Формулы площади и программы для расчета площадей
Содержание:
Площадь геометрической фигуры — часть поверхности, ограниченная замкнутым контуром данной фигуры. Величина площади выражается числом заключающихся в него квадратных единиц.
Формулы площади треугольника
1-ая формула
S — площадь треугольника
a, b — длины 2-х сторон треугольника
С — угол между сторонами a и b
2-ая формула
S — площадь треугольника
a — длина стороны треугольника
h — длина высоты, опущенной на сторону a
3-ья формула
S — площадь треугольника
a, b, c — длины 3-х сторон треугольника
p — полупериметр треугольника
4-ая формула
S — площадь треугольника
r — радиус вписанной окружности
p — полупериметр треугольника
5-ая формула
S — площадь треугольника
a, b, c — длины 3-х сторон треугольника
R — радиус описанной окружности
См. также: Программа для расчета площади треугольника.
Формулы площади квадрата:
1) Площадь квадрата равна квадрату длины его стороны (a).
2) Площадь квадрата равна половине квадрата длины его диагонали (d).
S — площадь квадрата
a — длина стороны квадрата
d — длина диагонали квадрата
См. также: Программа для расчета площади квадрата.
Формула площади прямоугольника:
1) Площадь прямоугольника равна произведению длин двух его смежных сторон (a, b).
S — площадь прямоугольника
a — длина 1-ой стороны прямоугольника
b — длина 2-ой стороны прямоугольника
См. также: Программа для расчета площади прямоугольника.
Формула площади параллелограмма:
1) Площадь параллелограмма равна произведению длины его основания на длину высоты (a, h).
S — площадь параллелограмма
a — длина основания
h — длина высоты
См. также: Программа для расчета площади параллелограмма.
Формула площади трапеции:
S — площадь трапеции
a — длина 1-ого основания
b — длина 2-ого основания
h — длина высоты трапеции
См. также: Программа для расчета площади трапеции.
Формулы площади ромба:
1) Площадь ромба равна произведению длины его стороны на высоту (a, h).
2) Площадь ромба равна половине произведения его диагоналей.
S — площадь ромба
a — длина основания ромба
h — длина высоты ромба
d2 — длина 2-ой диагонали
См. также: Программа для расчета площади ромба.
Формула площади круга:
1) Площадь круга равна произведению квадрата радиуса на число пи (3.1415).
2) Площадь круга равна половине произведения длины ограничивающей его окружности на радиус.
S — площадь круга
π — число пи (3.1415)
r — радиус круга
См. также: Программа для расчета площади круга.
Формула площади эллипса:
1) Площадь эллипса равна произведению длин большой и малой полуосей эллипса на число пи (3.1415).
π — число пи (3.1415)
a — длина большой полуоси
b — длина малой полуоси
См. также: Программа для расчета площади эллипса.
Слишком сложно?
Формулы площади не по зубам? Тебе ответит эксперт через 10 минут!
Формула вычисления площади для всех геометрических фигур
Стандартное обозначение площади — S
Площадь
Пусть длина стороны квадрата равна a, тогда формул квадрата:
S = a ⋅ a = a2
Прямоугльник
Пусть длины сторон прямоугольника равны a и b
S = a ⋅ b
Параллелограмм
Пусть длины сторон параллелограмма равны a и b и ha
Формула площади параллелограмма:
S = a ⋅ ha = b ⋅ hb
Трапеция
Допустим, что длины параллельных сторон трапеции имеют длину a и b и расстояние между двумя основами s h(the trapezoid altitude).2\cdot \text{ctg}(\frac{\pi}{n})$
n — число ребер(вершин).
$\pi=3,14159265359$
Формулы площадей всех основных фигур
1. Формула площади равнобедренной трапеции через стороны и угол
b — верхнее основание
a — нижнее основание
c — равные боковые стороны
α — угол при нижнем основании
Формула площади равнобедренной трапеции через стороны, (S):
Формула площади равнобедренной трапеции через стороны и угол, (S):
2. Формула площади равнобокой трапеции через радиус вписанной окружности
R — радиус вписанной окружности
D — диаметр вписанной окружности
O — центр вписанной окружности
H — высота трапеции
α, β — углы трапеции
Формула площади равнобокой трапеции через радиус вписанной окружности, (
СПРАВЕДЛИВО, для вписанной окружности в равнобокую трапецию:
3. Формула площади равнобедренной трапеции через диагонали и угол между ними
d — диагональ трапеции
α, β — углы между диагоналями
Формула площади равнобедренной трапеции через диагонали и угол между ними, (S):
4. Формула площади равнобедренной трапеции через среднюю линию, боковую сторону и угол при основании
m — средняя линия трапеции
c — боковая сторона
α, β — углы при основании
Формула площади равнобедренной трапеции через среднюю линию, боковую сторону и угол при основании, (S ):
5. Формула площади равнобедренной трапеции через основания и высоту
b — верхнее основание
a — нижнее основание
h — высота трапеции
Формула площади равнобедренной трапеции через основания и высоту, (
Площадь прямоугольника
Автор Ольга Андрющенко На чтение 5 мин. Просмотров 4.3k. Опубликовано
Площадь прямоугольника очень часто требуется найти в задачах по геометрии. И не только — в повседневной жизни очень многие плоскости имеют форму прямоугольника и надо найти площадь прямоугольника. Как это сделать? Давайте рассмотрим все формулы и примеры.
Мы учимся вычислять площадь прямоугольника или площадь прямоугольника в школе. Однако, когда вы станете старше, вполне возможно, что вы не будете помнить, как найти площадь прямоугольника. Для начала давайте вспомним, что такое прямоугольник.
Что такое прямоугольник
Давайте не будем «срезать углы». Чтобы иметь возможность вычислить площадь прямоугольника, естественно, что мы сначала знаем, что это такое. Поэтому для начала необходимо помнить, что прямоугольник является четырехугольником. Другими словами, это геометрическая фигура, которая имеет четыре стороны и четыре прямых угла. Противоположные стороны прямоугольника имеют одинаковую длину. Две самые длинные стороны представляют его длину, а две другие стороны представляют его ширину.
Не все четырехугольники являются прямоугольниками. Действительно, обязательно, чтобы они имели следующие свойства, чтобы мы могли сказать, что это действительно прямоугольник:
Характеристики прямоугольника
Противоположные стороны должны быть параллельны.
- Диагонали прямоугольника должны быть одинаковой длины. Они также пересекаются в своей середине.
- Точка пересечения диагоналей прямоугольника называется центром симметрии.
- Кроме того, прямоугольник также является параллелограммом, так как его стороны попарно параллельны. Однако это частный случай параллелограмма. На самом деле он имеет четыре прямых угла, и его две параллельные стороны не должны иметь одинаковую длину. В противном случае все четыре стороны имеют одинаковую длину — тогда мы говорим о квадрате.
Формула площади прямоугольника
Как рассчитать площадь прямоугольника? Обратите внимание, что базовую формулу для вычисления площади (или площади) прямоугольника очень легко запомнить. Вы просто должны умножить его длину на ширину.
Площадь прямоугольника равна его длине, умноженной на ширину.
Например, площадь прямоугольника длиной 4 сантиметра и шириной 2 сантиметра равна 4 x 2 = 8 см².
Площадь поверхности прямоугольника длиной L и шириной l равна: S = L x l
Принцип расчета площади прямоугольника
Чтобы вычислить площадь прямоугольника, мы посчитаем количество единиц областей, которые содержит прямоугольник:
В прямоугольнике выше 12 квадратов по 1 см². Его площадь составляет 12 см² (4 х 3).
Примечание. В этом расчете длина L и ширина l прямоугольника должны быть выражены в одной и той же единице длины. Результат будет выражен в той же единице измерения, возведенной в квадрат. Например, если длина прямоугольника выражена в метрах, ширина также должна быть выражена в метрах, а результат формулы для расчета площади прямоугольника даст результат в квадратных метрах (м²).
Площадь прямоугольника эквивалентна его территории. Территория — это термин, используемый для обозначения меры площади земли (мы используем единицу измерения гектар, а не м²). Гектар — это метрическая мера земельной площади, равная 10 000 м2.
Пример расчета
Рассмотрим прямоугольник длиной L = 4 см и шириной l = 2 см. Площадь S его поверхности равна:
A = L x l = 4 x 2 = 8 см².
Как рассчитать площадь прямоугольника, если мы знаем только одну сторону и диагональ
Можно определить площадь прямоугольника другим способом. Формула, которая была изложена ранее, не является единственным методом, который можно использовать. Действительно, вполне возможно сделать это по-другому. Для этого нам нужно будет, по крайней мере, измерить только одну сторону и необходимо знать длину диагонали. В этом случае мы делаем расчет, используя теорему Пифагора.
Что такое теорема Пифагора
Это формула, которая используется для определения длины третьей стороны прямоугольного треугольника, когда вы уже знаете значение двух других его сторон.
Обратите внимание, что прямоугольник состоит из двух прямоугольных треугольников. Действительно, диагональ представляет гипотенузу этого типа треугольника.
Теорема Пифагора
Кроме того, это также самая длинная сторона, которую можно найти на рисунке. Длина и ширина, с другой стороны, представляют две другие его стороны (скажем, смежные стороны). Это причина, почему можно использовать эту формулу для определения площади прямоугольника.
Теорема Пифагора основана на довольно простом уравнении, которое выглядит следующим образом: a² + b² = c². Где a и b используются для представления двух соседних сторон — катетов прямоугольного треугольника, а c представляет гипотенузу треугольника.
Чтобы полностью понять использование этой формулы, мы начнем с очень конкретного примера. Для этого предположим, что диагональ прямоугольника 10 см, а другая сторона 6 см. Если мы ссылаемся на формулу a² + b² = c², следовательно, сторона «a» составляет 6 см, а гипотенуза «c» — 10 см. Теперь нам нужно просто заменить буквенные значения числовыми значениями, которые у нас есть. Что дает нам:
a² + b² = c²
6² + b² = 10²
b² = 10² — 6²
b² = 100 — 36
b² = 64
b= 8
Мы получаем длину смежной стороны прямоугольника «b», которая равна 8 см. Теперь мы можем рассчитать площадь прямоугольника:
S = 8 см х 6 см
Следовательно, S = 48 см².
Как считается площадь прямоугольника формула. Площадь прямоугольника онлайн калькулятор. Где используется расчет периметра прямоугольника
Одна из первых формул, которая изучается в математике, связана с тем, прямоугольника. Она же является и самой часто используемой. Прямоугольные поверхности окружают нас повсюду, поэтому часто требуется знать их площади. Хотя бы для того, чтобы узнать, хватит ли имеющейся в наличии краски для покраски полов.
Какие единицы измерения площади существуют?
Если говорить о той, которая принята за международную, то это будет квадратный метр. Его удобно использовать при расчете площадей стен, потолка или пола. В них указывается площадь жилья.
Когда речь идет о меньших предметах, то вводят квадратные дециметры, сантиметры или миллиметры. Последние нужны, если фигура не больше ногтя.
При измерении площади города или страны самыми подходящими оказываются квадратные километры. Но есть еще и единицы, которые используют для того, чтобы указать размер площади: ар и гектар. Первая из них еще называется соткой.
Как быть, если заданы стороны прямоугольника?
Подобным образом рассчитывается который является частным случаем прямоугольника. Так как у него все стороны равны, то произведение становится квадратом буквы а .
Как быть, если фигура изображена на клетчатой бумаге?
В этой ситуации нужно полагаться на количество клеточек внутри фигуры. По их числу бывает просто посчитать площадь прямоугольника. Но это можно сделать тогда, когда стороны прямоугольника совпадают с линиями клеток.
Часто имеет место такое положение прямоугольника, при котором его стороны наклонены по отношению к разлиновке бумаги. Тогда количество клеток определить сложно, поэтому расчет площади прямоугольника усложняется.
Потребуется сначала узнать площадь прямоугольника, который можно прочертить по клеточкам точно вокруг данного. Это просто: перемножить высоту и ширину. Потом вычесть из получившегося значения площади всех А их четыре. К слову, их рассчитывают как половину произведения катетов.
Итоговый результат даст значение площади данного прямоугольника.
Как поступить, если стороны неизвестны, зато даны его диагональ и угол между диагоналями?
До того в этой ситуации нужно вычислить его стороны, чтобы воспользоваться уже знакомой формулой. Поначалу потребуется вспомнить свойство его диагоналей. Они равны и делятся точкой пересечения пополам. Можно увидеть на чертеже, что диагонали делят прямоугольник на четыре равнобедренных треугольника, которые попарно равны друг другу.
Равные стороны этих треугольников определяются как половины диагонали, которая известна. То есть в каждом треугольнике есть две стороны и угол между ними, которые даны в задаче. Можно воспользоваться
Одна сторона прямоугольника будет вычислена по формуле, в которой фигурируют равные стороны треугольника и косинус заданного угла. Для вычисления второй значение косинуса придется брать от угла, равного разности 180 и известного угла.
Что делать, если в задаче дан периметр?
Обычно в условии указывается еще и соотношение длины и ширины. Вопрос о том, как посчитать площадь прямоугольника, в этом случае проще на конкретном примере.
Допустим, что в задаче периметр некоторого прямоугольника равен 40 см. Известно также, что его длина в полтора раза больше ширины. Необходимо узнать его площадь.
Решение задачи начинается с записи формулы периметра. Его удобнее расписать как сумму длины и ширины, каждую из которых умножить на два по отдельности. Это будет первым уравнением в системе, которую потребуется решить.
Второе связано с известным по условию соотношением сторон. Первая сторона, то есть длина, равна произведению второй (ширины) и числа 1,5. Это равенство нужно подставить в формулу для периметра.
Получится, что он равен сумме двух одночленов. Первый — произведение 2 и неизвестной ширины, второй — произведение чисел 2 и 1,5 и той же ширины. В этом уравнении всего одна неизвестная — это ширина. Нужно ее сосчитать, а потом воспользоваться вторым равенством, чтобы сосчитать длину. Останется только перемножить эти два числа, чтобы узнать площадь прямоугольника.
Расчеты дают такие величины: ширина — 8 см, длина — 12 см, а площадь — 96 см 2 . Последнее число — ответ рассмотренной задачи.
Начиная с 5 класса, ученики начинают знакомиться с понятием площадей разных фигур. Особая роль отводится площади прямоугольника, так как эта фигура одна из наиболее простых в изучении.
Понятия площади
Любая фигура имеет свою площадь, а вычисление площади отталкиваются от единичного квадрата, то есть от квадрата с длинной стороны в 1 мм, либо 1 см, 1 дм и так далее.2$.
Диагонали разделяет прямоугольник на 4 фигуры – 4 треугольника. При этом треугольники попарно равны. Если провести диагональ в прямоугольнике, то она разделяет фигуру на два равных прямоугольных треугольника.
Диагонали не является биссектрисами углов прямоугольника. А также если провести биссектрисы каждого угла, то при их пересечении получится прямоугольник.
Что мы узнали?
Мы научились находить площадь прямоугольника. Ту или иную формулы нахождения площади используют в зависимости от исходных данных. Также стоит не забывать, что если в задании разные единицы измерения сторон необходимо перевести их одну.
Тест по теме
Оценка статьи
Средняя оценка: 4.4 . Всего получено оценок: 292.
Урок на тему: «Формулы определения площади треугольника, прямоугольника, квадрата»
Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания. Все материалы проверены антивирусной программой.
Обучающие пособия и тренажеры в интернет-магазине «Интеграл» для 5 класса
Тренажер к учебнику И.И.Зубаревой и А.Г.Мордковича
Тренажер к учебнику Г.В.Дорофеева и Л.Г.Петерсона
Определение и понятие площади фигуры
Чтобы лучше понять, что такое площадь фигуры, рассмотрим рисунок.Эта произвольная фигура разбита на 12 маленьких квадратика. Сторона каждого квадратика равна 1 см. А площадь каждого квадратика равна 1 квадратному сантиметру, что записывается так: 1 см 2 .
Тогда площадь фигуры равна 12 квадратным сантиметрам. В математике площадь обозначается латинской буквой S.
Значит, площадь нашей фигуры равна: S фигуры = 12 см 2 .
Площадь фигуры равна площади всех маленьких квадратиков, из которых она состоит!
Ребята, запомните!
Площадь измеряется квадратными единицами длины.
Единицы измерения площади:
1. Квадратный километр — км 2 (когда площади очень большие, например, страна или море).
2. Квадратный метр — м 2 (вполне подходит для того, чтобы измерять площадь участка или квартиры).
3. Квадратный сантиметр — см 2 (обычно используется на уроках математики, когда рисуют фигуры в тетради).
4. Квадратный миллиметр — мм 2 .
Площадь треугольника
Рассмотрим два вида треугольников: прямоугольный и произвольный.Чтобы найти площадь прямоугольного треугольника необходимо знать длину основания и высоту. В прямоугольном треугольнике высоту заменяет одна из сторон. Поэтому в формулу площади треугольника вместо высоты подставляем одну из сторон.
В нашем примере стороны равны 7 см и 4 см.
Формула для расчета площади треугольника записывается так:
S прямоугольного треугольника АВС = ВС * СА: 2
S прямоугольного треугольника АВС = 7 см * 4 см: 2 = 14 см 2
Теперь рассмотрим произвольный треугольник.
Для такого треугольника необходимо провести высоту к основанию.
В нашем примере высота равна 6 см, а основание равно 8 см. Как и в предыдущем примере, рассчитываем площадь по формуле:
S произвольного треугольника АВС = ВС * h: 2.
Подставим в формулу наши данные и получим:
S произвольного треугольника АВС = 8 см * 6 см: 2 = 24 см 2 .
Площадь прямоугольника и квадрата
Возьмем прямоугольник АВСD со сторонами 5 см и 8 см.Формула расчета площади прямоугольника записывается так:
S прямоугольника АВСD = АВ * ВС.
S прямоугольника АВСD = 8 см * 5 см = 40 см 2 .
Теперь рассчитаем площадь квадрата. В отличии от прямоугольника и треугольника, для нахождения площади квадрата необходимо знать только одну сторону. В нашем примере сторона квадрата ABCD равна 9 см. S квадрата АВСD = АВ * ВС = АВ 2 .
Подставим в формулу наши данные и получим:
S квадрата АВСD = 9 см * 9 см = 81 см 2 .
Для вычисления площади и периметра квадрата нужно разобраться в понятиях этих величин. Квадрат представляет собой прямоугольник только с четырьмя одинаковыми сторонам, которые имеют между собой угол в 90°. Периметр — это сумма длин всех сторон. Площадь — это произведение длины прямоугольной фигуры на ее ширину.
Площадь квадрата и как ее найти
Как было сказано выше, квадрат — это прямоугольник, имеющий 4 равные стороны, поэтому ответом на вопрос: «как найти площадь квадрата» является формула: S = a*a или S = a 2 , где а — сторона квадрата. Исходя из этой формулы, легко находится сторона квадрата, если известна площадь. Для этого необходимо извлечь квадрат из указанной величины.
Например, S = 121, следовательно, а = √121 = 11. Если заданное значение отсутствует в таблице квадратов, то можно воспользоваться калькулятором: S = 94, а = √94 = 9,7.
Как найти периметр квадратаПериметр квадрата находится по легкой формуле: Р = 4а, где а — сторона квадрата.
Пример:
- сторона квадрата = 5, следовательно, P = 4*5 = 20
- сторона квадрата = 3, следовательно, Р = 4*3 = 12
Но существуют такие задачи, где заведомо обозначена площадь, а нужно найти периметр. При решении нужны формулы, которые представлены ранее.
Например: как найти периметр квадрата, если известна площадь, равная 144?
Шаги решения:
- Выясняем длину одной стороны: а = √144 = 12
- Находим периметр: Р = 4*12 = 48.
Нахождение периметра вписанного квадрата
Существуют еще несколько способов нахождения периметра квадрата. Рассмотрим один из них: нахождение периметра через радиус описанной окружности. Здесь появляется новый термин «вписанный квадрат» — это квадрат, чьи вершины лежат на окружности.
Алгоритм решения:
- так как на рассмотрении квадрат, формулу можно выразить таким образом: a 2 + a 2 = (2r) 2 ;
- затем следует уравнение сделать проще: 2a 2 = 4(r) 2 ;
- делим уравнение на 2: (a 2 ) = 2(r) 2 ;
- извлекаем корень: a = √(2r).
В итоге получаем последнюю формулу: а (сторона квадрата) = √(2r).
- Найденная сторона квадрата умножается на 4, далее применяется стандартная формула по нахождению периметра: P = 4√(2r).
Задача:
Дан квадрат, который вписан в окружность, ее радиус равен 5. Значит, диагональ квадрата равняется 10. Применяем теорему Пифагора: 2(a
2
) = 10
2
, то есть 2a
2
= 100. Делим полученное на два и в результате: a
2
= 50. Так как это не табличное значение, используем калькулятор: а = √50 = 7,07. Умножаем на 4: Р = 4*7,07 = 28,2. Задача решена!
Рассмотрим еще один вопрос
Часто в задачах встречается другое условие: как найти площадь квадрата, если известен периметр?
Мы уже рассмотрели все необходимые формулы, поэтому для решения задач подобного типа, необходимо умело их применять и связывать между собой. Перейдем сразу к наглядному примеру: Площадь квадрата равна 25 см
2
, найдите его периметр.
Шаги решения:
- Находим сторону квадрата: а = √25 = 5.
- Находим сам периметр: Р = 4*а = 4*5 = 20.
Подводя итог, важно напомнить, что такие легкие формулы применимы не только в учебной деятельности, но и повседневной жизни. Периметр и площадь фигуры дети учатся находить еще в начальной школе. В средних классах появляется новый предмет — геометрия, где теорема Пифагора находится в самом начале изучения. Эти азы математики проверяются и по окончанию школы ОГЭ и ЕГЭ, поэтому важно знать эти формулы и правильно их применять.
Площадь сложных геометрических фигур. Как вычислить площадь фигуры. Формулы площади трапеции
Если вы планируете сделать ремонт самостоятельно, то у вас возникнет необходимость составить смету по строительным и отделочным материалам. Для этого вам понадобится рассчитать площадь помещения, в котором вы планируете произвести ремонтные работы. Главным помощником в этом выступает специально разработанная формула. Площадь помещения, а именно ее расчет, позволит вам сэкономить немалые деньги на строительных материалах и направить высвободившиеся денежные ресурсы в более нужное русло.
Геометрическая форма комнаты
Формула расчета площади помещения напрямую зависит от ее формы. Наиболее типичными для отечественных сооружений являются прямоугольные и квадратные комнаты. Однако в ходе перепланировки стандартная форма может искажаться. Комнаты бывают:
- Прямоугольные.
- Квадратные.
- Сложной конфигурации (например, круглые).
- С нишами и выступами.
Каждая из них имеет свои особенности расчета, но, как правило, используется одна и та же формула. Площадь помещения любой формы и размера, так или иначе, поддается вычислению.
Помещение прямоугольной или квадратной формы
Чтобы рассчитать площадь комнаты прямоугольной или квадратной формы, достаточно вспомнить школьные уроки геометрии. Поэтому для вас не должно составить особого труда определить площадь помещения. Формула расчета имеет вид:
S комнаты=A*B, где
А — длина помещения.
В — ширина помещения.
Для измерения этих величин вам понадобится обычная рулетка. Чтобы получить наиболее точные расчёты, стоит измерить стену с обеих сторон. Если значения не сходятся, возьмите за основу среднее значение получившихся данных. Но помните, что любые расчёты имеют свои погрешности, поэтому материал стоит закупать с запасом.
Помещение со сложной конфигурацией
Если ваша комната не попадает под определение «типичной», т.е. имеет форму круга, треугольника, многоугольника, то, возможно, для расчетов вам понадобится другая формула. Площадь помещения с такой характеристикой можно попробовать условно разделить на прямоугольные элементы и произвести расчеты стандартным путем. Если такой возможности у вас нет, тогда воспользуйтесь следующими методиками:
- Формула нахождения площади круга:
S комн.=π*R 2 , где
R — радиус помещения.
- Формула нахождения площади треугольника:
S комн.= √ (P(P — A) х (Р — В) х (Р — С)), где
Р — полупериметр треугольника.
А, В, С — длины его сторон.
Отсюда Р=А+В+С/2
Если в процессе расчета у вас возникли затруднения, то лучше не мучать себя и обратиться к профессионалам.
Площадь помещения с выступами и нишами
Зачастую стены украшают декоративными элементами в форме всевозможных ниш или выступов. Также их наличие может быть обусловлено необходимостью скрыть некоторые неэстетичные элементы вашей комнаты. Наличие выступов или ниш на вашей стене означает, что расчет следует проводить поэтапно. Т.е. сначала находится площадь ровного участка стены, а затем к нему прибавляется площадь ниши или выступа.
Площадь стены находится по формуле:
S стен = Р х С, где
Р — периметр
С — высота
Также нужно учитывать наличие окон и дверей. Их площадь необходимо отнять от получившегося значения.
Комната с многоуровневым потолком
Многоуровневый потолок не так сильно усложняет расчеты, как это кажется на первый взгляд. Если он имеет простую конструкцию, то можно произвести расчеты по принципу нахождения площади стен, осложненных нишами и выступами.
Однако если конструкция вашего потолка имеет дуго- и волнообразные элементы, то целесообразнее определить его площадь с помощью площади пола. Для этого необходимо:
- Найти размеры всех прямых участков стен.
- Найти площадь пола.
- Перемножить длину и высоту вертикальных участков.
- Суммировать получившееся значение с площадью пола.
Пошаговая инструкция по определению общей
площади помещения
- Освободите помещение от ненужных вещей. В процессе замеров вам понадобится свободный доступ ко всем участкам вашей комнаты, поэтому нужно избавиться от всего, что может этому препятствовать.
- Визуально разделите комнату на участки правильной и неправильной формы. Если ваше помещение имеет строго квадратную или прямоугольную форму, то этот этап можно пропустить.
- Сделайте произвольную схему помещения. Этот чертеж нужен для того, чтобы все данные были у вас всегда под рукой. Также он не даст вам возможности запутаться в многочисленных замерах.
- Замеры необходимо производить несколько раз. Это важное правило для исключения ошибок в подсчетах. Также если вы используете убедитесь, что луч лежит ровно на поверхности стены.
- Найдите общую площадь помещения. Формула общей площади помещения заключается в нахождении суммы всех площадей отдельных участков комнаты. Т.е. S общ.= S стен+S пола+S потолка
Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.
Сбор и использование персональной информации
Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.
От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.
Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.
Какую персональную информацию мы собираем:
- Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.
Как мы используем вашу персональную информацию:
- Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
- Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
- Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
- Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.
Раскрытие информации третьим лицам
Мы не раскрываем полученную от Вас информацию третьим лицам.
Исключения:
- В случае если необходимо — в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ — раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
- В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.
Защита персональной информации
Мы предпринимаем меры предосторожности — включая административные, технические и физические — для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.
Соблюдение вашей конфиденциальности на уровне компании
Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.
Площадь геометрической фигуры — численная характеристика геометрической фигуры показывающая размер этой фигуры (части поверхности, ограниченной замкнутым контуром данной фигуры). Величина площади выражается числом заключающихся в нее квадратных единиц.
Формулы площади треугольника
- Формула площади треугольника по стороне и высоте
Площадь треугольника равна половине произведения длины стороны треугольника на длину проведенной к этой стороне высоты - Формула площади треугольника по трем сторонам и радиусу описанной окружности
- Формула площади треугольника по трем сторонам и радиусу вписанной окружности
Площадь треугольника равна произведения полупериметра треугольника на радиус вписанной окружности. где S — площадь треугольника,
— длины сторон треугольника,
— высота треугольника,
— угол между сторонами и,
— радиус вписанной окружности,
R — радиус описанной окружности,
Формулы площади квадрата
- Формула площади квадрата по длине стороны
Площадь квадрата равна квадрату длины его стороны. - Формула площади квадрата по длине диагонали
Площадь квадрата равна половине квадрата длины его диагонали. где S — Площадь квадрата,
— длина стороны квадрата,
— длина диагонали квадрата.
Формула площади прямоугольника
- Площадь прямоугольника равна произведению длин двух его смежных сторон
где S — Площадь прямоугольника,
— длины сторон прямоугольника.
Формулы площади параллелограмма
- Формула площади параллелограмма по длине стороны и высоте
Площадь параллелограмма - Формула площади параллелограмма по двум сторонам и углу между ними
Площадь параллелограмма равна произведению длин его сторон умноженному на синус угла между ними.a · b · sin α
где S — Площадь параллелограмма,
— длины сторон параллелограмма,
— длина высоты параллелограмма,
— угол между сторонами параллелограмма.
Формулы площади ромба
- Формула площади ромба по длине стороны и высоте
Площадь ромба равна произведению длины его стороны и длины опущенной на эту сторону высоты. - Формула площади ромба по длине стороны и углу
Площадь ромба равна произведению квадрата длины его стороны и синуса угла между сторонами ромба. - Формула площади ромба по длинам его диагоналей
Площадь ромба равна половине произведению длин его диагоналей. где S — Площадь ромба,
— длина стороны ромба,
— длина высоты ромба,
— угол между сторонами ромба,
1 , 2 — длины диагоналей.
Формулы площади трапеции
- Формула Герона для трапеции
Где S — Площадь трапеции,
— длины основ трапеции,
— длины боковых сторон трапеции,
Как найти площадь фигуры?
Знать и уметь рассчитывать площади различных фигур необходимо не только для решения простых геометрических задач. Не обойтись без этих знаний и при составлении или проверке смет на ремонт помещений, расчета количества необходимых расходных материалов. Поэтому давайте разберемся, как находить площади разных фигур.
Часть плоскости, заключенная внутри замкнутого контура, называется площадью этой плоскости. Выражается площадь количеством заключенных в ней квадратных единиц.
Чтобы вычислить площадь основных геометрических фигур, необходимо использовать правильную формулу.
Площадь треугольника
Обозначения:
- Если известны h, a, то площадь искомого треугольника определяется как произведение длин стороны и высоты треугольника, опущенной к этой стороне, разделенное пополам: S=(a·h)/2
- Если известны a, b, c, то искомая площадь рассчитывается по формуле Герона: корень квадратный, взятый из произведения половины периметра треугольника и трех разностей половины периметра и каждой стороны треугольника: S = √(p·(p — a)·(p — b)·(p — c)).
- Если известны a, b, γ, то площадь треугольника определяется как половина произведения 2-х сторон, умноженная на значение синуса угла между этими сторонами: S=(a·b·sin γ)/2
- Если известны a, b, c, R, то искомая площадь определяется как деление произведения длин всех сторон треугольника на четыре радиуса описанной окружности: S=(a·b·c)/4R
- Если известны p, r, то искомая площадь треугольника определяется умножением половины периметра на радиус вписанной в него окружности: S=p·r
Площадь квадрата
Обозначения:
- Если известна сторона, то площадь данной фигуры определяется как квадрат длины его стороны: S=a 2
- Если известна d, то площадь квадрата определяется как половина квадрата длины его диагонали: S=d 2 /2
Площадь прямоугольника
Обозначения:
- S — определяемая площадь,
- a, b — длины сторон прямоугольника.
- Если известны a, b, то площадь данного прямоугольника определяется произведением длин двух его сторон: S=a·b
- Если длины сторон неизвестны, то площадь прямоугольника нужно разбить на треугольники. В этом случае площадь прямоугольника определяется как сумма площадей составляющих его треугольников.
Площадь параллелограмма
Обозначения:
- S — искомая площадь,
- a, b — длины сторон,
- h — длина высоты данного параллелограмма,
- d1, d2 — длины двух диагоналей,
- α — угол, находящийся между сторонами,
- γ — угол, находящийся между диагоналями.
- Если известны a, h, то искомая площадь определяется перемножением длин стороны и высоты, опущенной на эту сторону: S=a·h
- Если известны a, b, α, то площадь параллелограмма определяется перемножением длин сторон параллелограмма и значения синуса угла между этими сторонами: S=a·b·sin α
- Если известны d 1 , d 2 , γ то площадь параллелограмма определяется как половина произведения длин диагоналей и значения синуса угла между этими диагоналями: S=(d 1 ·d 2 ·sinγ)/2
Площадь ромба
Обозначения:
- S — искомая площадь,
- a — длина стороны,
- h — длина высоты,
- α — меньший угол между двумя сторонами,
- d1, d2 — длины двух диагоналей.
- Если известны a, h, то площадь ромба определяется умножением длины стороны на длину высоты, которая опущена на эту сторону: S=a·h
- Если известны a, α, то площадь ромба определяется перемножением квадрата длины стороны на синус угла между сторонами: S=a 2 ·sin α
- Если известны d 1 и d 2 , то искомая площадь определяется как половина произведения длин диагоналей ромба: S=(d 1 ·d 2)/2
Площадь трапеции
Обозначения:
- Если известны a, b, c, d, то искомая площадь определяется по формуле: S= (a+b) /2 *√ .
- При известных a, b, h, искомая площадь определяется как произведение половины суммы оснований и высоты трапеции: S=(a+b)/2·h
Площадь выпуклого четырехугольника
Обозначения:
- Если известны d 1 , d 2 , α, то площадь выпуклого четырехугольника определяется как половина произведения диагоналей четырехугольника, умноженная на величину синуса угла между этими диагоналями: S=(d 1 · d 2 ·sin α)/2
- При известных p, r площадь выпуклого четырехугольника определяется как произведение полупериметра четырехугольника на радиус окружности, вписанной в этот четырехугольник: S=p·r
- Если известны a, b, c, d, θ, то площадь выпуклого четырехугольника определяется как корень квадратный из произведений разницы полупериметра и длины каждой стороны за минусом произведения длин всех сторон и квадрата косинуса половины суммы двух противоположных углов: S 2 = (p — a)(p — b)(p — c)(p — d) — abcd·cos 2 ((α+β)/2)
Площадь круга
Обозначения:
Если известен r, то искомая площадь определяется как произведение числа π на радиус в квадрате: S=π r 2
Если известна d, то площадь круга определяется как произведение числа π на квадрат диаметра, поделенное на четыре: S=(π·d 2)/4
Площадь сложной фигуры
Сложную можно разбить на простые геометрические фигуры. Площадь сложной фигуры определяется как сумма или разность составляющих площадей. Рассмотрим, к примеру, кольцо.
Обозначение:
- S — площадь кольца,
- R, r — радиусы внешней окружности и внутренней соответственно,
- D, d — диаметры внешней окружности и внутренней соответственно.
Для того чтобы найти площадь кольца, надо из площади большего круга отнять площадь меньшего круга. S = S1-S2 = πR 2 -πr 2 = π (R 2 -r 2).
Таким образом, если известны R и r, то площадь кольца определяется как разница квадратов радиусов внешней и внутренней окружностей, умноженная на число пи: S=π(R 2 -r 2).
Если известны D и d, то площадь кольца определяется как четверть разницы квадратов диаметров внешней и внутренней окружностей, умноженная на число пи: S= (1/4)(D 2 -d 2) π.
Площадь закрашенной фигуры
Предположим, что внутри одного квадрата (А) находится другой (Б) (меньшего размера), и нам нужно найти закрашенную полость между фигурами «А» и «Б». Скажем так, «рамку» маленького квадрата. Для этого:
- Находим площадь фигуры «А» (вычисляется по формуле нахождения площади квадрата).
- Аналогичным образом находим площадь фигуры «Б».
- Вычитаем из площади «А» площадь «Б». И таким образом получаем площадь закрашенной фигуры.
Теперь вы знаете, как находить площади разных фигур.
Площади геометрических фигур — численные значения, характеризующие их размер в двумерном пространстве. Эта величина может измеряться в системных и внесистемных единицах. Так, например, внесистемная единица площади — сотка, гектар. Это в том случае, если измеряемой поверхностью является участок земли. Системная же единица площади — квадрат длины. В системе СИ принято считать, что единица площади плоской поверхности — это квадратный метр. В СГС единица площади выражается через квадратный сантиметр.
Геометрия и формулы площадей неразрывно связаны. Эта связь заключается в том, что вычисление площадей плоских фигур основывается именно на их применении. Для многих фигур выведены несколько вариантов, по которым вычисляются их квадратные размеры. Опираясь на данные из условия задачи, мы можем определить максимально простой способ для решения. Тем самым облегчить расчет и свести вероятность ошибки вычисления к минимуму. Для этого рассмотрим основные площади фигур в геометрии.
Формулы для нахождения площади любого треугольника представлены несколькими вариантами:
1) Площадь треугольника рассчитывается по основанию a и высоте h. Основанием считают сторону фигуры, на которую опущена высота. Тогда площадь треугольника:
2) Площадь прямоугольного треугольника рассчитывается точно также, если гипотенузу считать основанием. Если же за основание принять катет, то площадь прямоугольного треугольника будет равна уменьшенному вдвое произведению катетов.
На этом формулы для вычисления площади любого треугольника не заканчиваются. Другое выражение содержит стороны a,b и синусоидальную функцию угла γ, заключенного между a и b. Значение синуса находится по таблицам. Также его можно узнать с помощью калькулятора. Тогда площадь треугольника:
По данному равенству тоже можно убедиться в том, что площадь прямоугольного треугольника определяется через длины катетов. Т.к. угол γ — прямой, поэтому площадь прямоугольного треугольника рассчитывается без умножения на функцию синуса.
3) Рассмотрим частный случай — правильный треугольник, у которого сторона a известна по условию или ее длина найдется при решении. О фигуре в задаче по геометрии больше ничего не известно. Тогда площадь как найти при этом условии? В этом случае применяется формула для площади правильного треугольника:
Прямоугольник
Как найти площадь прямоугольника и использовать при этом размеры сторон, имеющих общую вершину? Выражение для вычисления такое:
Если для вычисления площади прямоугольника требуется использовать длины диагоналей, то тогда понадобится функция синуса угла, образованного при их пересечении. Такая формула площади прямоугольника имеет вид:
Квадрат
Площадь квадрата определяют как вторую степень длины стороны:
Доказательство вытекает из определения, согласно которому квадратом называют прямоугольник. У всех сторон, образующих квадрат, одинаковые размеры. Поэтому вычисление площади такого прямоугольника сводится к перемножению одной на другую, т. е. ко второй степени стороны. И формула для вычисления площади квадрата примет искомый вид.
Площадь квадрата можно найти другим способом, например, если использовать диагональ:
Как вычислить площадь фигуры, которая образована частью плоскости, ограниченной окружностью? Для расчета площади формулы такие:
Параллелограмм
Для параллелограмма формула содержит линейные размеры стороны, высоты и математическое действие — умножение. Если же высота неизвестна, то тогда как найти площадь параллелограмма? Есть еще один способ вычисления. Потребуется определенное значение, которое примет тригонометрическая функция угла, образованного смежными сторонами, а также их длины.
Формулы площади параллелограмма таковы:
Ромб
Как найти площадь четырехугольника, называемого ромбом? Площадь ромба определяется с помощью простых математических действий с диагоналями. Доказательство опирается на тот факт, что отрезки диагоналей в d1 и d2 пересекаются под прямым углом. По таблице синусов видно, что для прямого угла данная функция равна единице. Поэтому площадь ромба рассчитывается так:
Еще площадь ромба может быть найдена другим способом. Доказать это тоже нетрудно, если учесть, что стороны его одинаковы по длине. Затем подставить их произведение в похожее выражение для параллелограмма. Ведь частным случаем именно этой фигуры является ромб. Здесь γ — внутренний угол ромба. Площадь ромба определяют так:
Трапеция
Как найти площадь трапеции через основания (a и b), если в задаче указаны их длины? Здесь без известного значения длины высоты h вычислить площадь такой трапеции не удастся. Т.к. эту величину содержит выражение для вычисления:
Квадратный размер прямоугольной трапеции тоже можно вычислить таким же способом. При этом учитывают, что в прямоугольной трапеции понятия высоты и боковой стороны объединены. Поэтому для прямоугольной трапеции нужно указывать вместо высоты длину боковой стороны.
Цилиндр и параллелепипед
Рассмотрим что нужно, чтобы рассчитать поверхность всего цилиндра. Площадь данной фигуры составляет пара кругов, называемых основаниями, и боковая поверхность. Окружности, образующие круги имеют длины радиусов, равные r. Для площади цилиндра имеет место такое вычисление:
Как найти площадь параллелепипеда, который состоит из трех пар граней? Его измерения совпадают с конкретной парой. Грани, находящиеся противоположно, имеют одинаковые параметры. Сначала находят S(1), S(2), S(3) — квадратные размеры неравных граней. Затем уже площадь поверхности параллелепипеда:
Кольцо
Две окружности с общим центром образуют кольцо. Они же ограничивают площадь кольца. При этом обе расчетные формулы учитывают размеры каждой окружности. Первая из них, вычисляющая площадь кольца, содержит больший R и меньший r радиусы. Чаще их называют внешним и внутренним. Во втором выражении площадь кольца рассчитывается через больший D и меньший d диаметры. Таким образом, площадь кольца по известным радиусам рассчитывают так:
Площадь кольца, с использованием длин диаметров, определяют следующим образом:
Многоугольник
Как найти площадь многоугольника, форма которого не является правильной? Общей формулы для площади таких фигур нет. Но если она изображена на координатной плоскости, например, это может быть клетчатая бумага, тогда как найти площадь поверхности в этом случае? Тут применяют способ, который не требует приблизительно измерить фигуру. Поступают так: если нашли точки, которые попадают в уголок клетки или имеют целые координаты, то учитывают только их. Чтобы затем выяснить, чему равна площадь, используют формулу, доказанную Пиком. Необходимо сложить количество точек, расположенных внутри ломаной линии с половиной точек, лежащих на ней, и вычесть единицу, т. е. вычисляется это таким образом:
где В,Г — количество точек, расположенных внутри и на всей ломаной линии соответственно.
Определение площади прямоугольника
В евклидовой геометрии прямоугольником является параллелограмм, все углы которого равны 90°
. Если дать более расширенное определение этой фигуры, то получится, что прямоугольником является четырехугольник, все стороны которого попарно параллельны и при этом все его углы прямые. Как вычислить площадь прямоугольника, все знают еще из школьного курса математики, в котором и дается понятие этой фигуры. В повседневной жизни ее можно встретить очень часто, можно даже сказать, что практически повсеместно.
Определение площади прямоугольника
Формула расчёта площади прямоугольника
S
= a × b
a – ширина прямоугольника
b – длина прямоугольника
S – площадь прямоугольника
К примеру, форму прямоугольников имеют полы очень многих жилых, производственных и складских помещений. Это совершенно не случайно, поскольку именно такая форма оказывается наиболее удобной и практичной при проектировании, строительстве и эксплуатации самых различных зданий. Соответственно, производить расчет площади прямоугольника очень часто приходится архитекторам, причем эти операции, ввиду простоты самой формулы, требуют затрат минимального количества времени.
Плоскости многих наиболее распространенных строительных материалов тоже представляют собой прямоугольники. К ним относятся, к примеру, кирпичи и бетонные плиты, которые изготавливаются на предприятиях промышленным способом. Следует заметить, что для обеспечения важнейших свойств некоторых стройматериалов очень важно, чтобы все углы их плоскостей были равны 90°
. Это критично для обеспечения максимально плотного прилегания друг к другу пенобетонных и газобетонных блоков: только в таком случае они в полной мере демонстрируют свои отличные теплоизоляционные свойства. Кроме того, плоскости плит из минеральной ваты, широко используемые в строительстве, тоже имеют прямоугольную форму.
Такая задача, как расчет площади прямоугольника, чрезвычайно часто стоит и перед разработчиками всевозможных машин и механизмов. В них постоянно встречаются элементы именно такой формы, и для того, чтобы сконструировать какой-либо узел, требуется, чтобы они безупречно сопрягались друг с другом, поскольку в противном случае неизбежно возникновение ситуации, когда узел или агрегат будет просто невозможно собрать. На производственных предприятиях, где осуществляется изготовления машин и механизмом, в качестве сырья часто листовой металлопрокат, также имеющий прямоугольную форму. На заготовительных и слесарных участках производится раскрой заготовок, многие из которых, прежде чем будут полностью обработаны и станут готовыми деталями, также являются прямоугольниками.
Очень многие детали корпусной мебели, которая повсеместно используется в жилых и офисных помещениях, также имеют прямоугольную форму. Особенно хорошо это заметно мастерам, которые занимаются ее сборкой. Само собой разумеется, что конструкторам мебельного производства при разработке столов, шкафов, тумбочек, антресолей и т.п. также приходится постоянно сталкиваться с расчетом прямоугольников, а тем специалистам, которые занимаются непосредственно производством – изготавливать прямоугольные элементы из древесины, ДВП, ДСП, МДФ, пластика, стекла и металлов в соответствии с чертежами.
Калькулятор площади. Найдите область из 16 популярных фигур!
Если вам интересно, как рассчитать площадь любой основной формы, вы попали в нужное место — этот калькулятор площади ответит на все ваши вопросы. Воспользуйтесь нашим интуитивно понятным инструментом, чтобы выбрать из шестнадцати различных форм и вычислить их площадь в мгновение ока. Если вы ищете определение площади или, например, формулу ромба, у нас есть все необходимое. Продолжайте прокручивать, чтобы узнать больше, или просто поиграйте с нашим инструментом — вы не будете разочарованы!
Что такое площадь в математике? Определение площади
Проще говоря, площадь — это размер поверхности .Другими словами, его можно определить как пространство, занимаемое плоской формой. Чтобы понять концепцию, обычно полезно рассматривать площадь как — количество краски, необходимое для покрытия поверхности . Посмотрите на картинку ниже — все фигуры имеют одинаковую площадь, 12 квадратных единиц:
Есть много полезных формул для вычисления площади простых форм. В разделах ниже вы найдете не только хорошо известные формулы для треугольников, прямоугольников и кругов, но и другие формы, такие как параллелограммы, воздушные змеи или кольца.
Мы надеемся, что после этого объяснения у вас не возникнет проблем с определением области в математике!
Как рассчитать площадь?
Ну конечно это зависит от формы ! Ниже вы найдете формулы для всех шестнадцати форм, представленных в нашем калькуляторе площади. Для ясности мы перечислим только уравнения — их изображения, объяснения и выводы можно найти в отдельных абзацах ниже (а также в инструментах, посвященных каждой конкретной форме).
Вы готовы? Вот наиболее важные и полезные формулы площади для шестнадцати геометрических фигур:
- Квадрат Формула площади:
A = a²
- Прямоугольник формула площади:
A = a * b
- Формулы площади треугольника :
-
A = b * h / 2
или -
A = 0,5 * a * b * sin (γ)
или -
A = 0,25 * √ ((a + b + c) * (-a + b + c) * (a - b + c) * (a + b - c))
или -
A = a² * sin (β) * sin (γ) / (2 * sin (β + γ))
-
- Круг формула площади:
A = πr²
- Сектор круга Формула площади:
A = r² * угол / 2
- Эллипс формула площади:
A = a * b * π
- Трапеция Формула площади:
A = (a + b) * h / 2
- Параллелограмм формулы площади:
-
A = a * h
или -
A = a * b * sin (угол)
или -
A = e * f * sin (угол)
-
- Ромб Формулы площади:
-
A = a * h
или -
A = (e * f) / 2
или -
A = s² * sin (угол)
-
- Kite формулы площади:
-
A = (e * f) / 2
или -
A = a * b * sin (γ)
-
- Пентагон Формула площади:
A = a² * √ (25 + 10√5) / 4
- Шестиугольник Формула площади:
A = 3/2 * √3 * a²
- Восьмиугольник Формула площади:
A = 2 * (1 + √2) * a²
- Формула площади кольцевого пространства:
A = π (R² - r²)
- Четырехугольник формула площади:
A = e * f * sin (угол)
- Правильный многоугольник Формула площади:
A = n * a² * кроватка (π / n) / 4
Если ваша форма неправильная, попробуйте мысленно разделить ее на основные формы, для которых вы можете легко вычислить площадь.
Хотите изменить единицу площади? Просто нажмите на название устройства, и появится раскрывающийся список.
Формула площади
Вы забыли, что такое формула площади? Тогда вы попали в нужное место. Площадь квадрата равна длине его сторон:
-
Площадь квадрата = a * a = a²
, гдеa
— сторона квадрата
Это самая основная и наиболее часто используемая формула, хотя существуют и другие.Например, есть формулы площади, в которых используются диагональ, периметр, радиус описанной окружности или внутренний радиус.
Формула площади прямоугольника
Формула площади прямоугольника тоже несложная задача — это просто умножение сторон прямоугольника:
Расчет площади прямоугольника чрезвычайно полезен в повседневных ситуациях: от строительства здания (оценка необходимой плитки, настила, сайдинга или поиск площади крыши) до декорирования вашей квартиры (сколько краски или обоев мне нужно?) До расчета количества людей Ваш листовой торт может накормить.
Формула площади треугольника
Существует множество различных формул для вычисления площади треугольника, в зависимости от того, что дано и какие законы или теоремы используются. В этом калькуляторе площади мы реализовали четыре из них:
1. Данные база и высота
-
Площадь треугольника = b * h / 2
2. Даны две стороны и угол между ними (SAS)
-
Площадь треугольника = 0,5 * a * b * sin (γ)
3.Учитывая три стороны (SSS) (Эта формула площади треугольника называется Формула Герона )
-
Площадь треугольника = 0,25 * √ ((a + b + c) * (-a + b + c) * (a - b + c) * (a + b - c))
4. Даны два угла и сторона между ними (ASA)
-
Площадь треугольника = a² * sin (β) * sin (γ) / (2 * sin (β + γ))
Есть треугольник особого вида, прямоугольный.В этом случае основание и высота — это две стороны, которые образуют прямой угол. Тогда площадь прямоугольного треугольника может быть выражена как:
Площадь прямоугольного треугольника = a * b / 2
Формула площади круга
Формула площади круга — одна из самых известных формул:
-
Площадь круга = πr²
, гдеr
— радиус окружности
В этом калькуляторе мы реализовали только это уравнение, но в нашем круговом калькуляторе вы можете рассчитать площадь по двум разным формулам:
- Диаметр
-
Площадь круга = πr² = π * (d / 2) ²
- Окружность
Кроме того, формула площади круга удобна в повседневной жизни — как серьезная дилемма, какой размер пиццы выбрать.
Формула площади сектора
Формулу площади сектора можно найти, взяв пропорцию круга. Площадь сектора пропорциональна его углу, поэтому, зная формулу площади круга, мы можем записать, что:
α / 360 ° = Площадь сектора / Площадь круга
Преобразование угла говорит нам, что 360 ° = 2π
α / 2π = Площадь сектора / πr²
так:
-
Площадь сектора = r² * α / 2
Формула площади эллипса
Чтобы найти формулу площади эллипса, сначала вспомните формулу площади круга: πr²
.Для эллипса у вас есть не одно значение радиуса, а два разных значения: a
и b
. Единственная разница между формулой площади круга и эллипса заключается в замене м2
произведением большой и малой полуосей, a * b
:
-
Площадь эллипса = π * a * b
Формула площади трапеции
Площадь трапеции можно найти по следующей формуле:
-
Площадь трапеции = (a + b) * h / 2
, гдеa
иb
— длины параллельных сторон, аh
— высота
Также формула площади трапеции может быть выражена как:
Площадь трапеции = м * ч
, где м
— среднее арифметическое длин двух параллельных сторон
Площадь формулы параллелограмма
Если вы хотите рассчитать площадь с учетом основания и высоты, сторон и угла или диагоналей параллелограмма и угла между ними, вы находитесь в правильном месте.В нашем инструменте вы найдете три формулы площади параллелограмма:
1. Основание и высота
-
Площадь параллелограмма = a * h
2. Стороны и угол между ними
-
Площадь параллелограмма = a * b * sin (α)
3. Диагонали и угол между ними
-
Площадь параллелограмма = e * f * sin (θ)
Площадь ромба по формуле
Мы реализовали три полезные формулы для вычисления площади ромба.Вы можете найти этот район, если знаете:
1. Сторона и высота
2. Диагонали
-
Площадь ромба = (e * f) / 2
3. Сторона и любой угол, например, α
-
Площадь ромба = a² * sin (α)
Площадь формулы воздушного змея
Для расчета площади воздушного змея можно использовать два уравнения, в зависимости от того, что известно:
- Площадь формулы воздушного змея с учетом диагоналей змея
- Площадь формулы воздушного змея с учетом двух несовпадающих длин сторон и угла между этими двумя сторонами
-
Площадь воздушного змея = a * b * sin (α)
Формула площади пятиугольника
Площадь пятиугольника можно рассчитать по формуле:
-
Площадь пятиугольника = a² * √ (25 + 10√5) / 4
, где a — сторона правильного пятиугольника
Ознакомьтесь с нашим специальным инструментом пятиугольника, в котором представлены другие важные свойства правильного пятиугольника: сторона, диагональ, высота и периметр, а также радиус описанной и вписанной окружности.
Площадь шестиугольника, формула
Основная формула площади шестиугольника:
-
Площадь шестиугольника = 3/2 * √3 * a²
, где a — сторона правильного шестиугольника
Так откуда взялась формула? Вы можете представить себе правильный шестиугольник как набор из шести равносторонних треугольников. Чтобы найти площадь шестиугольника, все, что нам нужно сделать, это найти площадь одного треугольника и умножить ее на шесть. Формула для площади правильного треугольника равна квадрату стороны, умноженному на квадратный корень из 3, деленный на 4:
. Площадь равностороннего треугольника = (a² * √3) / 4
Площадь шестиугольника = 6 * Площадь равностороннего треугольника = 6 * (a² * √3) / 4 = 3/2 * √3 * a²
Площадь восьмиугольника по формуле
Чтобы найти площадь восьмиугольника, все, что вам нужно сделать, это знать длину стороны и формулу ниже:
-
Площадь восьмиугольника = 2 * (1 + √2) * a²
Площадь восьмиугольника также можно рассчитать по:
Площадь восьмиугольника = периметр * апофема / 2
Периметр в восьмиугольном корпусе просто 8 *
.А что такое апофема? Апофема — это расстояние от центра многоугольника до середины стороны. В то же время это высота треугольника, образованного линией от вершин восьмиугольника к его центру. Этот треугольник — один из восьми совпадающих — является равнобедренным треугольником, поэтому его высоту можно рассчитать, например, с помощью теоремы Пифагора по формуле:
h = (1 + √2) * a / 4
Итак, наконец, мы получаем первое уравнение:
Площадь восьмиугольника = периметр * апофема / 2 = (8 * a * (1 + √2) * a / 4) / 2 = 2 * (1 + √2) * a²
Формула площади кольцевого пространства
Кольцо — это объект в форме кольца — это область, ограниченная двумя концентрическими окружностями разного радиуса.Найти формулу площади кольца — простая задача, если вы помните формулу площади круга. Вы только посмотрите: площадь кольца — это разница площадей большего круга радиуса R и меньшего радиуса r:
-
Площадь кольца = πR² - πr² = π (R² - r²)
Кстати, вы видели наш конвертер размера кольца?
Площадь четырехугольника
Четырехугольная формула, которую реализует этот калькулятор площади, использует две заданные диагонали и угол между ними.
-
Площадь четырехугольника = e * f * sin (α)
, где e, f — диагонали
Мы можем использовать любой из двух углов, так как мы вычисляем их синус. Зная, что два соседних угла являются дополнительными, мы можем утверждать, что sin (угол) = sin (180 ° - угол)
.
Если вы ищете другие формулы для площади четырехугольника, воспользуйтесь нашим специальным инструментом для четырехугольника, где вы найдете формулу Бретшнайдера (с учетом четырех сторон и двух противоположных углов) и формулу, в которой используются бимедианы и угол между ними. .
Формула площади правильного многоугольника
Формула для площади правильного многоугольника выглядит следующим образом:
-
Площадь правильного многоугольника = n * a² * детская кроватка (π / n) / 4
где n — количество сторон, а a — длина стороны.
Существуют и другие уравнения, в которых используются, например, такие параметры, как радиус описанной окружности или периметр. Вы можете найти эти формулы в специальном абзаце нашего калькулятора площади многоугольника.
Если вы имеете дело с неправильным многоугольником, помните, что вы всегда можете разделить фигуру на более простые фигуры.Просто посчитайте площадь каждого из них и в конце просуммируйте их. Разбиение многоугольника на набор треугольников называется триангуляцией многоугольника.
Площадь круга, треугольника, квадрата, прямоугольника, параллелограмма, трапеции, эллипса и сектора
Площадь — это размер поверхности!
Узнайте больше о площади или воспользуйтесь калькулятором площади.
Площадь = ½ × b × h
b = основание
h = высота по вертикали Квадрат
Площадь = 2
a = длина стороны Круг
Площадь = π × r 2
r = радиус Сектор
Площадь = ½ × r 2 × θ
r = радиус
θ = угол в радианах
Пример: Какова площадь этого прямоугольника?
Формула:
Площадь = ш × в
ш = ширина
в = высота
Мы знаем, что w = 5 и h = 3 , поэтому:
Площадь = 5 × 3 = 15
Пример: Какова площадь этого круга?
Радиус = r = 3
Площадь | = π × r 2 | |
= π × 3 2 | ||
= π × (3 × 3) | ||
= 3.14159 … × 9 | ||
= 28,27 (до 2 знаков после запятой) |
Пример: Какова площадь этого треугольника?
Высота = h = 12
База = b = 20
Площадь = ½ × b × h = ½ × 20 × 12 = 120
Более сложный пример:
Пример: Сэм косит траву по цене 0 долларов.10 штук за квадратный метр
Сколько зарабатывает Сэм, обрабатывая эту область:
Разобьем область на две части:
Часть A — квадрат:
Площадь A = 2 = 20 м × 20 м = 400 м 2
Часть B представляет собой треугольник. При взгляде сбоку он имеет основание 20 м и высоту 14 м.
Площадь B = ½b × h = ½ × 20 м × 14 м = 140 м 2
Итак, общая площадь:
Площадь = Площадь A + Площадь B = 400 м 2 + 140 м 2 = 540 м 2
Сэм зарабатывает 0 долларов.10 штук за квадратный метр
Сэм зарабатывает = 0,10 доллара × 540 млн 2 = 54 доллара
1754, 1755, 1756, 1757, 1758, 1759, 1760, 1761, 3250, 3251
Прямоугольник
(переход к области прямоугольника или периметру прямоугольника)
Прямоугольник — это четырехсторонняя плоская форма, каждый угол которой является прямым (90 °).
квадратики в каждом углу означают «прямой угол»
Играть с прямоугольником:
изображения / geom-quad.js? mode = прямоугольник
Площадь прямоугольника
Площадь = a × b |
Пример: прямоугольник шириной 6 м и высотой 3 м. Какова его площадь?
Периметр прямоугольника
Периметр — это расстояние по краям.
Периметр 2 раза (a + b) : Периметр = 2 (a + b) |
Пример: прямоугольник имеет длину 12 см и высоту 5 см. Каков его периметр?
Периметр = 2 × (12 см + 5 см)
= 2 × 17 см
= 34 см
Диагонали прямоугольника
Прямоугольник имеет две диагонали, они равны по длине и пересекаются посередине. |
Длина диагонали — это квадратный корень из (a в квадрате + b в квадрате) : Диагональ «d» = √ (a 2 + b 2 ) |
Пример: прямоугольник имеет ширину 12 см и высоту 5 см. Какова длина диагонали?
d = √ (12 2 + 5 2 )
= √ (144 + 25)
= √169
= 13 см
Золотой прямоугольник
Есть также специальный прямоугольник, называемый Золотым прямоугольником:
9091, 9092, 9093, 9094, 9095, 9096, 9097, 9098, 9099, 9100
Расчетная область | SkillsYouNeed
Площадь — это мера того, сколько места внутри фигуры.Расчет площади формы или поверхности может быть полезен в повседневной жизни — например, вам может потребоваться знать, сколько краски нужно купить, чтобы покрыть стену, или сколько семян травы вам нужно, чтобы засеять лужайку.
На этой странице описаны основные сведения, которые вам необходимо знать, чтобы понять и вычислить площади общих форм, включая квадраты и прямоугольники, треугольники и круги.
Расчет площади с использованием метода сетки
Когда фигура рисуется на масштабированной сетке, вы можете найти площадь, подсчитав количество квадратов сетки внутри фигуры.
В этом примере внутри прямоугольника 10 квадратов сетки.
Чтобы найти значение площади с использованием метода сетки, нам нужно знать размер, который представляет квадрат сетки.
В этом примере используются сантиметры, но тот же метод применяется к любой единице длины или расстояния. Например, вы можете использовать дюймы, метры, мили, футы и т. Д.
В этом примере каждый квадрат сетки имеет ширину 1 см и высоту 1 см. Другими словами, каждый квадрат сетки равен одному квадратному сантиметру.
Подсчитайте квадраты сетки внутри большого квадрата, чтобы найти его площадь.
Есть 16 маленьких квадратов, поэтому площадь большого квадрата составляет 16 квадратных сантиметров.
В математике мы сокращаем «квадратные сантиметры» до см 2 . 2 означает «квадрат».
Каждый квадрат сетки равен 1 см 2 .
Площадь большого квадрата 16см 2 .
Подсчет квадратов на сетке для определения площади работает для всех форм — если известны размеры сетки. Однако этот метод становится более сложным, когда формы не точно соответствуют сетке или когда вам нужно подсчитать доли квадратов сетки.
В этом примере квадрат не точно помещается на сетке.
Мы все еще можем вычислить площадь, считая квадраты сетки.
- Имеется 25 квадратов полной сетки (заштрихованы синим цветом).
- 10 квадратов полусетки (заштрихованы желтым цветом) — 10 полуквадратов равны 5 полным квадратам.
- Также есть 1 четверть квадрата (заштрихована зеленым) — (¼ или 0.25 целой площади).
- Сложите целые квадраты и дроби вместе: 25 + 5 + 0,25 = 30,25.
Следовательно, площадь этого квадрата составляет 30,25 см 2 .
Вы также можете записать это как 30¼см 2 .
Хотя использование сетки и подсчета квадратов внутри фигуры — это очень простой способ изучения концепций площади, он менее полезен для нахождения точных областей с более сложными формами, когда можно сложить многие доли квадратов сетки.
Площадь можно рассчитать с помощью простых формул, в зависимости от типа фигуры, с которой вы работаете.
Остальная часть этой страницы объясняет и дает примеры того, как вычислить площадь фигуры без использования системы сеток.
Площади простых четырехугольников:
квадратов, прямоугольников и параллелограммов
Простейшие (и наиболее часто используемые) вычисления площади выполняются для квадратов и прямоугольников.
Чтобы найти площадь прямоугольника, умножьте его высоту на ширину.
Площадь прямоугольника = высота × ширина
Для квадрата вам нужно только найти длину одной из сторон (поскольку каждая сторона имеет одинаковую длину), а затем умножить это на себя, чтобы найти площадь. Это то же самое, что сказать длину 2 или длину в квадрате.
Хорошей практикой является проверка того, что фигура на самом деле является квадратом, путем измерения двух сторон. Например, стена комнаты может выглядеть как квадрат, но когда вы ее измеряете, вы обнаруживаете, что на самом деле это прямоугольник.
Часто в реальной жизни формы могут быть более сложными. Например, представьте, что вы хотите найти площадь пола, чтобы заказать нужное количество ковра.
Типовой план помещения не может состоять из простого прямоугольника или квадрата:
В этом и других подобных примерах фокус состоит в том, чтобы разделить фигуру на несколько прямоугольников (или квадратов). Неважно, как вы разделите фигуру — любое из трех решений даст один и тот же ответ.
Для решений 1 и 2 необходимо создать две фигуры и сложить их площади, чтобы найти общую площадь.
Для решения 3 вы создаете большую форму (A) и вычитаете из нее меньшую форму (B), чтобы найти площадь.
Другая распространенная проблема — найти область границы — фигуры внутри другой фигуры.
В этом примере показана дорожка вокруг поля — ширина дорожки 2 метра.
Опять же, в этом примере есть несколько способов определить площадь пути.
Вы можете просмотреть путь как четыре отдельных прямоугольника, вычислить их размеры, а затем их площадь и, наконец, сложить области, чтобы получить итог.
Более быстрый способ — вычислить площадь всей формы и площадь внутреннего прямоугольника. Вычтите площадь внутреннего прямоугольника из всей, оставив площадь пути.
- Площадь всей формы составляет 16 м × 10 м = 160 м 2 .
- Мы можем определить размеры средней секции, потому что знаем, что дорожка по краю имеет ширину 2 метра.
- Ширина всей формы составляет 16 м, а ширина пути по всей форме — 4 м (2 м слева от формы и 2 м справа). 16 м — 4 м = 12 м
- То же самое для высоты: 10м — 2м — 2м = 6м
- Итак, мы подсчитали, что средний прямоугольник имеет размер 12 × 6 м.
- Таким образом, площадь среднего прямоугольника составляет: 12 м × 6 м = 72 м 2 .
- Наконец, мы убираем область среднего прямоугольника из области всей формы.160 — 72 = 88 м 2 .
Площадь тропы 88м 2 .
Параллелограмм — это четырехгранная форма с двумя парами сторон равной длины — по определению прямоугольник является разновидностью параллелограмма. Однако большинство людей склонны думать о параллелограммах как о четырехсторонних фигурах с наклонными линиями, как показано здесь.
Площадь параллелограмма рассчитывается так же, как и для прямоугольника (высота × ширина), но важно понимать, что высота означает не длину вертикальных (или отклоненных от вертикали) сторон, а расстояние между сторонами.
Из диаграммы вы можете видеть, что высота — это расстояние между верхней и нижней сторонами фигуры, а не длина стороны.
Представьте себе воображаемую линию под прямым углом между верхней и нижней сторонами. Это высота.
Расчет площади треугольников
Может быть полезно думать о треугольнике как о половине квадрата или параллелограмма.
Предполагая, что вы знаете (или можете измерить) размеры треугольника, вы можете быстро вычислить его площадь, используя следующую формулу:
Площадь треугольника = (высота × ширина) ÷ 2.
Другими словами, вы можете вычислить площадь треугольника так же, как площадь квадрата или параллелограмма, а затем просто разделите свой ответ на 2.
Высота треугольника измеряется по прямой линии от нижней линии (основания) до «вершины» (верхней точки) треугольника.
Вот несколько примеров:
Площадь трех треугольников на диаграмме выше одинакова.
Каждый треугольник имеет ширину и высоту 3 см.
Площадь рассчитана:
(высота × ширина) ÷ 2
3 × 3 = 9
9 ÷ 2 = 4,5
Площадь каждого треугольника составляет 4,5 см 2 .
В реальных жизненных ситуациях вы можете столкнуться с проблемой, которая требует от вас найти площадь треугольника, например:
Вы хотите покрасить фронтальный конец сарая. Вам нужно посетить магазин украшений только один раз, чтобы получить нужное количество краски. Вы знаете, что литр краски покроет 10м 2 стены.Сколько краски нужно, чтобы покрыть фронтон?
Вам нужно три измерения:
A — Общая высота до вершины крыши.
B — Высота вертикальных стен.
C — Ширина здания.
В этом примере измерения:
A — 12,4 м
B — 6,6 м
C — 11,6 м
Следующий этап требует дополнительных расчетов. Подумайте о здании как о двух формах: прямоугольнике и треугольнике.По имеющимся у вас измерениям вы можете рассчитать дополнительное измерение, необходимое для определения площади фронтона.
Размер D = 12,4 — 6,6
D = 5,8 м
Теперь вы можете определить площадь двух частей стены:
Площадь прямоугольной части стены: 6,6 × 11,6 = 76,56 м 2
Площадь треугольной части стены: (5,8 × 11,6) ÷ 2 = 33,64м 2
Сложите эти две области вместе, чтобы получить общую площадь:
76.56 + 33,64 = 110,2 м 2
Как вы знаете, один литр краски покрывает 10 м 2 стены, поэтому мы можем рассчитать, сколько литров нам нужно купить:
110,2 ÷ 10 = 11,02 л.
На самом деле вы можете обнаружить, что краска продается только в 5-литровых или 1-литровых канистрах, результат — чуть более 11 литров. У вас может возникнуть соблазн округлить до 11 литров, но, если мы не будем разбавлять краску водой, этого будет недостаточно. Таким образом, вы, вероятно, округлите до следующего целого литра и купите две 5-литровые банки и две 1-литровые банки, что в сумме составит 12 литров краски.Это позволит избежать потерь и оставит большую часть литра для подкраски позднее. И не забывайте, что если вам нужно нанести более одного слоя краски, вы должны умножить количество краски для одного слоя на количество необходимых слоев!
Области кругов
Чтобы вычислить площадь круга, вам необходимо знать его диаметр или радиус .
Диаметр круга — это длина прямой линии от одной стороны круга до другой, проходящей через центральную точку круга.Диаметр в два раза больше длины радиуса (диаметр = радиус × 2)
Радиус круга — это длина прямой линии от центральной точки круга до его края. Радиус составляет половину диаметра. (радиус = диаметр ÷ 2)
Вы можете измерить диаметр или радиус в любой точке окружности — важно измерять, используя прямую линию, проходящую через (диаметр) или заканчивающуюся в (радиусе) центром окружности.
На практике при измерении окружностей часто легче измерить диаметр, а затем разделить на 2, чтобы найти радиус.
Радиус нужен для вычисления площади круга, формула:
Площадь круга = πR 2 .
Это означает:
π = Pi — постоянная, равная 3,142.
R = радиус окружности.
R 2 (радиус в квадрате) означает радиус × радиус.
Следовательно, круг с радиусом 5 см имеет площадь:
3,142 × 5 × 5 = 78,55 см 2 .
Круг диаметром 3 м имеет площадь:
Сначала прорабатываем радиус (3 м ÷ 2 = 1.5 м)
Затем примените формулу:
πR 2
3,142 × 1,5 × 1,5 = 7,0695.
Площадь круга диаметром 3 м составляет 7,0695 м 2 .
Последний пример
В этом примере используется большая часть содержимого этой страницы для решения простых задач с областями.
Это дом Рубена М. Бенджамина в Блумингтоне, штат Иллинойс, внесенный в Национальный реестр исторических мест США (номер записи: 376599).
Этот пример включает поиск области фасада дома, деревянной решетчатой части — исключая дверь и окна. Вам нужны следующие размеры:
A — 9,7 м | B — 7,6 м |
C — 8,8 м | D — 4,5 м |
E — 2,3 м | F — 2,7 м |
G — 1,2 м | H — 1,0 м |
Примечания:
- Все размеры являются приблизительными.
- Не нужно беспокоиться о границе вокруг дома — она не учтена в измерениях.
- Мы предполагаем, что все прямоугольные окна одинакового размера.
- Размер круглого окна — это диаметр окна.
- Размер двери включает ступеньки.
Какова площадь деревянной реечной части дома?
Работы и ответы ниже:
Ответы на приведенный выше пример
Сначала определите площадь основной формы дома — прямоугольника и треугольника, составляющих форму.
Главный прямоугольник (B × C) 7,6 × 8,8 = 66,88 м 2 .
Высота треугольника (A — B) 9,7 — 7,6 = 2,1.
Таким образом, площадь треугольника равна (2,1 × C) ÷ 2.
2,1 × 8,8 = 18,48. 18,48 ÷ 2 = 9,24 м 2 .
Общая площадь фасада дома равна сумме площадей прямоугольника и треугольника:
66,88 + 9,24 = 76,12 м 2 .
Затем проработайте площади окон и дверей, чтобы их можно было вычесть из всей площади.
Площадь двери и ступеней составляет (Д × В) 4,5 × 2,3 = 10,35 м 2 .
Площадь одного прямоугольного окна составляет (G × F) 1,2 × 2,7 = 3,24 м 2 .
Есть пять прямоугольных окон. Умножьте площадь одного окна на 5.
3,24 × 5 = 16,2 м2. (общая площадь прямоугольных окон).
Круглое окно имеет диаметр 1 м, поэтому радиус 0,5 м.
Используя πR 2 , обработайте площадь круглого окна: 3.142 × 0,5 × 0,5 =. 0,7855 м 2 .
Затем сложите площади двери и окон.
(площадь двери) 10,35 + (площадь прямоугольных окон) 16,2 + (площадь круглых окон) 0,7855 = 27,3355
Наконец, вычтите общую площадь окон и дверей из всей площади.
76,12 — 27,3355 = 48,7845
Площадь деревянного реечного фасада дома и ответ на проблему: 48,7845м 2 .
Вы можете округлить ответ до 48.8м 2 или 49м 2 .
См. Нашу страницу Оценка, приближение и округление .
Калькулятор площади
— Расчет площади различной формы
Рассчитайте площадь, выбрав форму и введя свои измерения в любых метрических или обычных единицах США. См. Формулы для расчета площади каждой формы ниже.
Как рассчитать площадь
Площадь — это пространство внутри периметра / границы пространства, его символ — (A).Это размер двухмерной поверхности и измеряется в квадратных единицах, например квадратных футах.
Квадратные футы также могут быть выражены как футы 2 или квадратные футы. Используйте наши формулы, чтобы найти площадь многих форм.
Перед вычислением площади важно измерить все длины в одной и той же единице измерения или преобразовать все длины в одну и ту же единицу измерения. Воспользуйтесь нашими калькуляторами преобразования единиц длины или калькуляторами преобразования единиц площади для преобразования британских единиц измерения в метрическую.
Используйте приведенные ниже формулы, чтобы вычислить площадь многих популярных фигур.
Формула площади
А = а 2
А = а × а
a = длина кромки
Формула площади прямоугольника
A = длина × ширина
l = длина
w = ширина
Формула приграничной площади
А = (l1 × w1) — (l2 × l2)
l1 = внешняя длина
w1 = внешняя ширина
l2 = внутренняя длина
w2 = внутренняя ширина
Формула площади трапеции
A = 1 / 2 (a + b) h
a = основание a
b = основание b
h = высота
Формула площади параллелограмма
A = b × h
b = основание
h = высота
Формула площади треугольника
s = 1 / 2 (a + b + c)
A = s (s — a) (s — b) (s — c))
a = кромка a
b = кромка b
c = кромка c
Эта формула известна как формула Герона.Вы также можете использовать упрощенную формулу, если известна высота треугольника.
A = 1 / 2 bh
b = край b
h = высота
Формула площади круга
А = πr 2
r = радиус
Если вам известен диаметр окружности, вы можете найти радиус, разделив диаметр пополам.
Знаете ли вы, что у нас также есть калькулятор для определения площади круга?
Формула площади эллипса
А = πab
a = ось a
b = ось b
Формула площади сектора
А = (θ ÷ 360) πr 2
r = радиус
θ = угол
Узнайте больше о секторах и посмотрите более подробные примеры в нашем калькуляторе площади секторов.
Формула площади правильного многоугольника
A = (a 2 × n) ÷ (4 × tan (π ÷ n))
a = длина кромки
n = количество сторон
Неправильные многоугольники и сложные формы
Уловка для определения площади неправильного многоугольника или сложной формы состоит в том, чтобы сначала разбить форму на правильные многоугольники, такие как треугольники и квадраты, затем найти площадь этих фигур и сложить их вместе, чтобы найти общую сумму.
Разница между площадью и площадью поверхности
Вам может быть интересно, чем площадь отличается от площади поверхности.В то время как площадь — это размер двумерной плоскости, площадь поверхности — это размер поверхности трехмерной твердой формы.
Разница между площадью и периметром
Так в чем же разница между периметром и площадью? Периметр — это расстояние вокруг двухмерной фигуры, а площадь — это размер самой фигуры.
Конечно, у нас есть калькулятор периметра, который поможет решить эту проблему с измерением длины.
Периметр, площадь и объем
1.В периметр из многоугольник (или любая другая замкнутая кривая, например окружность) — это расстояние вокруг внешней стороны.
2. В площадь из простая замкнутая плоская кривая — это количество внутреннего пространства.
3. В объем из твердый 3 D shape — это количество перемещаемого им пространства.
Некоторые формулы для общих 2 -мерные плоские фигуры и 3 -мерные тела приведены ниже.Ответов один, два, или три измерения; периметр измеряется в линейные единицы , площадь измеряется в квадратные единицы , а также объем измеряется в кубические единицы .
Стол 1 . Формулы периметра | ||
Форма | Формула | Переменные |
Квадрат | п знак равно 4 s | s длина стороны квадрата. |
Прямоугольник | п знак равно 2 L + 2 W | L а также W — длины сторон прямоугольника (длина и ширина). |
Треугольник | а + б + c | а , б , а также c — длины сторон. |
п знак равно а + б + а 2 + б 2 | а а также б длины двух катетов треугольника | |
Круг | р это радиус и d это диаметр. |
Таблица 2. Формулы площади | ||
Форма | Формула | Переменные |
Квадрат | s длина стороны квадрата. | |
Прямоугольник | L а также W — длины сторон прямоугольника (длина и ширина). | |
Треугольник | А знак равно 1 2 б час | б а также час основание и высота |
Треугольник | А знак равно s ( s — а ) ( s — б ) ( s — c ) куда s знак равно а + б + c 2 | а , б , а также c длины сторон и s полупериметр |
Параллелограмм | б длина основания и час это высота. | |
Трапеция | А знак равно б 1 + б 2 2 час | б 1 а также б 2 — длины параллельных сторон и час расстояние (высота) между параллелями. |
Круг | А знак равно π р 2 | р это радиус. |
Таблица 3. Формулы объема | ||
Форма | Формула | Переменные |
Куб | s длина стороны. | |
Правая прямоугольная призма | L это длина, W это ширина и ЧАС это высота. | |
Призма или цилиндр | А площадь основания, час это высота. | |
Пирамида или конус | А площадь основания, час это высота. | |
Сфера | р это радиус. |
Формулы площади
( пи = = 3,141592 …)
Площадь Формулы
Примечание: «ab» означает «a» умножить на «б». «a
2 » означает «квадрат», что то же самое, что «а» умножить на «а».Будьте осторожны !! Количество единиц. Используйте то же самое единиц для всех измерений. Примеры
квадрат = a 2
прямоугольник = ab
параллелограмм = bh
трапеция = h / 2 (b 1 + b 2 2)98 pi r 2
эллипс = pi r 1 r 2
треугольник = | , равная половине длины основания, умноженной на высоту треугольник |
равносторонний треугольник = |
треугольник с учетом SAS (две стороны и противоположный угол)
= (1/2) a b sin C
треугольник, заданный a, b, c = [s (s-a) (s-b) (s-c)] когда s = (a + b + c) / 2 (формула Герона)
правильный многоугольник = (1/2) n sin (360 ° / n) S 2
когда n = количество сторон и S = длина от центра до угла
шт.
Площадь измеряется в «квадратных» единицах.Площадь фигуры количество квадратов, необходимых для его полного покрытия, как плитки на пол.
Площадь квадрата = сторона, умноженная на сторону. Поскольку каждая сторона квадрата — это то же самое, это может быть просто длина одной стороны в квадрате.
Если у квадрата одна сторона 4 дюйма, площадь будет равна 4 дюймам, умноженным на 4 дюйма или 16 квадратных дюймов. (Квадратные дюймы также можно записать в 2 .)
Обязательно используйте одни и те же единицы для всех измерений. Нельзя умножить футы на дюймы, квадрат не получается. измерение.
Площадь прямоугольника — это длина сбоку. раз больше ширины. Если ширина 4 дюйма, а длина 6 футов, что это площадь?
НЕ ПРАВИЛЬНО …. 4 раза 6 = 24
ПРАВИЛЬНО …. 4 дюйма равны 1/3 фута.