

Первая схема также может быть построена с использованием NPN-транзисторы, как показано здесь:

6) Аварийная лампа с использованием реле

Это 6-е простое светодиодное реле переключает цепь аварийного освещения с резервной батареей, которая заряжается при наличии сети и переключается в режим светодиода / батареи, как только сеть выходит из строя .Идея была предложена одним из участников этого блога.

Цели и требования схемы

Следующее обсуждение объясняет подробности применения предлагаемой схемы аварийной лампы с переключением светодиодного реле
Я пытаюсь сделать очень простую схему переключения .. где я использую трансформатор 12-0-12 для зарядки аккумулятора мотоцикла 12 В от сети.

При отключении сети от батареи загорается светодиод мощностью 10 Вт. Но проблема в том, что реле не выключается при отключении сети.

Любые идеи. Хочу, чтобы все было просто .. Реле 12 В постоянного тока / крышка 2200 мкФ-50 В на трансформаторе.

Мой ответ:

Привет, убедитесь, что катушка реле подключена к выпрямленному постоянному току от трансформатора 12-0-12. Контакты реле должны быть подключены только к батарее и светодиоду.

Отзыв:

Во первых спасибо за ответ.

1. Да, катушка реле подключена к выпрямленному постоянному току.

2. Если я подключу контакты реле только к батарее / светодиоду, то как будет заряжаться батарея при включенной сети?
Если я ничего не упускаю …

Конструкция

Вышеупомянутая схема не требует пояснений и показывает конфигурацию для реализации простой схемы аварийной лампы с переключением светодиодного реле.

Использование реле без трансформатора

Это новая запись , которая показывает, как одиночное реле можно использовать для изготовления аварийной лампы с зарядным устройством.

Реле может быть любым обычным реле на 400 Ом на 12В.

При наличии сетевого переменного тока реле запитывается от выпрямленного емкостного источника питания, который соединяет контакты реле с его замыкающим контактом. Теперь батарея заряжается через этот контакт через резистор 100 Ом. Стабилитрон 4 В гарантирует, что 3,7-я ячейка никогда не перезарядится.

При сбое в сети переменного тока реле деактивируется, и его контакты замыкаются на нормально замкнутых клеммах. Клеммы N / C теперь соединяют светодиоды с батареей, мгновенно загорая ее через резистор 100 Ом.

Если у вас есть какие-либо конкретные вопросы, задавайте их в поле для комментариев.

7) Простая схема аварийной лампы с использованием светодиодов мощностью 1 Вт

Здесь мы изучаем простую схему аварийной лампы мощностью 1 Вт с использованием литий-ионной батареи. Дизайн был заказан одним из активных читателей этого блога, г-ном Харуном Хуршидом.

Технические характеристики

Можете ли вы помочь мне разработать схему для зарядки 3,7-вольтовой батареи nokia
, используя обычную схему зарядного устройства для мобильных телефонов Nokia, и использовать эту батарею для освещения светодиодов мощностью 1 Вт, подключенных параллельно, должен быть световой индикатор, а также автоматический включение системы в случае сбоя электропитания, пожалуйста, рассмотрите мою идею и дизайн. быть легко построенным с помощью приведенной ниже схемы:

Добавление контроля тока для светодиода

Rx = 0.7 / 0,3 = 2,3 Ом 1/4 Вт

Напряжение источника питания зарядного устройства сотового телефона снижается примерно до 3,9 В за счет добавления диодов в положительный контур источника питания. Это необходимо подтвердить с помощью цифрового мультиметра перед подключением ячейки.

Напряжение должно быть ограничено примерно до 4 В, чтобы аккумулятор никогда не превышал предел избыточного заряда.

Хотя указанное выше напряжение не позволяет аккумулятору полностью и оптимально заряжаться, оно гарантирует, что элемент не будет поврежден из-за чрезмерного заряда.

PNP-транзистор удерживается с обратным смещением, пока сетевой переменный ток остается активным, в то время как литий-ионный аккумулятор постепенно заряжается.

В случае сбоя в сети переменного тока транзистор включается с помощью резистора 1 кОм и мгновенно загорается светодиод мощностью 1 Вт, подключенный между его коллектором и землей.

Вышеуказанная конструкция также может быть реализована с использованием бестрансформаторной схемы питания. Давайте изучим всю конструкцию:

Перед тем, как перейти к деталям схемы, следует отметить, что предлагаемая ниже конструкция не изолирована от сети и поэтому чрезвычайно опасна для прикосновения, и она не была проверена на практике.Создавайте его, только если лично уверены в дизайне.

Двигаясь дальше, данная схема светодиодного аварийного освещения мощностью 1 Вт с использованием литий-ионных элементов выглядит довольно простой конструкцией. Давайте изучим работу со следующими пунктами.

Это, по сути, регулируемая бестрансформаторная схема источника питания, которую также можно использовать в качестве схемы драйвера светодиода мощностью 1 Вт.

Настоящая конструкция, возможно, станет очень надежной благодаря тому, что здесь эффективно устраняются опасности, обычно связанные с бестрансформаторными источниками питания.

Конденсатор емкостью 2 мкФ вместе с 4 диодами на 4007 дюймов образуют стандартный емкостный источник питания, работающий от сети.

Добавление эмиттерного повторителя для регулирования напряжения

Предыдущий каскад, который состоит из эмиттерного повторителя и связанных с ним пассивных частей, формирует стандартный регулируемый стабилитрон.

Основная функция этой сети эмиттерных повторителей — ограничить доступное напряжение до точных уровней, установленных предустановкой.

Здесь должно быть установлено около 4.5 В, которое становится зарядным напряжением для литий-ионного элемента. Конечное напряжение, которое достигает ячейки, составляет около 3,9 В из-за наличия последовательного диода 1N4007.

Транзистор 8550 действует как переключатель, который активируется только при отсутствии питания через емкостный каскад, то есть при отсутствии сети переменного тока.

При наличии сетевого питания транзистор удерживается с обратным смещением из-за прямого плюса от мостовой схемы к базе транзистора.

Так как напряжение зарядки ограничено значением 3.При напряжении 9 В аккумулятор остается чуть ниже предела полной зарядки, поэтому опасность перезарядки никогда не возникает.

При отсутствии сетевого питания транзистор проводит и подключает напряжение ячейки к подключенному 1-ваттному светодиоду через коллектор и землю транзистора, 1-ваттный светодиодный индикатор горит ярко …. при восстановлении сетевого питания светодиод переключается Сразу выключить.

Если у вас есть дополнительные сомнения или вопросы относительно вышеуказанной схемы светодиодной аварийной лампы мощностью 1 Вт с использованием литий-ионной батареи, не стесняйтесь размещать их в своих комментариях.

8) Автоматическая цепь аварийного светодиодного освещения мощностью от 10 до 1000 Вт

Следующая восьмая концепция объясняет очень простую, но выдающуюся схему автоматической аварийной лампы мощностью от 10 до 1000 Вт. Схема также включает функцию автоматического отключения при повышении напряжения и низковольтной батарее.

Функционирование всей схемы можно понять с помощью следующих пунктов:

Работа схемы

Ссылаясь на приведенную ниже принципиальную схему, трансформатор, мост и связанный с ним конденсатор 100 мкФ / 25 В образуют стандартную схему понижающего переменного тока в постоянный.

Нижнее реле SPDT напрямую связано с вышеуказанным выходом источника питания, так что оно остается активным, когда сеть подключена к цепи.

В описанной выше ситуации замыкающие контакты реле остаются подключенными, в результате чего светодиод выключен (поскольку он подключен к замыкающему контакту реле).

Это обеспечивает переключение светодиодов, следя за тем, чтобы светодиоды включались только при отсутствии сетевого питания.

Однако положительный вывод от батареи не связан напрямую со светодиодным модулем, а идет через замыкающие контакты другого реле (верхнее реле).

Это реле интегрировано со схемой датчика высокого / низкого напряжения, предназначенной для определения условий напряжения батареи.

Предположим, что аккумулятор находится в разряженном состоянии, при включении сети реле остается отключенным, так что выпрямленный постоянный ток может достигать аккумулятора через верхние замыкающие контакты реле, инициируя процесс зарядки подключенного аккумулятора.

Когда напряжение батареи достигает потенциала «полной зарядки», в соответствии с настройкой предустановки 10 K, реле срабатывает и соединяется с батареей через свои замыкающие контакты.

Теперь, в описанной выше ситуации, при отказе сети светодиодный модуль может получать питание через вышеуказанное реле и замыкающие контакты нижнего реле и загораться.

Поскольку используются реле, допустимая мощность становится достаточно высокой. Таким образом, схема способна поддерживать мощность свыше 1000 Вт (лампа) при условии, что контакты реле соответствующим образом рассчитаны на предпочтительную нагрузку.

Завершенную схему с добавленной функцией можно увидеть ниже:

Схема была нарисована Mr.Шрирам К.П., для подробностей, пожалуйста, пройдите обсуждение комментариев между мной и мистером Шрирамом.

9) Цепь аварийного освещения с использованием лампы фонарика

В этой 9 идее мы обсуждаем изготовление простой аварийной лампы с использованием лампы фонарика 3V / 6V.

Несмотря на то, что сегодня в мире светодиодов используется обычная лампа для фонарика, она также может считаться полезным кандидатом, излучающим свет, особенно потому, что ее настраивать гораздо проще, чем светодиод.

Показанная принципиальная схема довольно проста для понимания, в качестве первичного переключающего устройства используется транзистор PNP.

Прямой источник питания обеспечивает питание цепи при наличии сети.

Работа цепи

Пока присутствует питание, транзистор T1 остается смещенным положительно и, следовательно, остается выключенным.

Это предотвращает попадание заряда батареи в лампочку и сохраняет ее выключенной.

Сетевое питание также используется для зарядки соответствующей батареи через диод D2 и токоограничивающий резистор R1.

Однако в момент выхода из строя сети переменного тока T1 мгновенно смещается в прямом направлении, он проводит и позволяет аккумулятору проходить через него, что в конечном итоге включает лампочку и аварийный свет.

Все устройство можно отрегулировать внутри стандартной коробки адаптера переменного / постоянного тока и подключить непосредственно к существующей розетке.

Лампа должна выступать за пределы коробки, чтобы свет достигал внешнего окружения.

Список деталей

  • R1 = 470 Ом,
  • R2 = 1K,
  • C2 = 100 мкФ / 25 В,
  • Лампочка = маленькая лампочка фонарика,
  • Батарея = 6 В, перезаряжаемый,
  • Трансформатор = 0-9 В , 500 мА

Конструкция и схема

10) 40-ваттная светодиодная цепь аварийного лампового освещения

В 10-м потрясающем дизайне рассказывается о простой, но эффективной 40-ваттной светодиодной аварийной ламповой цепи, которую можно установить дома для получения бесперебойного освещения на в то же время экономия электроэнергии и денег.

Введение

Возможно, вы читали одну из моих предыдущих статей, в которой объяснялась система уличного светодиодного освещения мощностью 40 Вт. Концепция энергосбережения почти такая же, с помощью схемы ШИМ, однако расположение светодиодов здесь выполнено совершенно другим способом.

Как следует из названия, настоящая идея — это светодиодная трубка, и поэтому светодиоды сконфигурированы по прямой горизонтальной схеме для лучшего и эффективного распределения света.

Схема также имеет дополнительную систему аварийного резервного питания от батареи, которая может использоваться для получения непрерывного освещения от светодиодов даже при отсутствии нормального сетевого переменного тока.

Благодаря схеме ШИМ полученная резервная копия может длиться более 25 часов при каждой перезарядке батареи (номинальной мощностью 12 В / 25 Ач).

Печатная плата будет строго необходима для сборки светодиодов. Печатная плата должна быть алюминиевой. Расположение треков показано на рисунке ниже.

Как видно, светодиоды разнесены на расстоянии примерно 2,5 см или 25 мм друг от друга для улучшения максимального и оптимального распределения света.

Светодиоды могут быть размещены в одном ряду или в паре рядов.

Однорядный узор показан на приведенном ниже макете, из-за нехватки места было выполнено только два последовательных / параллельных соединения, узор продолжается дальше с правой стороны печатной платы, так что все 40 светодиодов включаются.

Обычно предлагаемая схема светодиодной лампы мощностью 40 Вт, или, другими словами, схема ШИМ может питаться от любого стандартного блока питания 12 В / 3 А для обеспечения компактности и приличного внешнего вида.

После сборки вышеуказанной платы выходные провода должны быть подключены к показанной ниже схеме ШИМ через коллектор транзистора и положительный.

Напряжение питания должно подаваться от любого стандартного адаптера SMPS, как указано в предыдущем разделе статьи.

Светодиодный трипл мгновенно загорится, освещая помещение ярким светом прожектора.

Можно предположить, что освещение эквивалентно 40-ваттному FTL с потребляемой мощностью менее 12 Вт, это большая экономия энергии.

Аварийный режим работы от батареи

Если аварийное резервное питание предпочтительнее для вышеуказанной схемы, это можно просто сделать, добавив следующую схему.

Давайте попробуем разобраться в конструкции более подробно:

Схема, показанная выше, представляет собой схему 40-ваттной светодиодной лампы с ШИМ-управлением, схема подробно описана в этой статье о 40-ваттной схеме уличного освещения. Вы можете обратиться к нему, чтобы узнать больше о работе его схемы.

Схема автоматического зарядного устройства батареи

Следующий рисунок, показанный ниже, представляет собой схему автоматического зарядного устройства при пониженном и повышенном напряжении с автоматическим переключением реле. Функционирование в целом можно понять с помощью следующих пунктов:

IC 741 был сконфигурирован как датчик низкого / высокого напряжения батареи и соответствующим образом активирует соседнее реле, подключенное к транзистору BC547.

Предположим, что сеть присутствует, а аккумулятор частично разряжен. Напряжение от ИИП переменного / постоянного тока достигает аккумулятора через замыкающие контакты верхнего реле, которое остается в отключенном положении из-за напряжения аккумулятора, которое может быть ниже порогового уровня полного заряда, предположим, что уровень полного заряда равен 14,3 В (устанавливается предустановкой 10K).

Поскольку нижняя обмотка реле подключена к напряжению SMPS, остается активным, так что питание SMPS достигает драйвера светодиода PWM 40 Вт через замыкающие контакты нижнего реле.

Таким образом, светодиоды остаются включенными при использовании постоянного тока от сетевого адаптера SMPS, а также аккумулятор продолжает заряжаться, как описано выше.

Когда аккумулятор полностью заряжен, на выходе IC741 появляется высокий уровень, активируя ступень управления реле, верхнее реле переключается и мгновенно подключает аккумулятор к нормально замкнутому контакту нижнего реле, переводя аккумулятор в состояние ожидания.

Однако до тех пор, пока не будет подключена сеть переменного тока, нижнее реле не может отключиться, и поэтому указанное выше напряжение от заряженной батареи не может достигнуть платы светодиодов.

Теперь, если предположим, что сеть переменного тока пропала, нижний контакт реле смещается в точку N / C, мгновенно подключает питание от батареи к цепи светодиода PWM, ярко освещая светодиоды мощностью 40 Вт.

Светодиоды потребляют энергию батареи до тех пор, пока батарея не опустится ниже порогового значения низкого напряжения или пока не будет восстановлено питание от сети.

Установка порога низкого заряда батареи выполняется путем регулировки предустановки обратной связи 100K на контактах 3 и 6 микросхемы IC741.

К вам

Итак, друзья, это были 10 простых автоматических схем аварийного освещения, для вашего удовольствия от строительства! Если у вас есть предложения или улучшения для упомянутых схем, сообщите нам, используя поле для комментариев ниже.

О компании Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть запрос, связанный со схемой, вы можете взаимодействовать с ним через комментарии, я буду очень рад помочь!

.

Однолинейная схема системы передачи и распределения переменного тока

Передача и распределение

Система проводников, с помощью которой электроэнергия передается от генерирующей станции к помещению потребителя, в общем случае может быть разделена на две отдельные части, т. Е.

Single-line diagram of the A.C. electrical system Однолинейная схема электрической системы переменного тока (на фото подстанция 110 кВ; кредит: energo-pro.ge)
  1. Система передачи и
  2. Система распределения

Каждую часть можно снова разделить на две части: первичная передача и вторичная передача и аналогично первичное распределение и вторичное распределение, а затем, наконец, система снабжения отдельных потребителей.Типичная компоновка генерирующей сети , сети передачи и распределения большой системы будет состоять из элементов, как показано на однолинейной схеме на Рисунке 1, хотя необходимо понимать, что один или несколько из этих элементов могут отсутствовать. в любой конкретной системе.

Например, в определенной системе может не быть вторичной передачи, а в другом случае, когда генерирующая станция находится поблизости, может не быть передачи, и сама система распределения может начинаться с шин генератора.

В настоящее время генерация и передача почти исключительно трехфазные. Вторичная передача также является трехфазной, тогда как передача конечному потребителю может быть трехфазной или однофазной, в зависимости от требований потребителей.

Single-line diagram of transmission and distribution network. Central station where power is generated by 3-phase alternators. Рисунок 1 — Однолинейная схема передающей и распределительной сети. Центральная станция, на которой электроэнергия вырабатывается трехфазными генераторами переменного тока.

На рисунке 1 C.S. представляет центральную станцию ​​ , где мощность вырабатывается 3-фазными генераторами переменного тока на 6.6 кВ, или 11 кВ, или 13,2 кВ, или даже 32 кВ. Затем напряжение повышается с помощью подходящих 3-фазных трансформаторов для передачи.

Принимая генерируемое напряжение как 11 кВ , трехфазные трансформаторы повышают его до 132 кВ, как показано. Первичная или высоковольтная передача осуществляется на 132 кВ *.

Напряжение передачи в значительной степени определяется экономическими соображениями . Для передачи высокого напряжения требуются проводники меньшего сечения, что приводит к экономии меди или алюминия.Но при этом увеличиваются затраты на изоляцию линии и прочие расходы.

Следовательно, экономичное напряжение передачи — это такое напряжение, при котором экономия меди или алюминия не компенсируется //

  1. Повышенными затратами на изоляцию линии,
  2. Увеличенными размерами конструкций линий передач и
  3. Увеличение размеров генерирующих станций и подстанций.

Приблизительным основанием для определения наиболее экономичного напряжения передачи является использование 650 вольт на км линии передачи .Например, если длина линии передачи составляет 200 км, то наиболее экономичное напряжение передачи будет 200 × 650 ≅ 132 000 В или 132 кВ.

Затем трехфазная трехпроводная воздушная линия высоковольтной передачи оканчивается понижающими трансформаторами на подстанции, известной как приемная станция (RS) , которая обычно находится на окраине города, потому что это небезопасно. подвести высоковольтные воздушные линии электропередачи в густонаселенные районы. Здесь напряжение с понижено до 33 кВ .

Здесь можно отметить, что для обеспечения непрерывности обслуживания передача всегда осуществляется по дублированным линиям .

33 KV power substation Электроподстанция 33 кВ (фото предоставлено statensolar.com)

От приемной станции мощность затем передается на 33 кВ по подземным кабелям (и иногда по воздушным линиям) на различные подстанции (ПС), расположенные на различных стратегических объектах. точки в городе. Это известно как вторичная передача или низковольтная передача .С этого момента начинается первичное и вторичное распространение.

На подстанции (ПС) напряжение снижено с 33кВ до 3,3кВ 3-проводное для первичного распределения. Потребители, потребности которых превышают 50 кВА , обычно получают питание от ПС специальными фидерами на 3,3 кВ .

Вторичное распределение выполнено на 400/230 В , для чего напряжение снижено с 3,3 кВ до 400 В на распределительных подстанциях. Фидеры, излучающие от распределительной подстанции, подают электроэнергию в распределительные сети в соответствующих областях.

Если распределительная сеть находится на большом расстоянии от подстанции, то они получают питание от вторичных обмоток распределительных трансформаторов, которые либо установлены на столбах, либо размещены в киосках в подходящих точках распределительных сетей.

Наиболее распространенной системой вторичного распределения является 400/230 В, 3-фазная 4-проводная система . Однофазная осветительная нагрузка жилого помещения подключается между любой линией и нейтралью, тогда как трехфазная нагрузка двигателя 400 В подключается напрямую к трехфазным линиям.

Следует отметить, что система распределения низкого напряжения подразделяется на фидеры , распределители и сервисные сети .

Ни одному потребителю не предоставляется прямое подключение от фидеров, вместо этого потребители подключаются к распределительной сети через свои служебные сети. Распределители переменного тока во многом схожи с распределителями постоянного тока с точки зрения конструктивных особенностей и ограничений на падение напряжения.

Подведем итоги //

Суммируя напряжения передачи и распределения, которые мы имеем //

  1. Напряжение генерации: 6.6, 11, 13,2 или 33 кВ.
  2. Передача высокого напряжения: 220 кВ, 132 кВ, 66 кВ.
  3. Высокое напряжение или первичное распределение: 3,3, 6,6 кВ.
  4. Распределение низкого напряжения:
    1. AC 400/230, 3 фазы, 4 провода
    2. DC 400/230; 3-проводная система

Стандартная частота для работы переменного тока составляет 50 Гц или 60 Гц (как в США). Для однофазных тяговых работ также используются частоты 25 или 16 2/3 Гц.

Ссылка // Передача и распределение постоянного тока — B.L. Theraja

.
Опубликовано в категории: Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *