Расчет однофазных электродвигателей: Перемотка трехфазного электродвигателя на однофазную обмотку

Перемотка трехфазного электродвигателя на однофазную обмотку

Однофазный асинхронный электродвигатель с короткозамкнутым ротором должен иметь пусковую и рабочую обмотки. Их расчет производят так же, как расчет обмоток трехфазных асинхронных двигателей.

Число проводников в пазу рабочей обмотки (укладывается в 2/3 пазов статора)
Nр = (0.5 ÷ 0.7) x N x Uс / U,
где N — число проводников в пазу трехфазного электродвигателя;
Uс — напряжение однофазной сети, В;
U — номинальное напряжение фазы трехфазного двигателя, В.

Меньшие значения коэффициента берутся для двигателей большей мощности (около 1 кВт) с кратковременным и повторно-кратковременным режимами работы.

Диаметр (мм) провода по меди рабочей обмотки
,
где d — диаметр провода по меди трехфазного двигателя, мм.

Пусковая обмотка укладывается в 1/3 пазов.

Наиболее распространены два варианта пусковых обмоток: с бифилярными катушками и с дополнительным внешним сопротивлением.

Обмотка с бифилярными катушками наматывается из двух параллельных проводников с разным направлением тока (индуктивное сопротивление рассеяния бифилярных обмоток близко к нулю).

Пусковая обмотка с бифилярными катушками

1. Число проводников в пазу для основной секции
Nп′ = (1,3 ÷ 1,6) Nр.

2. Число проводников в пазу для бифилярнои секции
Nп′′ = (0,45 ÷ 0,25) Nп′.

3. Общее число проводников в пазу
Nп = Nп′ + Nп′′

4. Сечение проводов
sп′ = sп′′ ≈ 0.5sр, где sр — сечение рабочей обмотки.

Пусковая обмотка с внешним сопротивлением

1. Число проводников в пазу
Nп = (0.7 ÷ 1) Nр.

2. Сечение проводов
sп = (1,4 ÷ 1) sр.

3. Добавочное сопротивление (окончательно уточняется при испытаниях двигателя) (Ом)
Rд = ( 1,6 ÷ 8 ) x 10-3 x Uс / sп,
где Uс — напряжение однофазной сети, В.

Для получения большого пускового момента предпочтение следует отдать второму варианту пусковой обмотки, так как в этом случае существует возможность получения наибольшего пускового момента путем изменения внешнего сопротивления.

Ток однофазного электродвигателя определяют по вычисленному сечению для рабочей обмотки и плотности тока в обмотке трехфазного двигателя I

1 = sрδ , где δ — допустимая плотность тока (6—10 А/мм²).

Мощность однофазного электродвигателя Р = U x I x cos φ x η

Таблица. Произведение cos φ на кпд

При мощности двигателя свыше 500 Вт значения η и cos φ можно брать как для трехфазных асинхронных двигателей, снизив мощность однофазного двигателя по приведенной выше формуле на 10—15%.

Пример пересчета трехфазного двигателя на однофазную обмотку

Пересчитать трехфазный двигатель на однофазную обмотку. Мощность электродвигателя 0,125 кВт, напряжение 220/380 В, синхронная частота вращения 3000 об/мин; число проводников в пазу 270, число пазов статора 18. Провод марки ПЭВ-2, диаметр по меди 0,355 мм, сечение 0,0989 мм

2. Заданное напряжение однофазного двигателя 220 В.

Решение

1. Рабочая обмотка занимает 2/3 пазов, а пусковая 1/3 пазов
(zр = 12, zп = 6).

2. Число проводников в пазу рабочей обмотки
Nр = 0.6 x N x Uс / U = 0.6 x 270 x 220 / 220 = 162.

3. Диаметр провода рабочей обмотки по меди
мм,
где d = 0.355 мм — диаметр провода по меди трехфазного двигателя.
Берем провод ПЭВ-2, dp = 0,45 мм, sр = 0,159 мм².

4. Пусковую обмотку принимаем с внешним сопротивлением.

5. Число проводников в пазу

Nп= 0.8 x Nр = 0.8 x 162 ≈ 128.

6. Сечение проводов пусковой обмотки
sп′ = 1.1 x sр = 1.1 x 0.159 = 0,168 мм².

Берем провод ПЭВ-2 диаметром по меди
dп = 0,475 мм, sп = 0,1771 мм².

7. Добавочное сопротивление
Rд = 4 x 10-3 x Uс / sп = 4 x 10-3 x 220 / 0,1771 ≈ 5 Ом.

8. Ток однофазного электродвигателя
при δ = 8 А/мм² I1 = sрδ = 0,159 x 8 = 1,28 А.

9. Мощность однофазного электродвигателя
Р = U x I x cos φ x η = 220 x 1,28 x 0,4 = 110 Вт.

Источник: В.И. Дьяков. Типовые расчеты по электрооборудованию.

Помощь студентам
Как подобрать конденсатор для однофазного электродвигателя или трехфазного

Что делать, если требуется подключить двигатель к источнику, рассчитанному на другой тип напряжения (например, трехфазный двигатель к однофазной сети)? Такая необходимость может возникнуть, в частности, если нужно подключить двигатель к какому-либо оборудованию (сверлильному или наждачному станку и пр.). В этом случае используются конденсаторы, которые, однако, могут быть разного типа. Соответственно, надо иметь представление о том, какой емкости нужен конденсатор для электродвигателя, и как ее правильно рассчитать.

Что такое конденсатор

Конденсатор состоит из двух пластин, расположенных друг напротив друга. Между ними помещается диэлектрик. Его задача – снимать поляризацию, т.е. заряд близкорасположенных проводников.

Существует три вида конденсаторов:

  • Полярные. Не рекомендуется использовать их в системах, подключенных к сети переменного тока, т.к. вследствие разрушения слоя диэлектрика происходит нагрев аппарата, вызывающий короткое замыкание.
  • Неполярные. Работают в любом включении, т.к. их обкладки одинаково взаимодействуют с диэлектриком и с источником.
  • Электролитические (оксидные). В роли электродов выступает тонкая оксидная пленка. Считаются идеальным вариантом для электродвигателей с низкой частотой, т.к. имеют максимально возможную емкость (до 100000 мкФ).

Как подобрать конденсатор для трехфазного электродвигателя

Задаваясь вопросом: как подобрать конденсатор для трехфазного электродвигателя, нужно принять во внимание ряд параметров.

Чтобы подобрать емкость для рабочего конденсатора, необходимо применить следующую расчетную формулу: Сраб.=k*Iф / U сети, где:

  • k – специальный коэффициент, равный 4800 для подключения «треугольник» и 2800 для «звезды»;
  • Iф – номинальное значение тока статора, это значение обычно указывается на самом электродвигателе, если же оно затерто или неразборчиво, то его измеряют специальными клещами;
  • U сети – напряжение питания сети, т.е. 220 вольт.

Таким образом вы рассчитаете емкость рабочего конденсатора в мкФ.

Еще один вариант расчета – принять во внимание значение мощности двигателя. 100 Ватт мощности соответствуют примерно 7 мкФ емкости конденсатора. Осуществляя расчеты, не забывайте следить за значением тока, поступающего на фазную обмотку статора. Он не должен иметь большего значения, чем номинальный показатель.

В случае, когда пуск двигателя производится под нагрузкой, т.е. его пусковые характеристики достигают максимальных величин, к рабочему конденсатору добавляется пусковой. Его особенность заключается в том, что он работает примерно в течение трех секунд в период пуска агрегата и отключается, когда ротор выходит на уровень номинальной частоты вращения. Рабочее напряжение пускового конденсатора должно быть в полтора раза выше сетевого, а его емкость – в 2,5-3 раза больше рабочего конденсатора. Чтобы создать необходимую емкость, вы можете подключить конденсаторы как последовательно, так и параллельно.

Как подобрать конденсатор для однофазного электродвигателя

Асинхронные двигатели, рассчитанные на работу в однофазной сети, обычно подключаются на 220 вольт. Однако если в трехфазном двигателе момент подключения задается конструктивно (расположение обмоток, смещение фаз трехфазной сети), то в однофазном необходимо создать вращательный момент смещения ротора, для чего при запуске применяется дополнительная пусковая обмотка. Смещение ее фазы тока осуществляется при помощи конденсатора.

Итак, как подобрать конденсатор для однофазного электродвигателя?

Чаще всего значение общей емкости Сраб+Спуск (не отдельного конденсатора) таково: 1 мкФ на каждые 100 ватт.

Есть несколько режимов работы двигателей подобного типа:

  • Пусковой конденсатор + дополнительная обмотка (подключаются на время запуска). Емкость конденсатора: 70 мкФ на 1 кВт мощности двигателя.
  • Рабочий конденсатор (емкость 23-35 мкФ) + дополнительная обмотка, которая находится в подключенном состоянии в течение всего времени работы.
  • Рабочий конденсатор + пусковой конденсатор (подключены параллельно).

Если вы размышляете: как подобрать конденсатор к электродвигателю 220в, стоит исходить из пропорций, приведенных выше. Тем не менее, нужно обязательно проследить за работой и нагревом двигателя после его подключения. Например, при заметном нагревании агрегата в режиме с рабочим конденсатором, следует уменьшить емкость последнего. В целом, рекомендуется выбирать конденсаторы с рабочим напряжением от 450 В.

Как выбрать конденсатор для электродвигателя – вопрос непростой. Для обеспечения эффективной работы агрегата нужно чрезвычайно внимательно рассчитать все параметры и исходить из конкретных условий его работы и нагрузки.


Однофазный асинхронный электродвигатель

Дмитрий Левкин

Однофазный асинхронный электродвигатель — это асинхронный электродвигатель, который работает от электрической сети однофазного переменного тока без использования частотного преобразователя и который в основном режиме работы (после пуска) использует только одну обмотку (фазу) статора.

Конструкция однофазного двигателя с вспомогательной или пусковой обмоткой

Основными компонентами любого электродвигателя являются ротор и статор. Ротор — вращающаяся часть электродвигателя, статор — неподвижная часть электродвигателя, с помощью которого создается магнитное поле для вращения ротора. Конструкция однофазного двигателя

Основные части однофазного двигателя: ротор и статор

Статор имеет две обмотки, расположенные под углом 90° относительно друг друга. Основная обмотка называется главной (рабочей) и обычно занимает 2/3 пазов сердечника статора, другая обмотка называется вспомогательной (пусковой) и обычно занимает 1/3 пазов статора.

Двигатель фактически является двухфазным, но так как рабочей является только одна обмотка, электродвигатель называют однофазным.

Ротор обычно представляет из себя короткозамкнутую обмотку, также из-за схожести называемой «беличьей клеткой». Медные или алюминиевые стержни которого с торцов замкнуты кольцами, а пространство между стержнями чаще всего заливается сплавом алюминия. Так же ротор однофазного двигателя может быть выполнен в виде полого немагнитного или полого ферромагнитного цилиндра.

Обмотки однофазного двигателя

Однофазный двигатель с вспомогательной обмоткой имеет 2 обмотки расположенные перпендикулярно относительно друг друга

Принцип работы однофазного асинхронного двигателя

Для того чтобы лучше понять работу однофазного асинхронного двигателя, давайте рассмотрим его только с одним витком в главной и вспомогательной обмотки.

Обмотки асинхронного двигателя

Проанализируем случай с двумя обмотками имеющими по оному витку

Рассмотрим случай когда в вспомогательной обмотки не течет ток. При включении главной обмотки статора в сеть, переменный ток, проходя по обмотке, создает пульсирующее магнитное поле, неподвижное в пространстве, но изменяющееся от +Фmах до -Фmах.

Запустить

Магнитное поле витка

Остановить

Пульсирующее магнитное поле

Пульсирующее магнитное поле

Если поместить ротор, имеющий начальное вращение, в пульсирующее магнитное поле, то он будет продолжать вращаться в том же направлении.

Чтобы понять принцип действия однофазного асинхронного двигателя разложим пульсирующее магнитное поле на два одинаковых круговых поля, имеющих амплитуду равную Фmах/2 и вращающихся в противоположные стороны с одинаковой частотой:

n<sub>пp</sub> = n<sub>oбp</sub> = f<sub>1</sub>∙60/p = n<sub>1</sub>,

  • где nпр – частота вращения магнитного поля в прямом направлении, об/мин,
  • nобр – частота вращения магнитного поля в обратном направлении, об/мин,
  • f1 – частота тока статора, Гц,
  • p – количество пар полюсов,
  • n1 – скорость вращения магнитного потока, об/мин

Запустить

Разложение пульсирующего магнитного потока

Остановить

Разложение пульсирующего магнитного поля

Разложение пульсирующего магнитного потока на два вращающихся

Действие пульсирующего поля на вращающийся ротор

Рассмотрим случай когда ротор, находящийся в пульсирующем магнитном потоке, имеет начальное вращение. Например, мы вручную раскрутили вал однофазного двигателя, одна обмотка которого подключена к сети переменного тока. В этом случае при определенных условиях двигатель будет продолжать развивать вращающий момент, так как скольжение его ротора относительно прямого и обратного магнитного потока будет неодинаковым.

Будем считать, что прямой магнитный поток Фпр, вращается в направлении вращения ротора, а обратный магнитный поток Фобр — в противоположном направлении. Так как, частота вращения ротора n2 меньше частоты вращения магнитного потока n1, скольжение ротора относительно потока Фпр будет:

s<sub>пp</sub> = (n<sub>1</sub> - n<sub>2</sub>)/n<sub>1</sub> = s,

  • где sпр – скольжение ротора относительно прямого магнитного потока,
  • n2 – частота вращения ротора, об/мин,
  • s – скольжение асинхронного двигателя
Магнитное поле однофазного двигателя

Прямой и обратный вращающиеся магнитные потоки вместо пульсирующего магнитного потока

Магнитный поток Фобр вращается встречно ротору, частота вращения ротора n2 относительно этого потока отрицательна, а скольжение ротора относительно Фобр

Магнитное поле однофазного двигателя,

  • где sобр – скольжение ротора относительно обратного магнитного потока

Запустить

Магнитное поле пронизывающее ротор

Остановить

Вращающееся магнитное поле

Вращающееся магнитное поле пронизывающее ротор

Ток ротора асинхронного двигателя

Ток индуцируемый в роторе переменным магнитным полем

Согласно закону электромагнитной индукции прямой Фпр и обратный Фобр магнитные потоки, создаваемые обмоткой статора, наводят в обмотке ротора ЭДС, которые соответственно создают в короткозамкнутом роторе токи I2пр и I2обр. При этом частота тока в роторе пропорциональна скольжению, следовательно:

f2пр=f1sпр,

  • где f2пр – частота тока I2пр наводимого прямым магнитным потоком, Гц

f2обр=f1sобр,

  • где f2обр – частота тока I2обр наводимого обратным магнитным потоком, Гц

Таким образом, при вращающемся роторе, электрический ток I2обр, наводимый обратным магнитным полем в обмотке ротора, имеет частоту f2обр, намного превышающую частоту f2пр тока ротора I2пр, наведенного прямым полем.

Пример: для однофазного асинхронного двигателя, работающего от сети с частотой f1 = 50 Гц при n1 = 1500 и n2 = 1440 об/мин,

скольжение ротора относительно прямого магнитного потока sпр = 0,04;
частота тока наводимого прямым магнитным потоком f2пр = 2 Гц;
скольжение ротора относительно обратного магнитного потока sобр = 1,96;
частота тока наводимого обратным магнитным потоком f2обр = 98 Гц

Магнитный момент действующий на ротор

Согласно закону Ампера, в результате взаимодействия электрического тока I2пр с магнитным полем Фпр возникает вращающий момент

Мпр=,

  • где Mпр – магнитный момент создаваемый прямым магнитным потоком, Н∙м,
  • сM — постоянный коэффициент, определяемый конструкцией двигателя

Электрический ток I2обр, взаимодействуя с магнитным полем Фобр, создает тормозящий момент Мобр, направленный против вращения ротора, то есть встречно моменту Мпр:

Мобр=,

  • где Mобр – магнитный момент создаваемый обратным магнитным потоком, Н∙м

Результирующий вращающий момент, действующий на ротор однофазного асинхронного двигателя,

M = M<sub>пр</sub> - M<sub>обр</sub>,

Справка: В следствие того, что во вращающемся роторе прямым и обратным магнитным полем будет наводиться ток разной частоты, моменты сил действующие на ротор в разных направлениях будут не равны. Поэтому ротор будет продолжать вращаться в пульсирующем магнитном поле в том направлении в котором он имел начальное вращение.

Тормозящее действие обратного поля

При работе однофазного двигателя в пределах номинальной нагрузки, то есть при небольших значениях скольжения s = sпр, крутящий момент создается в основном за счет момента Мпр. Тормозящее действие момента обратного поля Мобр — незначительно. Это связано с тем, что частота f2обр много больше частоты f2пр, следовательно, индуктивное сопротивление рассеяния обмотки ротора х2обр = x2sобр току I2обр намного больше его активного сопротивления. Поэтому ток I2обр, имеющий большую индуктивную составляющую, оказывает сильное размагничивающее действие на обратный магнитный поток Фобр, значительно ослабляя его.

M = M<sub>пр</sub> - M<sub>обр</sub>,

  • где r2 — активное сопротивление стержней ротора, Ом,
  • x2обр — реактивное сопротивление стержней ротора, Ом.

Если учесть, что коэффициент мощности невелик, то станет, ясно, почему Мобр в режиме нагрузки двигателя не оказывает значительного тормозящего действия на ротор однофазного двигателя.

Моменты сил действующие на неподвижный ротор

С помощью одной фазы нельзя запустить ротор

Моменты сил действующие на вращающийся ротор

Ротор имеющий начальное вращение будет продолжать вращаться в поле создаваемом однофазным статором

Действие пульсирующего поля на неподвижный ротор

При неподвижном роторе (n2 = 0) скольжение sпр = sобр = 1 и Мпр = Мобр, поэтому начальный пусковой момент однофазного асинхронного двигателя Мп = 0. Для создания пускового момента необходимо привести ротор во вращение в ту или иную сторону. Тогда s ≠ 1, нарушается равенство моментов Мпр и Мобр и результирующий электромагнитный момент приобретает некоторое значение Моменты сил действующие на вращающийся ротор.

Пуск однофазного двигателя. Как создать начальное вращение?

Одним из способов создания пускового момента в однофазном асинхронном двигателе, является расположение вспомогательной (пусковой) обмотки B, смещенной в пространстве относительно главной (рабочей) обмотки A на угол 90 электрических градусов. Чтобы обмотки статора создавали вращающееся магнитное поле токи IA и IB в обмотках должны быть сдвинуты по фазе относительно друг друга. Для получения фазового сдвига между токами IA и IB в цепь вспомогательной (пусковой) обмотки В включают фазосмещающий элемент, в качестве которого используют активное сопротивление (резистор), индуктивность (дроссель) или емкость (конденсатор) [1].

После того как ротор двигателя разгонится до частоты вращения, близкой к установившейся, пусковую обмотку В отключают. Отключение вспомогательной обмотки происходит либо автоматически с помощью центробежного выключателя, реле времени, токового или дифференциального реле, или же вручную с помощью кнопки.

Таким образом, во время пуска двигатель работает как двухфазный, а по окончании пуска — как однофазный.

Подключение однофазного двигателя

С пусковым сопротивлением

Двигатель с расщепленной фазой — однофазный асинхронный двигатель, имеющий на статоре вспомогательную первичную обмотку, смещенную относительно основной, и короткозамкнутый ротор [2].

Однофазный асинхронный двигатель с пусковым сопротивлением — двигатель с расщепленной фазой, у которого цепь вспомогательной обмотки отличается повышенным активным сопротивлением.

Схема однофазного двигателя с пусковым сопротивлением

Омический сдвиг фаз, биффилярный способ намотки пусковой обмотки

Однофазный двигатель с разным сопротивлением обмоток

Разное сопротивление и индуктивность обмоток

Для запуска однофазного двигателя можно использовать пусковой резистор, который последовательно подключается к пусковой обмотки. В этом случае можно добиться сдвига фаз в 30° между токами главной и вспомогательной обмотки, которого вполне достаточно для пуска двигателя. В двигателе с пусковым сопротивлением разность фаз объясняется разным комплексным сопротивлением цепей.

Также сдвиг фаз можно создать за счет использования пусковой обмотки с меньшей индуктивностью и более высоким сопротивлением. Для этого пусковая обмотка делается с меньшим количеством витков и с использованием более тонкого провода чем в главной обмотке.

Отечественной промышленностью изготавливается серия однофазных асинхронных электродвигателей с активным сопротивлением в качестве фазосдвигающего элемента серии АОЛБ мощностью от 18 до 600 Вт при синхронной частоте вращения 3000 и 1500 об/мин, предназначенных для включения в сеть напряжением 127, 220 или 380 В, частотой 50 Гц.

С конденсаторным пуском

Двигатель с конденсаторным пуском — двигатель с расщепленной фазой, у которого цепь вспомогательной обмотки с конденсатором включается только на время пуска.

Схема однофазного двигателя с пусковым конденсатором

Ёмкостной сдвиг фаз с пусковым конденсатором

Чтобы достичь максимального пускового момента требуется создать круговое вращающееся магнитное поле, для этого требуется чтобы токи в главной и вспомогательной обмотках были сдвинуты друг относительно друга на 90°. Использование в качестве фазосдвигающего элемента резистора или дросселя не позволяет обеспечить требуемый сдвиг фаз. Лишь включение конденсатора определенной емкости позволяет обеспечить фазовый сдвиг 90°.

Среди фазосдвигающих элементов, только конденсатор позволяет добиться наилучших пусковых свойств однофазного асинхронного электродвигателя.

Двигатели в цепь которых постоянно включен конденсатор используют для работы две фазы и называются — конденсаторными. Принцип действия этих двигателей основан на использовании вращающегося магнитного поля.

Двигатель с экранированными полюсами — двигатель с расщепленной фазой, у которого вспомогательная обмотка короткозамкнута.

Статор однофазного асинхронного двигателя с экранированными полюсами обычно имеет явно выраженные полюса. На явно выраженных полюсах статора намотаны катушки однофазной обмотки возбуждения. Каждый полюс статора разделен на две неравные части аксиальным пазом. Меньшую часть полюса охватывает короткозамкнутый виток. Ротор однофазного двигателя с экранированными полюсами — короткозамкнутый в виде «беличьей» клетки.

При включении однофазной обмотки статора в сеть в магнитопроводе двигателя создается пульсирующий магнитный поток. Одна часть которого проходит по неэкранированной Ф’, а другая Ф» — по экранированной части полюса. Поток Ф» наводит в короткозамкнутом витке ЭДС Ek, в результате чего возникает ток Ik отстающий от Ek по фазе из-за индуктивности витка. Ток Ik создает магнитный поток Фk, направленный встречно Ф», создавая результирующий поток в экранированной части полюса Фэ=Ф»+Фk. Таким образом, в двигателе потоки экранированной и неэкранированной частей полюса сдвинуты во времени на некоторый угол.

Пространственный и временной углы сдвига между потоками Фэ и Ф’ создают условия для возникновения в двигателе вращающегося эллиптического магнитного поля, так как Фэ ≠ Ф’.

Пусковые и рабочие свойства рассматриваемого двигателя невысоки. КПД намного ниже, чем у конденсаторных двигателей такой же мощности, что связано со значительными электрическими потерями в короткозамкнутом витке.

Однофазный асинхронный двигатель с асимметричным магнитопроводом статора

Статор такого однофазного двигателя выполняется с ярко выраженными полюсами на не симметричном шихтованном сердечнике. Ротор — короткозамкнутый типа «беличья клетка».

Данный электродвигатель для работы не требует использования фазосдвигающих элементов. Недостатком данного двигателя является низкий КПД.


формула, правила расчета, виды и классификация электродвигателей

В электромеханике существует много приводов, которые работают с постоянными нагрузками без изменения скорости вращения. Их используют в промышленном и бытовом оборудовании как, например, вентиляторы, компрессоры и другие. Если номинальные характеристики неизвестны, то для расчетов используют формулу мощности электродвигателя. Вычисления параметров особенно актуальны для новых и малоизвестных приводов. Калькуляция выполняется с использованием специальных коэффициентов, а также на основе накопленного опыта работы с подобными механизмами. Данные необходимы для правильной эксплуатации электрических установок.

Электрические двигателя

Что такое электродвигатель?

Электрический двигатель представляет собой устройство, которое преобразует электрическую энергию в механическую. Работа большинства агрегатов зависит от взаимодействия магнитного поля с обмоткой ротора, которая выражается в его вращении. Функционируют они от источников питания постоянного или переменного тока. В качестве питающего элемента может выступать аккумулятор, инвертор или розетка электросети. В некоторых случаях двигатель работает в обратном порядке, то есть преобразует механическую энергию в электрическую. Такие установки находят широкое применение на электростанциях, работающие от потока воздуха или воды.

Электродвигатели переменного тока

Электродвигатели классифицируют по типу источника питания, внутренней конструкции, применению и мощности. Также приводы переменного тока могут иметь специальные щетки. Они функционируют от однофазного, двухфазного или трехфазного напряжения, имеют воздушное или жидкостное охлаждение. Формула мощности электродвигателя переменного тока

P = U х I,

где P — мощность, U — напряжение, I — сила тока.

Приводы общего назначения со своими размерами и характеристиками находят применение в промышленности. Самые большие двигатели мощностью более 100 Мегаватт используют на силовых установках кораблей, компрессорных и насосных станций. Меньшего размера используют в бытовых приборах, как пылесос или вентилятор.

Конструкция электрического двигателя

Привод включает в себя:

  • Ротор.
  • Статор.
  • Подшипники.
  • Воздушный зазор.
  • Обмотку.
  • Коммутатор.

Ротор — единственная подвижная деталь привода, которая вращается вокруг своей оси. Ток, проходя через проводники, образует индукционное возмущение в обмотке. Формируемое магнитное поле взаимодействует с постоянными магнитами статора, что приводит в движение вал. Их рассчитывают по формуле мощности электродвигателя по току, для которой берется КПД и коэффициент мощности, в том числе все динамические характеристики вала.

Ротор двигателя

Подшипники расположены на валу ротора и способствуют его вращению вокруг своей оси. Внешней частью они крепятся к корпусу двигателя. Вал проходит через них и выходит наружу. Поскольку нагрузка выходит за пределы рабочей зоны подшипников, ее называют нависающей.

Статор является неподвижным элементом электромагнитной цепи двигателя. Может включать в себя обмотку или постоянные магниты. Сердечник статора выполнен из тонких металлических пластин, которые называют пакетом якоря. Он призван снижать потери энергии, что часто происходит с твердыми стержнями.

Ротор и статор двигателя

Воздушный зазор — расстояние между ротором и статором. Эффективным является небольшой промежуток, так как он влияет на низкий коэффициент работы электродвигателя. Ток намагничивания растет с увеличением размера зазора. Поэтому его всегда стараются делать минимальным, но до разумных пределов. Слишком маленькое расстояние приводит к трению и ослаблению фиксирующих элементов.

Обмотка состоит из медной проволоки, собранной в одну катушку. Обычно укладывается вокруг мягкого намагниченного сердечника, состоящего из нескольких слоев металла. Возмущение индукционного поля происходит в момент прохождения тока через провода обмотки. В этот момент установка переходит в режим конфигурации с явными и неявными полюсами. В первом случае магнитное поле установки создает обмотка вокруг полюсного наконечника. Во втором случае, в распределенном поле рассредотачивается слотов полюсного наконечника ротора. Двигатель с экранированными полюсами имеет обмотку, которое сдерживает магнитное возмущение.

Коммутатор используют для переключения входного напряжения. Состоит из контактных колец, расположенных на валу и изолированных друг от друга. Ток якоря подается на щетки контактов ротационного коммутатора, который приводит к изменению полярности и заставляет вращаться ротор от полюса к полюсу. При отсутствии напряжения мотор прекращает крутиться. Современные установки оборудованы дополнительными электронным средствами, которые контролируют процесс вращения.

Коммутатор двигателя

Принцип действия

По закону Архимеда ток в проводнике создает магнитное поле, в котором действует сила F1. Если из этого проводника изготовить металлическую рамку и поместить ее в поле под углом 90°, то края будут испытывать силы, направленные в противоположную сторону относительно друг друга. Они создают крутящий момент относительно оси, который начинает ее вращать. Витки якоря обеспечивают постоянное кручение. Поле создается электрическими или постоянными магнитами. Первый вариант выполнен в виде обмотки катушки на стальном сердечнике. Таким образом, ток рамки генерирует индукционное поле в обмотке электромагнита, которое порождает электродвижущую силу.

Работа электродвигателя

Рассмотрим более подробно работу асинхронных двигателей на примере установок с фазным ротором. Такие машины работают от переменного тока с частотой вращения якоря, не равной пульсации магнитного поля. Поэтому их еще называют индукционными. Ротор приводится в движение за счет взаимодействия электрического тока в катушках с магнитным полем.

Когда во вспомогательной обмотке отсутствует напряжение, устройство находится в состоянии покоя. Как только на контактах статора появляется электрический ток, образуется постоянное в пространстве магнитное поле с пульсацией +Ф и -Ф. Его можно представить в виде следующей формулы:

nпр = nобр = f1 × 60 ÷ p = n1

где:

nпр — количество оборотов, которое совершает магнитное поле в прямом направлении, об/мин;

nобр — число оборотов поля в обратном направлении, об/мин;

f1 — частота пульсации электрического тока, Гц;

p — количество полюсов;

n1 — общее число оборотов в минуту.

Испытывая пульсации магнитного поля, ротор получает начальное движение. По причине неоднородности воздействия потока, он будет развиваться крутящий момент. По закону индукции, в короткозамкнутой обмотке образуется электродвижущая сила, которая генерирует ток. Его частота пропорциональна скольжению ротора. Благодаря взаимодействию электрического тока с магнитным полем создается крутящий момент вала.

Для расчетов производительности существуют три формулы мощности асинхронного электродвигателя. По сдвигу фаз используют

S = P ÷ cos (alpha), где:

S — полная мощность, измеряемая в Вольт-Амперах.

P — активная мощность, указываемая в Ваттах.

alpha — сдвиг фаз.

Под полной мощностью понимаются реальный показатель, а под активной — расчетный.

Виды электродвигателей

По источнику питания приводы разделяют на работающие от:

  • Постоянного тока.
  • Переменного тока.

По принципу работы их, в свою очередь, делят на:

  • Коллекторные.
  • Вентильные.
  • Асинхронные.
  • Синхронные.

Вентильные двигатели не относят к отдельному классу, так как их устройство является вариацией коллекторного привода. В их конструкцию входит электронный преобразователь и датчик положения ротора. Обычно их интегрируют вместе с платой управления. За их счет происходит согласованная коммутация якоря.

Синхронные и асинхронные двигатели работают исключительно от переменного тока. Управление оборотами происходит с помощью сложной электроники. Асинхронные делятся на:

  • Трехфазные.
  • Двухфазные.
  • Однофазные.

Теоретическая формула мощности трехфазного электродвигателя при соединении в звезду или треугольником

P = 3 * Uф * Iф * cos(alpha).

Однако для линейных значений напряжения и тока она выглядит как

P = 1,73 × Uф × Iф × cos(alpha).

Это будет реальный показатель, сколько мощности двигатель забирает из сети.

Синхронные подразделяются на:

  • Шаговые.
  • Гибридные.
  • Индукторные.
  • Гистерезисные.
  • Реактивные.

В своей конструкции шаговые двигатели имеют постоянные магниты, поэтому их не относят к отдельной категории. Управление работой механизмов производится с помощью частотных преобразователей. Существуют также универсальные двигатели, которые функционируют от постоянного и переменного тока.

Общие характеристики двигателей

Все моторы имеют общие параметры, которые используются в формуле определения мощности электродвигателя. На их основе можно рассчитать свойства машины. В разной литературе они могут называться по-разному, но означают они одно и то же. В список таких параметров входит:

  • Крутящий момент.
  • Мощность двигателя.
  • Коэффициент полезного действия.
  • Номинальное количество оборотов.
  • Момент инерции ротора.
  • Расчетное напряжение.
  • Электрическая константа времени.

Вышеуказанные параметры необходимы, прежде всего, для определения эффективности электрических установок, работающих за счет механической силы двигателей. Расчетные величины дают лишь приблизительное представление о реальных характеристиках изделия. Однако эти показатели часто используют в формуле мощность электродвигателя. Именно она определяет результативность машин.

Вращательный момент

Этот термин имеет несколько синонимов: момент силы, момент двигателя, Вращательный момент, вертящий момент. Все они используются для обозначения одного показателя, хотя с точки зрения физики эти понятия не всегда тождественны.

Крутящий момент

В целях унификации терминологии были разработаны стандарты, которые приводят все к единой системе. Поэтому в технической документации всегда используются словосочетание «крутящий момент». Он представляет собой векторную физическую величину, которая равна произведению векторных значений силы и радиуса. Вектор радиуса проводится от оси вращения к точке приложенной силы. С точки зрения физики разница между крутящим и вращательным моментом заключается в точке прикладывания силы. В первом случае это внутреннее усилие, во втором — внешнее. Измеряется величина в ньютон-метрах. Однако в формуле мощности электродвигателя крутящий момент используется как основное значение.

Рассчитывается он как

M = F × r, где:

M — крутящий момент, Нм;

F — прикладываемая сила, H;

r — радиус, м.

Для расчета номинального вращающего момента привода используют формулу

Мном = 30Рном ÷ pi × нном, где:

Рном — номинальная мощность электрического двигателя, Вт;

нном — номинальное число оборотов, мин-1.

Соответственно, формула номинальной мощности электродвигателя бедует выглядеть следующим образом:

Рном = Мном * pi*нном / 30.

Обычно все характеристики указаны в спецификации. Но бывает, что приходится работать с совершенно новыми установками, информацию о которых найти очень сложно. Для расчета технических параметров таких устройств берут данные их аналогов. Также всегда известны только номинальные характеристики, которые даются в спецификации. Реальные данные необходимо рассчитывать самостоятельно.

Мощность двигателя

В общем смысле данный параметр представляет собой скалярную физическую величину, которая выражена в скорости потребления или преобразования энергии системы. Он показывает, какую работу механизм выполнит за определенную единицу времени. В электротехнике характеристика отображает полезную механическую мощность на центральном вале. Для обозначения показателя используют литеру P или W. Основной единицей измерения является Ватт. Общая формула расчета мощности электродвигателя может быть представлена как:

P = dA ÷ dt, где:

A — механическая (полезная) работа (энергия), Дж;

t — затраченное время, сек.

Механическая работа также является скалярной физической величиной, выражаемой действием силы на объект, и зависящей от направления и перемещения этого объекта. Она представляет собой произведение вектора силы на путь:

dA = F × ds, где:

s — пройденное расстояние, м.

Она выражает дистанцию, которую преодолеет точка приложенной силы. Для вращательных движений она выражается как:

ds = r × d(teta), где:

teta — угол оборота, рад.

Таким образом можно вычислить угловую частоту вращения ротора:

omega = d(teta) ÷ dt.

Из нее следует формула мощности электродвигателя на валу: P = M × omega.

Коэффициент полезного действия электромотора

КПД — это характеристика, которая отражает эффективность работы системы при преобразовании энергии в механическую. Выражается отношением полезной энергии к потраченной. По единой системе единиц измерений он обозначается как «eta» и является безразмерным значением, исчисляемым в процентах. Формула КПД электродвигателя через мощность:

eta = P2 ÷ P1, где:

P1 — электрическая (подаваемая) мощность, Вт;

P2 — полезная (механическая) мощность, Вт;

Также он может быть выражен как:

eta = A ÷ Q × 100 %, где:

A — полезная работа, Дж;

Q — затраченная энергия, Дж.

Чаще коэффициент вычисляют по формуле потребляемой мощности электродвигателя, так как эти показатели всегда легче измерить.

Снижение эффективности работы электродвигателя происходит по причине:

  • Электрических потерь. Это происходит в результате нагрева проводников от прохождения по ним тока.
  • Магнитных потерь. Вследствие излишнего намагничивания сердечника появляется гистерезис и вихревые токи, что важно учитывать в формуле мощности электродвигателя.
  • Механических потерь. Они связаны с трением и вентиляцией.
  • Дополнительных потерь. Они появляются из-за гармоник магнитного поля, так как статор и ротор имеют зубчатую форму. Также в обмотке присутствуют высшие гармоники магнитодвижущей силы.

Следует отметить, что КПД является одним из самых важных компонентов формулы расчета мощности электродвигателя, так как позволяет получить цифры, наиболее приближенные к действительности. В среднем этот показатель варьирует от 10% до 99%. Она зависит от конструктивного устройства механизма.

Номинальное количество оборотов

Еще одним ключевым показателем электромеханических характеристик двигателя является частота вращения вала. Он выражается в числе оборотов в минуту. Часто его используют в формуле мощности электродвигателя насоса, чтобы узнать его производительность. Но необходимо помнить, что показатель всегда разный для холостого хода и работы под нагрузкой. Показатель представляет физическую величину, равной количеству полных оборотов за некий промежуток времени.

Расчетная формула частоты оборотов:

n = 30 × omega ÷ pi, где:

n — частота вращения двигателя, об/мин.

Для того, чтобы найти мощность электродвигателя по формуле оборотистости вала, необходимо привести ее к расчету угловой скорости. Поэтому P = M × omega будет выглядеть следующим образом:

P = M × (2pi × n ÷ 60) = M × (n ÷ 9,55), где

t = 60 секунд.

Момент инерции

Этот показатель представляет собой скалярную физическую величину, которая отражает меру инертности вращательного движения вокруг собственной оси. При этом масса тела является величиной его инертности при поступательном движении. Основная характеристика параметра выражена распределением масс тела, которая равна сумме произведений квадрата расстояния от оси до базовой точки на массы объекта.В Международной системе единиц измерения он обозначается как кг·м2 и имеет рассчитывается по формуле:

J = ∑ r2 × dm, где

J — момент инерции, кг·м2 ;

m — масса объекта, кг.

Моменты инерции и силы связаны между собой соотношением:

M — J × epsilon, где

epsilon — угловое ускорение, с-2.

Показатель рассчитывается как:

epsilon = d(omega) × dt.

Таким образом, зная массу и радиус ротора, можно рассчитать параметры производительности механизмов. Формула мощности электродвигателя включает в себя все эти характеристики.

Расчетное напряжение

Его еще называют номинальным. Оно представляет собой базовое напряжение, представленное стандартным набором вольтажа, которые определяется степенью изоляции электрического оборудования и сети. В действительности оно может отличаться в разных точках оборудования, но не должно превышать предельно допустимых норм рабочих режим, рассчитанных на продолжительное функционирование механизмов.

Для обычных установок под номинальным напряжением понимают расчетные величины, для которых они предусмотрены разработчиком в нормальном режиме работы. Перечень стандартного вольтажа сети предусмотрен в ГОСТ. Эти параметры всегда описаны в технических характеристиках механизмов. Для расчета производительности используют формулу мощности электродвигателя по току:

P = U × I.

Электрическая константа времени

Представляет собой время, необходимое для достижения уровня тока до 63 % после подачи напряжения на обмотки привода. Параметр обусловлен переходными процессами электромеханических характеристик, так как они быстротечны ввиду большого активного сопротивления. Общая формула расчета постоянной времени:

te = L ÷ R.

Однако электромеханическая константа времени tm всегда больше электромагнитной te. Первый параметр получается из уравнения динамических характеристики двигателя при сохранении условии, когда ротор разгоняется с нулевой скоростью до максимальных оборотов холостого хода. В этом случае уравнение принимает вид

M = Mст + J × (d(omega) ÷ dt), где

Mст = 0.

Отсюда получаем формулу:

M = J × (d(omega) ÷ dt).

По факту электромеханическую константу времени рассчитывают по пусковому момент — Mп. Механизм, работающий в идеальных условиях, с прямолинейными характеристиками будем иметь формулу:

M = Mп × (1 — omega ÷ omega0), где

omega0 — скорость на холостом ходу.

Такие расчеты используют в формуле мощности электродвигателя насоса, когда ход поршня напрямую зависит от оборотистости вала.

Основные формулы расчета мощности двигателей

Для вычисления реальных характеристик механизмов всегда нужно учитывать много параметров. в первую очередь нужно знать, какой ток подается на обмотки электродвигателя: постоянный или переменный. Принцип их работы отличается, следовательно, отличаются метод вычислений. Если упрощенный вид расчета мощности привода выглядит как:

Pэл = U × I, где

I — сила тока, А;

U — напряжение, В;

Pэл — подведенная электрическая мощность. Вт.

В формуле мощности электродвигателя переменного тока необходимо также учитывать сдвиг фаз (alpha). Соответственно, расчеты для асинхронного привода выглядят как:

Pэл = U × I × cos(alpha).

Кроме активной (подведенной) мощности существует также:

  • S — реактивная, ВА. S = P ÷ cos(alpha).
  • Q — полная, ВА. Q = I × U × sin(alpha).

В расчетах также необходимо учитывать тепловые и индукционные потери, а также трение. Поэтому упрощенная модель формулы для электродвигателя постоянного тока выглядит как:

Pэл = Pмех + Ртеп +Ринд + Ртр, где

Рмех — полезная вырабатываемая мощность, Вт;

Ртеп — потери на образование тепла, ВТ;

Ринд — затраты на заряд в индукционной катушке, Вт;

Рт — потери в результате трения, Вт.

Заключение

Электродвигатели находят применение практически во всех областях жизни человека: в быту, в производстве. Для правильного использования привода необходимо знать не только его номинальные характеристики, но и реальные. Это позволит повысить его эффективность и снизить затраты.

Перемотать однофазный электродвигатель в трехфазный. Расчет обмоток однофазного электродвигателя при перемотке его из трехфазного

3-10. ОБМОТКИ ОДНОФАЗНЫХ АСИНХРОННЫХ ДВИГАТЕЛЕЙ

Однофазный асинхронный двигатель питается от однофазной сети (от двух проводов). Такой двигатель может быть выполнен с одной (рабочей) обмоткой на статоре, однако в этом случае он не имеет пускового момента и должен быть пущен в ход от руки. Такие двигатели применяются весьма редко. Для создания пускового момента двигатель получает, кроме рабочей, вспомогательную обмотку (которая превращает его, строго говоря, в двухфазный). Простейшая вспомогательная обмотка имеет вид короткозамкнутого витка, охватывающего край полюса. Такие двигатели -двигатели с расщепленным полюсом имеют небольшой пусковой момент (10% от момента трехфазного асинхронного двигателя такого же габарита) и применяются в мелких двигателях (вентиляторы, проигрыватели и т. п.), где не требуется значительного пускового момента. Более мощные однофазные двигатели выполняются с вспомогательной обмоткой, которая в отличие от рабочей питается не прямо от сети, а через конденсатор, дроссель или сопротивление. Благодаря этому ток в вспомогательной обмотке сдвигается по фазе относительно тока в рабочей обмотке, и в двигателе создается вращающееся магнитное поле, увлекающее ротор. Чем ближе сдвиг фаз между токами к 90 эл. град, тем симметричнее (ближе к круговому) вращающееся магнитное поле и тем больше пусковой момент.

Наилучшие результаты дает включение вспомогательной обмотки через конденсатор рис. 3-29,а-е.

Вспомогательная обмотка может включаться только йа время пуска, для чего применяются специальные реле или центробежные размыкатели, сидящие на валу двигателя, автоматически отключающие эту обмотку после того, как двигатель разбежался, рис. 3-20,6, ж.

В этом случае пусковая обмотка выполняется с числом витков 60-100% рабочей (включение через пусковой конденсатор) или 35-60% рабочей (включение через пусковой дроссель или сопротивление). Это позволяет увеличить магнитный поток этой обмотки и тем самым пусковой момент. Плотность тока в пусковой обмотке берется с учетом кратковременности ее включения, весьма высокой (в 5-10 раз больше, чем в рабо-

Рис 3-20. Схемы включения обмоток однофазных асинхронных двигателей,

чей). Пусковой момент таких двигателей (при включении через пусковой конденсатор) не меньше, чем у трехфазных, а при включении вспомогательной обмотки через конденсатор и повышающий трансформатор (рис. 3-20,2, е) могут быть получены пусковые моменты даже больше, чем у нормального трехфазного двигателя такого же габарита. Повышение напряжения на конденсаторе позволяет также существенно уменьшить его емкость и габарит. Сопротивления дают пусковые моменты 25-^35% пускового момента трехфазного двигателя. Двигатели с вспомогательной обмоткой, включенной

только на время пуска, хотя и имеют повышенный пусковой момент, имеют ухудшенные показатели при рабочем режиме (пониженную мощность, ухудшенный коэффициент мощности,и к. п. д.). Мощность их составляет в среднем 40-50% мощности трехфазного двигателя такого же габарита. Лучшие показатели имеют двигатели с постоянно включенной через конденсатор вспомогательной обмоткой. Мощность их достигает 70% и более от мощности соответствующего трехфазного двигателя. Б этом случае конденсатор подбирается из условия получения наилучших данных (получения кругового вращающегося поля) при рабочем режиме (наиболее высокий коэффициент мощности и к. п. д.). Пусковой момент при этом несколько снижается по сравнению с указанными выше для пусковой вспомогательной обмотки величинами.

Число витков вспомогательной обмотки берется близким (0,8-1,2) к числу витков рабочей. Наличие двух конденсаторов — одного, включаемого только на время пуска, и второго, включенного постоянно, позволяет получить однофазный асинхронный двигатель с высокими пусковыми и рабочими параметрами.

Рабочая обмотка обычно занимает 2 /з числа пазов статора, вспомогательная 7з Оси (середины) катушечных групп рабочей и вспомогательной обмоток должны быть сдвинуты относительно друг друга на 90 эл. град., т. е. на половину полюсного деления.

Для выполнения однофазной обмотки в статоре по рис. 3-7 нужно положить секции рабочей обмотки в пазы 1, 2, 3, 4 7, 8, 9, 10 и 13, 14, 15, 16 19, 20, 21, 22, а секции вспомогательной обмотки положить в пазы 5, 6 И, 12 и 17, 18 23, 24 В каждой рабочей и вспомогательной обмотке образуются две полюсные группы. В соответствии с изложенными выше правилами секции, входящие в одну полюсную группу, соединяются последовательно а сами rpiynnbi в зависимости от числа витков в секциях и рабочего напряжения соединяются последовательно или параллельно.

В большинстве случаев перемотка статора по приведенному выше примеру необязательна; рабочая и вспом

Расчет номинального тока электродвигателя | Заметки электрика

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

Решил написать статью о расчете номинального тока для трехфазного электродвигателя.

Этот вопрос является актуальным и кажется на первый взгляд не таким и сложным, но почему-то в расчетах зачастую возникают ошибки.

В качестве примера для расчета я возьму трехфазный асинхронный двигатель АИР71А4 мощностью 0,55 (кВт).

Вот его внешний вид и бирка с техническими данными.

Если двигатель Вы планируете подключать в трехфазную сеть 380 (В), то значит его обмотки нужно соединить по схеме «звезда», т.е. на клеммнике необходимо соединить выводы V2, U2 и W2 между собой с помощью специальных перемычек.

При подключении этого двигателя в трехфазную сеть напряжением 220 (В) его обмотки необходимо соединить треугольником, т.е. установить три перемычки: U1-W2, V1-U2 и W1-V2.

Если же Вы решите подключить этот двигатель в однофазную сеть 220 (В), то его обмотки также должны быть соединены треугольником.

Для информации: почитайте подробную статью о схемах соединения обмоток в «звезду» и «треугольник».

Для правильного выбора автоматического выключателя (или предохранителей) и тепловых реле для защиты двигателя, а также для выбора контактора для его управления, в первую очередь нам нужно знать номинальный ток двигателя для конкретной схемы соединения обмоток.

Обычно, номинальные токи указаны прямо на бирке, поэтому можно смело ориентироваться на них. Но иногда циферки не видны или стерты, а известна только лишь мощность двигателя или другие его параметры.

Такое очень часто встречается, но еще чаще бирка вообще отсутствует или так затерта, что на ней абсолютно ничего не видно — приходится только догадываться, что там изображено.

Но это отдельный случай и что делать в таких ситуациях, я расскажу Вам в ближайшее время.

В данной же статье я хочу акцентировать Ваше внимание на формулу по расчету тока двигателя, потому что даже не все «специалисты» ее знают, хотя может и знают, но не хотят вспомнить основы электротехники.

Итак, приступим.

Внимание! Мощность на шильдике двигателя указывается не электрическая, а механическая, т.е. полезная механическая мощность на валу двигателя. Об этом отчетливо говорится в действующем ГОСТ Р 52776-2007, п.5.5.3:

Полезную механическую мощность обозначают, как Р2.

Чаще всего мощность двигателя указывают не в ваттах (Вт), а в киловаттах (кВт). Для тех кто забыл, читайте статью о том, как перевести ватты в киловатты и наоборот.

Еще реже, на бирке указывают мощность в лошадиных силах (л.с.), но такого я ни разу еще не встречал на своей практике. Для информации: 1 (л.с.) = 745,7 (Ватт).

Но нас интересует именно электрическая мощность, т.е. мощность, потребляемая двигателем из сети. Активная электрическая мощность обозначается, как Р1 и она всегда будет больше механической мощности Р2, т.к. в ней учтены все потери двигателя.

1. Механические потери (Рмех.)

К механическим потерям относятся трение в подшипниках и вентиляция. Их величина напрямую зависит от оборотов двигателя, т.е. чем выше скорость, тем больше механические потери.

У асинхронных трехфазных двигателей с фазным ротором еще учитываются потери между щетками и контактными кольцами. Более подробно об устройстве асинхронных двигателей Вы можете почитать здесь.

2. Магнитные потери (Рмагн.)

Магнитные потери возникают в «железе» магнитопровода. К ним относятся потери на гистерезис и вихревые токи при перемагничивании сердечника.

Величина магнитных потерь в статоре зависит от частоты перемагничивания его сердечника. Частота всегда постоянная и составляет 50 (Гц).

Магнитные потери в роторе зависят от частоты перемагничивания ротора. Эта частота составляет 2-4 (Гц) и напрямую зависит от величины скольжения двигателя. Но магнитные потери в роторе имеют малую величину, поэтому в расчетах чаще всего не учитываются.

3. Электрические потери в статорной обмотке (Рэ1)

Электрические потери в обмотке статора вызваны их нагревом от проходящих по ним токам. Чем больше ток, чем больше нагружен двигатель, тем больше электрические потери — все логично.

4. Электрические потери в роторе (Рэ2)

Электрические потери в роторе аналогичны потерям в статорной обмотке.

5. Прочие добавочные потери (Рдоб.)

К добавочным потерям можно отнести высшие гармоники магнитодвижущей силы, пульсацию магнитной индукции в зубцах и прочее. Эти потери очень трудно учесть, поэтому их принимают обычно, как 0,5% от потребляемой активной мощности Р1.

Все Вы знаете, что в двигателе электрическая энергия преобразуется в механическую. Если объяснить чуть подробнее, то при подведенной к двигателю электрической активной мощности Р1, некоторая ее часть затрачивается на электрические потери в обмотке статора и магнитные потери в магнитопроводе. Затем остаточная электромагнитная мощность передается на ротор, где она расходуется на электрические потери в роторе и преобразуется в механическую мощность. Часть механической мощности уменьшается за счет механических и добавочных потерь. В итоге, оставшаяся механическая мощность — это и есть полезная мощность Р2 на валу двигателя.

Все эти потери и заложены в единственный параметр — коэффициент полезного действия (КПД) двигателя, который обозначается символом «η» и определяется по формуле:

η = Р2/Р1

Кстати, КПД примерно равен 0,75-0,88 для двигателей мощностью до 10 (кВт) и 0,9-0,94 для двигателей свыше 10 (кВт).

Еще раз обратимся к данным, рассматриваемого в этой статье двигателя АИР71А4.

На его шильдике указаны следующие данные:

  • тип двигателя АИР71А4
  • заводской номер № ХХХХХ
  • род тока — переменный
  • количество фаз — трехфазный
  • частота питающей сети 50 (Гц)
  • схема соединения обмоток ∆/Y
  • номинальное напряжение 220/380 (В)
  • номинальный ток при треугольнике 2,7 (А) / при звезде 1,6 (А)
  • номинальная полезная мощность на валу Р2 = 0,55 (кВт) = 550 (Вт)
  • частота вращения 1360 (об/мин)
  • КПД 75% (η = 0,75)
  • коэффициент мощности cosφ = 0,71
  • режим работы S1
  • класс изоляции F
  • класс защиты IP54
  • название предприятия и страны изготовителя
  • год выпуска 2007

Расчет номинального тока электродвигателя

В первую очередь необходимо найти электрическую активную потребляемую мощность Р1 из сети по формуле:

Р1 = Р2/η = 550/0,75 = 733,33 (Вт)

Величины мощностей подставляются в формулы в ваттах, а напряжение — в вольтах. КПД (η) и коэффициент мощности (cosφ) — являются безразмерными величинами.

Но этого не достаточно, потому что мы не учли коэффициент мощности (cosφ), а ведь двигатель — это активно-индуктивная нагрузка, поэтому для определения полной потребляемой мощности двигателя из сети воспользуемся формулой:

S = P1/cosφ = 733,33/0,71 = 1032,85 (ВА)

Найдем номинальный ток двигателя при соединении обмоток в звезду:

Iном = S/(1,73·U) = 1032,85/(1,73·380) = 1,57 (А)

Найдем номинальный ток двигателя при соединении обмоток в треугольник:

Iном = S/(1,73·U) = 1032,85/(1,73·220) = 2,71 (А)

Как видите, получившиеся значения равны токам, указанным на бирке двигателя.

Для упрощения, выше приведенные формулы можно объединить в одну общую. В итоге получится:

Iном = P2/(1,73·U·cosφ·η)

Поэтому, чтобы определить номинальный ток двигателя, необходимо в данную формулу подставлять механическую мощность Р2, взятую с бирки, с учетом КПД и коэффициента мощности (cosφ), которые указаны на той же бирке или в паспорте на электродвигатель.

Перепроверим формулу.

Ток двигателя при соединении обмоток в звезду:

Iном = P2/(1,73·U·cosφ·η) = 550/(1,73·380·0,71·0,75) = 1,57 (А)

Ток двигателя при соединении обмоток в треугольник:

Iном = P2/(1,73·U·cosφ·η) = 550/(1,73·220·0,71·0,75) = 2,71 (А)

Надеюсь, что все понятно.

Примеры

Решил привести еще несколько примеров с разными типами двигателей и мощностями. Рассчитаем их номинальные токи и сравним с токами, указанными на их бирках.

1. Асинхронный двигатель 2АИ80А2ПА мощностью 1,5 (кВт)

Как видите, этот двигатель можно подключить только в трехфазную сеть напряжением 380 (В), т.к. его обмотки собраны в звезду внутри двигателя, а в клеммник выведено всего три конца, поэтому:

Iном = P2/(1,73·U·cosφ·η) = 1500/(1,73·380·0,85·0,82) = 3,27 (А)

Полученный ток 3,27 (А) соответствует номинальному току 3,26 (А), указанному на бирке.

2. Асинхронный двигатель АОЛ2-32-4 мощностью 3 (кВт)

Данный двигатель можно подключать в трехфазную сеть напряжением, как на 380 (В) звездой, так и на 220 (В) треугольником, т.к. в клеммник у него выведено 6 концов:

Iном = P2/(1,73·U·cosφ·η) = 3000/(1,73·380·0,83·0,83) = 6,62 (А) — звезда

Iном = P2/(1,73·U·cosφ·η) = 3000/(1,73·220·0,83·0,83) = 11,44 (А) — треугольник

Полученные значения токов при разных схемах соединения обмоток соответствуют номинальным токам, указанных на бирке.

3. Асинхронный двигатель АИРС100А4 мощностью 4,25 (кВт)

Аналогично, предыдущему.

Iном = P2/(1,73·U·cosφ·η) = 4250/(1,73·380·0,78·0,82) = 10,1 (А) — звезда

Iном = P2/(1,73·U·cosφ·η) = 4250/(1,73·220·0,78·0,82) = 17,45 (А) — треугольник

Расчетные значения токов при разных схемах соединения обмоток соответствуют номинальным токам, указанных на шильдике двигателя.

4. Высоковольтный двигатель А4-450Х-6У3 мощностью 630 (кВт)

Этот двигатель можно подключить только в трехфазную сеть напряжением 6 (кВ). Схема соединения его обмоток — звезда.

Iном = P2/(1,73·U·cosφ·η) = 630000/(1,73·6000·0,86·0,947) = 74,52 (А)

Расчетный ток 74,52 (А) соответствует номинальному току 74,5 (А), указанному на бирке.

Дополнение

Представленные выше формулы это конечно хорошо и по ним расчет получается более точным, но есть в простонародье более упрощенная и приблизительная формула для расчета номинального тока двигателя, которая наибольшее распространение получила среди домашних умельцев и мастеров.

Все просто. Берете мощность двигателя в киловаттах, указанную на бирке и умножаете ее на 2 — вот Вам и готовый результат. Только данное тождество уместно для двигателей 380 (В), собранных в звезду. Можете проверить и поумножать мощности приведенных выше двигателей. Но лично я же настаиваю Вам использовать более точные методы расчета.

P.S. А вот теперь, как мы уже определились с токами, можно приступать к выбору автоматического выключателя, предохранителей, тепловой защиты двигателя и контакторов для его управления. Об этом я расскажу Вам в следующих своих публикациях. Чтобы не пропустить выход новых статей — подписывайтесь на рассылку сайта «Заметки электрика». До новых встреч.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


Пример расчета трехфазного двигателя в однофазный. Ограничения однофазных электродвигателей

Мощностью от десятков ватт до нескольких киловатт нашли достаточно широкое применение в различного рода бытовых приборах, приводах вентиляторов бытового и производственного назначения, деревообрабатывающих станков, насосов, компрессоров, транспортеров а также небольших станков. Их преимущество — возможность использования в таких местах и помещениях, где нет трехфазной сети, но подведена двухпроводная однофазная сеть.

Значительная часть однофазных асинхронных электродвигателей изготавливается на базе серийных трехфазных двигателей. к примеру, однофазные двигатели серии ABE изготавливаются на базе трехфазных встраиваемых двигателей АВ и т. д. В конструкции механической части и магнитопроводов таких двигателей нет каких-либо существенных отличий в сравнении с асинхронными электродвигателями трехфазного тока .

Конденсаторные эл. двигатели

Главное отличие — в конструкции, выполнении и подключении статорной обмотки. Для пуска однофазных асинхронных электродвигателей часто используют специальную пусковую обмотку, находящуюся на статоре вместе с основной рабочей обмоткой, но смещенной на некоторый угол по отношению к ней. Пусковая обмотка зачастую подключается к сети через конденсатор , а после пуска и разгона двигателя отключается. В ряде конструкций обе обмотки являются рабочими и для повышения эффективности использования и улучшения характеристик однофазных двигателей можно пусковую обмотку с включенными в ее цепь конденсаторами оставить подсоединенной к сети на весь период работы. В этом случае подбором емкости конденсаторов можно добиться в рабочем режиме машины кругового или почти кругового вращающегося магнитного поля, когда обратная составляющая поля будет отсутствовать полностью или будет в значительной мере ослаблена. В результате этого улучшатся характеристики машины и повысится эффективность ее использования. Если при работе однофазного двигателя обе его обмотки остаются постоянно подсоединенными к сети, а последовательно с одной из них включен конденсатор, то такой двигатель называется конденсаторным (см. рис.).

У конденсаторного двигателя обе обмотки являются рабочими. Из условия получения кругового поля их числа витков в общем случае различны. Выбор конденсатора может показаться достаточно сложной задачей. Для этого существует, как минимум, два способа.

Первый способ — подбор емкости конденсатора опытным путем. Критерии для оценки оптимального выбора емкости ток холостого хода и пусковой момент. Момент должен быть максимальный, а ток холостого хода минимальный. Обычно достаточно оценки по току холостого хода.

Второй способ выбора емкости конденсатора — метод расчета. Остановимся на этом подробнее. В этом случае напряжения на обмотках должны быть сдвинуты по фазе на 90о, поэтому

jUa = Uβ kwawa/kwβwβ . (1)

Токи в обмотках Ia и также будут сдвинуты по фазе на 90° и будут создавать МДС

jIakwawa =Iβkwβwβ (2),

где wa и — числа витков обмоток α и β ;

kwa и kwβ обмоточные коэффициенты для обмоток α и β .

Перемножая левые и правые части равенств (1) и (2), получаем

UαIα = UβIβ

Т. е. полные мощности обеих обмоток будут равны. Так как обмотки находятся в одинаковых условиях по отношению к ротору, то развиваемые ими активные мощности также будут равны, т. е.

UαIαcosφα = UβIβcosφβ

откуда следует, что φα = φβ .

Кроме того, согласно рис.

Uα = U1 Uβ+Uс = U1

и угол сдвига между током и напряжением на конденсаторе составляет 90°. Этим условиям соответствует векторная диаграмма. Согласно этой диаграмме

Uс = Uβ /sinφβ

Емкость, необходимая для создания кругового поля, определяется из соотношения

Iβ = Uс /xc = (Uβ / sinφβ) ωC

Откуда

C = Iβ sinφβ / (ωUβ)

Мощность конденсатора составляет

QC = Uс Iβ = Uβ Iβ / sinφβ

Таким образом, мощность конденсатора равна полной мощности двигателя, Т. е. относительно велика. Следует обратить внимание, что при заданном значении емкости C круговое поле создается только при одной определенной нагрузке двигателя (при одном значении тока). При других нагрузках п

Однофазный асинхронный двигатель

Дмитрий Левкин

Однофазный асинхронный электродвигатель представляет собой асинхронный электродвигатель, который работает от однофазной сети переменного тока без использования преобразователя частоты и который в базовом режиме работы (после запуска) использует только одну обмотку (фазу). статора.

Сплитфазный двигатель — это однофазный асинхронный двигатель, имеющий вспомогательную (пусковую) обмотку на статоре, смещенную от основной, и короткозамкнутый ротор [2].

Конструкция однофазного асинхронного двигателя с вспомогательной или пусковой обмоткой

Основными компонентами любого электродвигателя являются ротор и статор. Ротор является вращающейся частью электродвигателя, статор является неподвижной частью электродвигателя, с помощью которого создается магнитное поле для вращения ротора.

Основные части однофазного асинхронного двигателя: ротор и статор

Статор имеет две обмотки, расположенные под углом 90 ° относительно друг друга.Основная (рабочая) обмотка обычно занимает 2/3 пазов сердечника статора, другая обмотка называется вспомогательной (пусковой) и обычно занимает 1/3 пазов статора.

Двигатель фактически двухфазный, но поскольку после запуска работает только одна обмотка, электродвигатель называется однофазным.

Ротор обычно представляет собой короткозамкнутую обмотку, также называемую «короткозамкнутой клеткой» из-за сходства. Чьи медные или алюминиевые стержни закрыты кольцами на концах, а пространство между стержнями часто заполнено алюминиевым сплавом.Ротор однофазного двигателя также может быть выполнен в виде полого немагнитного или полого ферромагнитного цилиндра.

Однофазный асинхронный двигатель со вспомогательной обмоткой имеет две обмотки, расположенные перпендикулярно друг другу

Принцип работы однофазного асинхронного двигателя

Чтобы лучше понять работу однофазного асинхронного двигателя, давайте рассмотрим его только с одним витком в главной и вспомогательной обмотках.

Анализ корпуса с двумя обмотками, имеющими один оборот

Рассмотрим случай, когда ток не течет во вспомогательной обмотке.При включении основной обмотки статора переменный ток, проходящий через обмотку, создает пульсирующее магнитное поле, стационарное в пространстве, но изменяющееся от + Ф макс. до -Ф макс. .

Старт

Стоп

Колеблющееся магнитное поле

Если вы поместите короткозамкнутый ротор с начальным вращением в флуктуирующее магнитное поле, он продолжит вращаться в том же направлении.

Чтобы понять принцип работы однофазного асинхронного двигателя, мы разделяем флуктуирующее магнитное поле на два одинаковых вращающихся поля с амплитудой, равной Ф макс. /2 и вращающихся в противоположных направлениях с одинаковой частотой:

,

  • , где n f — скорость вращения магнитного поля в прямом направлении, об / мин,
  • n r — скорость вращения магнитного поля в обратном направлении, об / мин,
  • f 1 — частота тока статора, Гц,
  • — число пар полюсов,
  • n 1 — скорость вращения магнитного потока, об / мин

Старт

Стоп

Разложение флуктуирующего магнитного потока на два вращающихся

Действие флуктуирующего поля на вращающийся ротор

Рассмотрим случай, когда ротор в флуктуирующем магнитном потоке имеет начальное вращение.Например, мы вручную вращали вал однофазного двигателя, одна обмотка которого подключена к электросети переменного тока. В этом случае при определенных условиях двигатель будет продолжать развивать крутящий момент, поскольку скольжение ротора относительно прямого и обратного магнитного потока будет неравным.

Предположим, что прямой магнитный поток Ф f вращается в направлении вращения ротора, а обратный магнитный поток Ф r в противоположном направлении. Поскольку скорость вращения ротора n 2 меньше скорости вращения магнитного потока n 1 , то скольжение ротора относительно потока Ф f будет:

,

  • , где s f — скольжение ротора относительно прямого магнитного потока,
  • n 2 — частота вращения ротора,
  • с асинхронным двигателем скольжения

Прямой и обратный вращающийся магнитный поток вместо флуктуирующего магнитного потока

Магнитный поток Ф r вращается против вращения ротора, скорость вращения ротора n 2 относительно этого потока отрицательна, а скольжение ротора относительно Ф r

,

  • , где s r — скольжение ротора относительно обратного магнитного потока

Старт

Стоп

Вращающееся магнитное поле, пронизывающее ротор

Ток, индуцированный в роторе переменным магнитным полем

Согласно закону электромагнитной индукции, магнитные потоки прямого Ф f и обратного Ф r , генерируемые обмоткой статора, индуцируют ЭДС в обмотке ротора, которая, соответственно, в короткозамкнутом роторе генерирует токи I 2f. а я .Частота тока в роторе пропорциональна скольжению, поэтому:

,

  • , где f 2f — частота тока I 2f , индуцированного прямым магнитным потоком, Гц

,

  • , где f 2r — частота тока I 2r , индуцированного обратным магнитным потоком, Гц

Таким образом, когда ротор вращается, электрический ток I 2r , индуцированный обратным магнитным полем в обмотке ротора, имеет частоту f 2r , значительно превышающую частоту f 2f индуцированного тока ротора I 2f передним полем.

Пример: для однофазного асинхронного двигателя, работающего от сети с частотой f 1 = 50 Гц при n 1 = 1500 и n 2 = 1440 об / мин, скольжение ротора

относительно прямой магнитный поток s f = 0,04;
частота тока, индуцированного прямым магнитным потоком f 2f = 2 Гц;
проскальзывание ротора относительно обратного магнитного потока а с р = 1,96;
частота тока, индуцированного обратным магнитным потоком f 2r = 98 Гц

Согласно закону Ампера, крутящий момент возникает в результате взаимодействия электрического тока I 2f с магнитным полем F f

,

  • , где M f — магнитный момент, создаваемый прямым магнитным потоком, Н ∙ м,
  • с М — постоянный коэффициент, определяемый конструкцией двигателя

Электрический ток I 2r , взаимодействуя с магнитным полем Ф r , создает тормозной момент M r , направленный против вращения ротора, то есть в противоположность моменту M f :

,

  • , где M r — магнитный крутящий момент, создаваемый обратным магнитным потоком, Н 900 м

Результирующий крутящий момент, действующий на ротор однофазного асинхронного двигателя,

,

Примечание: В связи с тем, что во вращающемся роторе прямое и обратное магнитное поле будет индуцировать ток различной частоты, крутящие моменты, действующие на ротор в разных направлениях, не будут одинаковыми.Следовательно, ротор будет продолжать вращаться в колеблющемся магнитном поле в направлении, в котором он имел начальное вращение.

Эффект торможения обратного поля

Когда однофазный двигатель работает в пределах номинальной нагрузки, то есть при малых значениях скольжения s = s f , крутящий момент создается в основном за счет крутящего момента M f . Эффект торможения крутящего момента обратного поля M r незначительный. Это связано с тем, что частота f 2r намного выше частоты f 2f , следовательно, индуктивное сопротивление обмотки ротора а х 2r = x 2 с r к току У меня намного больше, чем у него активное сопротивление.Поэтому ток I 2r , имеющий большую индуктивную составляющую, оказывает сильное размагничивающее действие на обратный магнитный поток Ф r , значительно ослабляя его.

,

  • , где r 2 — сопротивление стержней ротора, Ом,
  • x 2r — реактивное сопротивление стержней ротора, Ом.

Если учесть, что коэффициент мощности мал, то станет понятно, почему M r под нагрузкой двигателя не оказывает существенного тормозного воздействия на ротор однофазного двигателя.

При одной фазе ротор не может быть запущен.

Ротор, имеющий начальное вращение, будет продолжать вращаться в поле, создаваемом однофазным статором

Действие флуктуирующего поля на неподвижный ротор

При неподвижном роторе (n 2 = 0) скольжение s f = s r = 1 и M f = M r , поэтому начальный пусковой момент однофазного асинхронного двигателя M f = 0.Чтобы создать пусковой момент, необходимо привести ротор во вращение в ту или иную сторону. Тогда s ≠ 1, равенство моментов М f и М r нарушается, и результирующий электромагнитный момент приобретает некоторое значение M = M f — M r ≠ 0.

Запуск однофазного асинхронного двигателя. Как создать начальный поворот?

Одним из способов создания пускового крутящего момента в однофазном асинхронном двигателе является расположение вспомогательной (пусковой) обмотки B, которая смещена в пространстве относительно главной (рабочей) обмотки A под углом 90 электрических градусов.Для того чтобы обмотки статора создавали вращающееся магнитное поле, токи I A и I B в обмотках должны быть не в фазе относительно друг друга. Для получения фазового сдвига между токами I A и I B вспомогательная (пусковая) обмотка B соединяется с фазосдвигающим элементом, который представляет собой сопротивление (резистор), индуктивность (дроссель) или емкость (конденсатор). [1].

После того, как ротор двигателя ускоряется до скорости вращения, близкой к постоянной, пусковая обмотка B отключается.Вспомогательная обмотка отключается либо автоматически с помощью центробежного переключателя, реле задержки времени, тока или дифференциального реле, либо вручную с помощью кнопки.

Таким образом, во время запуска однофазный асинхронный двигатель работает как двухфазный, а после запуска — как однофазный.

Подключение однофазного асинхронного двигателя

Сопротивление пуска асинхронного двигателя

Сопротивление пуска Асинхронный двигатель представляет собой двухфазный двигатель, в котором цепь вспомогательной обмотки отличается повышенным сопротивлением.

Омический фазовый сдвиг, бифилярная пусковая обмотка

Различное сопротивление и индуктивность обмоток

Для запуска однофазного асинхронного двигателя вы можете использовать пусковой резистор, который последовательно подключен к пусковой обмотке. В этом случае можно достичь сдвига фаз на 30 ° между токами главной и вспомогательной обмоток, чего вполне достаточно для запуска двигателя.В двигателе с пусковым сопротивлением разность фаз объясняется различным комплексным сопротивлением цепей.

Кроме того, фазовый сдвиг можно создать с помощью пусковой обмотки с меньшей индуктивностью и большим сопротивлением. Для этого пусковая обмотка выполняется с меньшим числом витков и с использованием более тонкой проволоки, чем в основной обмотке.

Пусковой конденсаторный асинхронный двигатель

Запуск конденсатора Асинхронный двигатель представляет собой двухфазный двигатель, в котором цепь вспомогательной обмотки с конденсатором включается только на время пуска.

Емкостный фазовый сдвиг с пусковым конденсатором

Для достижения максимального пускового крутящего момента необходимо создать круговое вращающееся магнитное поле, для этого необходимо, чтобы токи в основной и вспомогательной обмотках были смещены относительно друг друга на 90 °. Использование резистора или дросселя в качестве элемента, сдвигающего фазу, не обеспечивает требуемого сдвига фаз. Только включение конденсатора определенной емкости позволяет сдвиг фазы на 90 °.

Среди фазосдвигающих элементов только конденсатор позволяет достичь наилучших пусковых свойств однофазного асинхронного электродвигателя.

Двигатели, в цепи которых постоянно включенный конденсатор, используют две фазы для работы и называются конденсаторными. Принцип работы этих двигателей основан на использовании вращающегося магнитного поля.

Асинхронный двигатель с заштрихованными полюсами представляет собой двухфазный двигатель, в котором вспомогательная обмотка замкнута накоротко.

Статор однофазного асинхронного двигателя с заштрихованными полюсами обычно имеет выступающие полюса. Каждый полюс статора разделен на две неравные секции осевой канавкой. Меньшая часть полюса имеет короткозамкнутый виток. Ротор однофазного двигателя с заштрихованными полюсами закорочен в виде короткозамкнутого сепаратора.

Когда однофазная обмотка статора включена в электрическую сеть, в магнитной цепи двигателя создается флуктуирующий магнитный поток.Одна часть которого проходит через незатененную Ф ‘, а другая Ф «вдоль затененного участка полюса. Поток Ф» вызывает короткое замыкание ЭДС E k , в результате чего ток I k отстает от E к в фазе из-за индуктивности катушки. Ток I к создает магнитный поток Ф к , направленный противоположно Ф «, создавая результирующий поток в затененном участке полюса Ф с = Ф» + Ф к . Таким образом, в двигателе потоки затененных и незатененных участков полюса смещаются во времени на определенный угол.

Пространственные и временные углы сдвига между потоками Ф с и Ф ‘создают условия для появления вращающегося эллиптического магнитного поля в двигателе, начиная с Ф с ≠ Ф’.

Пусковые и рабочие свойства рассматриваемого двигателя низкие. КПД значительно ниже, чем у асинхронных двигателей с пусковым конденсатором той же мощности, что связано со значительными электрическими потерями в короткозамкнутой катушке.

Статор такого однофазного двигателя выполнен с выступающими полюсами на несимметричном многослойном сердечнике.Ротор имеет короткозамкнутую обмотку.

Этот двигатель для работы не требует использования фазосдвигающих элементов. Недостатком этого мотора является низкий КПД.

Также прочитайте

,

трехфазный ток — простой расчет

Расчет тока в трехфазной системе был поднят на обратной связи нашего сайта и является дискуссией, в которой я, кажется, участвую время от времени. Хотя некоторые коллеги предпочитают запоминать формулы или факторы, я предпочитаю решать проблему шаг за шагом, используя основные принципы. Я думал, что было бы хорошо написать, как я делаю эти вычисления. Надеюсь, это может оказаться полезным для кого-то еще.

Трехфазная мощность и ток

Мощность, потребляемая цепью (однофазной или трехфазной), измеряется в Вт (или кВт).Произведение напряжения и тока — это полная мощность, измеренная в ВА (или кВА). Соотношение между кВА и кВт — это коэффициент мощности (пф):


который также может быть выражен как:

Однофазная система — с ней проще всего иметь дело. Учитывая кВт и коэффициент мощности, кВА может быть легко определена. Ток — это просто кВА, деленная на напряжение. В качестве примера рассмотрим нагрузку, потребляющую 23 кВт мощности при 230 В и коэффициент мощности 0.86:


Примечание: вы можете сделать эти уравнения в ВА, V и A или в кВА, кВ и кА в зависимости от величины параметров, с которыми вы имеете дело. Для перевода из ВА в кВА просто разделите на 1000.

Трехфазная система — Основным отличием трехфазной системы от однофазной системы является напряжение. В трехфазной системе мы имеем линейное напряжение (V LL ) и фазное напряжение (V LN ), связанные:


или как:

чтобы лучше понять это или получить более глубокое понимание, вы можете прочитать статью Введение в трехфазную электроэнергию

Для меня самый простой способ решить трехфазные задачи — это преобразовать их в однофазные.Возьмите трехфазный двигатель (с тремя одинаковыми обмотками), потребляющий данный кВт. КВт на одну обмотку (однофазное) должно быть общим делением на 3. Аналогично, трансформатор (с тремя обмотками, каждая из которых идентична), питающий заданное значение кВА, будет иметь каждую обмотку, подающую треть общей мощности. Чтобы преобразовать трехфазную задачу в однофазную, возьмите общий кВт (или кВА) и разделите на три.

В качестве примера рассмотрим сбалансированную трехфазную нагрузку, потребляющую 36 кВт при коэффициенте мощности 0.86 и линейное напряжение 400 В (V LL ):

линия к нейтральному (фазному) напряжению V LN = 400 / √3 = 230 В
трехфазная мощность 36 кВт, однофазная мощность = 36/3 = 12 кВт
Теперь просто следуйте вышеуказанному однофазному методу

Достаточно просто. Чтобы найти мощность по заданному току, умножьте на напряжение, а затем коэффициент мощности для преобразования в Вт. Для трехфазной системы умножьте на три, чтобы получить полную мощность.

Личная заметка о методе

Как правило, я помню метод (не формулы) и переделываю его каждый раз, когда делаю расчет. Когда я пытаюсь запомнить формулы, я всегда забываю их скоро или становлюсь неуверенным, правильно ли я их помню. Мой совет — всегда стараться запомнить метод, а не просто запомнить формулу. Конечно, если у вас есть супер способность запоминать формулы, вы всегда можете придерживаться этого подхода.

Использование формул

Вывод формулы — пример

Сбалансированная трехфазная система с общей мощностью P (Вт), коэффициентом мощности pf и линейным напряжением В LL

Преобразовать в однофазную задачу:
P 1ph = P 3

Кажущаяся мощность однофазной сети S 1ph (ВА):
S 1ph = P 1ph pf = P 3 × pf

Фазовый ток I (A) — это кажущаяся однофазная мощность, деленная на фазное напряжение и напряжение нейтрали (и задана В LN = В LL / √3):
I = S 1ph V LN = P 3 × pf 3 V LL

Упрощение (и с 3 = √3 x √3):
I = P 3 × pf × V LL

Приведенный выше метод основан на запоминании нескольких простых принципов и манипулировании проблемой, чтобы дать ответ.

Более традиционные формулы могут быть использованы для получения того же результата. Они могут быть легко получены из вышесказанного, например,

I = W3 × pf × VLL, в A

Несбалансированные трехфазные системы

Вышеуказанное касается сбалансированных трехфазных систем. То есть ток в каждой фазе одинаков, и каждая фаза выдает или потребляет одинаковое количество энергии. Это типично для систем передачи энергии, электродвигателей и аналогичных типов оборудования.

Часто, когда речь идет об однофазных нагрузках, например, в жилых и коммерческих помещениях, система может быть разбалансирована, так как каждая фаза имеет различный ток и выдает или потребляет различное количество энергии.

Сбалансированное напряжение

К счастью, на практике напряжения имеют тенденцию быть фиксированными или очень небольшими. В этой ситуации и с небольшим размышлением можно распространить вышеуказанный тип расчета на несбалансированные текущие трехфазные системы.Ключом к этому является то, что сумма мощности в каждой фазе равна общей мощности системы.

Например, возьмем трехфазную систему 400 В (V LL ) со следующими нагрузками: фаза 1 = 80 А, фаза 2 = 70 А, фаза 3 = 82 А

линия к нейтральному (фазному) напряжению V LN = 400 / √3 = 230 В
полная мощность фазы 1 = 80 x 230 = 18 400 ВА = 18,4 кВА
полная мощность фазы 2 = 70 x 230 = 16 100 ВА = 16,1 кВА
полная мощность фазы 3 = 82 x 230 = 18 860 ВА = 18.86 кВА
Общая трехфазная мощность = 18,4 + 16,1 + 18,86 = 53,36 кВА

Аналогичным образом, учитывая мощность в каждой фазе, вы можете легко найти фазные токи. Если вы также знаете коэффициент мощности, вы можете конвертировать между кВА и кВт, как показано ранее.

Несбалансированные напряжения

Если напряжения становятся несбалансированными или имеются другие соображения (например, несбалансированный сдвиг фаз), то необходимо вернуться к более традиционному сетевому анализу.Системные напряжения и токи могут быть найдены путем составления схемы в деталях и использования законов Кирхгофа и других сетевых теорем.

Сетевой анализ не является целью этой заметки. Если вы заинтересованы во введении, вы можете просмотреть наш пост: Теория сети — Введение и обзор

Эффективность и реактивная мощность

Другие вещи, которые следует учитывать при проведении расчетов, могут включать в себя эффективность оборудования.Зная, что эффективность энергопотребляющего оборудования — это выходная мощность, деленная на входную мощность, опять же, это легко может быть учтено. Реактивная мощность не обсуждается в статье, а дополнительные сведения можно найти в других заметках (просто воспользуйтесь поиском по сайту).

Резюме

Помня, что трехфазная мощность (кВт или кВА) просто в три раза больше однофазной мощности, любая трехфазная проблема может быть упрощена. Разделите кВт на коэффициент мощности, чтобы получить кВА. ВА — это просто ток, умноженный на напряжение, поэтому, зная это, и напряжение может дать ток.При расчете тока используйте фазное напряжение, которое связано с напряжением линии квадратным корнем из трех. Используя эти правила, можно решить любую трехфазную задачу без необходимости запоминать и / или прибегать к формулам.

,Калькулятор

кВА (одно- и трехфазный)

  1. Home
  2. Engineering
  3. Электрические

Калькулятор однофазной и трехфазной линии кВА — это интерактивный инструмент, используемый в электротехнике для измерения неизвестного количества по двум известным величинам, примененным к приведенным ниже формулам для однофазного и трехфазного подключения. Для расчета кВА необходимо ввести известные значения напряжения и тока в соответствующие поля.Эти два значения применяются к приведенным ниже формулам, используемым в калькуляторе кВА для расчета неизвестного количества кВА. Для однофазного соединения, кВА может быть математически получена из этой ниже формулы
Single Phase kVA Calculation Formula; kVA = volts x amps / 1000

Для трехфазного соединения, кВА может быть математически получена из этой ниже формулы напряжение на две известные величины кВА и ток, приложенные к приведенным ниже формулам.Для однофазного соединения напряжение может быть математически получено из этой ниже формулы
Single Phase Voltage Calculation Formula; volts = kVA x 1000 / amps

Для трехфазного соединения напряжение может быть математически получено из этой ниже формулы ток на две известные величины кВА и напряжение, приложенное к приведенным ниже формулам. Для однофазного соединения ток может быть математически выведен из этой ниже формулы
Single Phase Current Calculation Formula; Amps = kVA x 1000 / volts

Для трехфазного соединения ток может быть математически получен из этой ниже формулы
Three Phase Current Calculation Formula; Amps = kVA x 1000 / √3 x volts

,

ЧРП для однофазных приложений

ЧРП и однофазные двигатели переменного тока

Моя первая работа вне школы была связана с техникой, которая занималась технической поддержкой. Находясь на Среднем Западе, у нас было много фермеров и сельскохозяйственных клиентов.

Область их применения варьировалась от работы вентиляторов, насосов, элеваторов, мешалок, шнеков, конвейеров и т. Д. На фермерских установках часто не было доступа к трехфазному питанию, и им приходилось обходиться однофазным напряжением 230 В.Мы продали много однофазных двигателей в эти установки.

Многие из однофазных двигателей были относительно большими — от 5 до 15 л.с.

single phase farm duty motor однофазный двигатель Farm Duty

Существует ряд проблем при эксплуатации больших однофазных двигателей. Частый вопрос от этих клиентов звучал так: «Могу ли я добавить VFD к своему однофазному двигателю?».

В этом посте рассказывается об использовании VFD в однофазных приложениях — почему человек захочет добавить VFD, рассмотрит размеры, приблизительное сравнение затрат и преимущества, которые предлагает VFD.

Проблема с питанием от линии однофазных двигателей

Одной из проблем при эксплуатации больших однофазных двигателей переменного тока от линии является пусковой ток. Однофазный двигатель мощностью 10 л.с. будет тянуть номинал 38 А (при 230 В).

Но этот двигатель (конструкция NEMA B) будет тянуть в 6-8 раз больше номинального тока при запуске — или 234 А!

10HP single phase motor data Однофазный двигатель мощностью 10 л.с. подает пусковой ток 234 А при напряжении 230 В.

Этого достаточно, чтобы энергетические компании обратили внимание, особенно если одновременно запускаются несколько двигателей или электроснабжение удаленной фермы приближается к мощности.

Справедливости ради, проблемы, связанные с высокими пусковыми токами, также будут влиять на трехфазный двигатель с питанием от сети. Но в случае трехфазного двигателя человек может легко добавить VFD. Одно из преимуществ работы ЧРП заключается в том, что при увеличении скорости двигателя он ограничивает ток двигателя.

Проблема в том, что VFD не может работать с большинством однофазных двигателей — по крайней мере, на пониженных скоростях.

Центробежный выключатель при запуске конденсатора Однофазные двигатели

Существует несколько различных конструкций однофазных двигателей.Я выделю тот, который я видел больше всего в промышленных приложениях — с конденсатором и центробежным переключателем. В конструкции используется конденсаторная сеть, которая находится в цепи двигателя на низких скоростях. Конденсаторы помогают развить крутящий момент при нулевой скорости и запустить двигатель в правильном направлении.

Схема подключения стандартного однофазного двигателя single phase motor wiring diagram — с конденсаторами и центробежным выключателем

Когда двигатель вращается и имеет инерцию, размыкается центробежный выключатель, и сеть конденсаторов отключается от первичных обмоток двигателя.Скорость, с которой размыкается переключатель, происходит до достижения номинальной скорости скольжения.

По этой причине не рекомендуется использовать двигатель, рассчитанный на 60 Гц, на 50 Гц. По крайней мере, без замены или регулировки центробежного переключателя. Вполне возможно, что переключатель не открывается при работе на частоте 50 Гц. Это может привести к повреждению конденсаторов или перегреву обмоток двигателя.

Аналогичная проблема связана с использованием ЧРП для управления скоростью однофазного двигателя.Понижение скорости будет эффективно удерживать конденсаторы в цепи и потенциально повредить двигатель.

Однофазный вход для VFD

Итак, если вы не можете использовать ЧРП с такой конструкцией однофазного двигателя, каково решение? Ответ заключается в том, чтобы вводить одну фазу в VFD. ЧРП может действовать как фазовый преобразователь и выводить трехфазный двигатель на трехфазный двигатель.

Есть некоторые соображения, особенно в отношении размеров.Некоторые ЧРП предназначены и рассчитаны на ввод как однофазных, так и трехфазных. Обратитесь к производителю VFD, но вы увидите нечто подобное в руководстве, которое обозначает обе фазы.

Для более крупных приводов номинальные характеристики указывают только на трехфазный вход. Возможен однофазный ввод, но, скорее всего, необходимо снижение характеристик.

Давайте рассмотрим приложение VFD с трехфазным входом, работающим на двигателе 10 л.с. Предположим, что потерь нет, и PowerIN = PowerOUT.Входной ток и выход будут одинаковыми.

Three phase vfd input Входная мощность распределяется по трем фазам

Теперь возьмем то же самое приложение, работающее с двигателем 10 л.с., но с однофазным входом. PowerIN = PowerOUT. За исключением того, что вся мощность на входе теперь проходит через один провод вместо трех. Фактически к однофазному входному току применяется коэффициент √ (3) по сравнению с трехфазным током.

single phase VFD input power Вся входная мощность (ток) протекает через один проводник

Опять же, некоторые приводы уже имеют слишком большие размеры входных выпрямителей и могут по своей природе справляться с повышенным однофазным входным током — это должно быть отражено в номинальных характеристиках ступени мощности.Для более крупных приложений HP результатом может быть увеличение размера диска, чтобы выдержать больший входной ток.

Как правило, мы рекомендуем округлить и предположить, что однофазный входной ток будет в два раза больше, чем трехфазный входной ток.

Наконец, также неплохо использовать 5% линейный реактор при подаче однофазной входной мощности на привод. Во время включения питания на накопитель будет подан зарядный ток.5% реактор поможет уменьшить пиковый зарядный ток и защитит входной выпрямитель VFD.

Как насчет стоимости

Существует ценовая премия для однофазных двигателей, особенно для двигателей большой мощности. Выполнение быстрого расчета того же двигателя на 10 л.с. сверху и однофазного варианта — это + 60% к стоимости. Я предполагаю, что некоторые из дополнительных затрат связаны с добавлением частей конденсаторной сети и коммутатора.

Другая часть стоимости заключается в том, что более крупные однофазные асинхронные двигатели являются более специализированной по сравнению с трехфазными типами.

Добавьте дополнительные расходы на ЧРП / реактор, но также вычтите премию за однофазный двигатель. Я думаю, вы найдете стоимость добавления VFD гораздо меньше, чем вы думаете.

Почему бы просто не использовать поворотный фазовый преобразователь вместо однофазного ЧРП?

Фазовый преобразователь, конечно, вариант. Он преобразует однофазную мощность в трехфазную. Но это все, что он делает. Он не предлагает много преимуществ, которые предлагает VFD.

Существует также аналогичный аргумент в отношении стоимости фазового преобразователя. Фазовый преобразователь, скорее всего, не сильно сэкономит, если вообще будет денег, по сравнению с приводом.

Преимущества использования ЧРП в однофазных приложениях

Пользователь выиграет от перехода от двигателя с питанием от сети к двигателю с VFD-управлением. Они смогут оптимизировать скорость двигателя для этого процесса. Возможно, это означает замедление конвейера во время загрузки, а не полное отключение двигателя.Слегка нагруженные двигатели также могут быть перегружены для ускорения процессов.

Пользователь также выиграет от экономии энергии благодаря VFD. Особенно в приложениях с квадратичной нагрузкой, таких как вентиляторы и насосы. Чем выше пошлина в приложении, тем больше будет экономии. Добавьте некоторую базовую обратную связь к приложению, например, датчик температуры или влажности, и VFD может быть подключен для регулирования процесса. В KEB F5 даже имеется встроенный ПИД-регулятор, поэтому весь процесс можно регулировать внутри привода — устраняя необходимость во внешнем ПЛК или контроллере

Одним из преимуществ VFD, которое часто упускается из виду, являются все защитные функции, которые они имеют, которые обнаруживают нештатные ситуации.

  • Повышенное / пониженное напряжение — автоматически отключается при отключении питания или скачке напряжения.
  • Перегрев двигателя — для этой опции требуется термистор или датчик температуры двигателя. Он защищает инвестиции в двигатели и является хорошей идеей для дорогих двигателей, сложных в обслуживании двигателей и для применения при высоких температурах окружающей среды.
  • Защита от перегрузки по току — это может обнаружить ненормальную неисправность, такую ​​как замыкание обмотки двигателя и отключение.

Конечно, есть еще много защитных функций, но вы поняли.

Если вы хотите обсудить, как эта технология может использоваться в вашей установке, или хотите узнать больше о любых продуктах KEB, вы можете связаться с нами, используя форму ниже.

,
Опубликовано в категории: Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *