Расчет фасонных частей воздуховодов: Расчет площади воздуховодов и фасонных изделий

Расчет площади воздуховодов и фасонных изделий

Изготовление воздуховодов по вашим чертежам на оборудовании «SPIRO» (Швейцария) и «RAS» (Германия) или продажа готовых; наши воздуховоды соответствуют ГОСТу и СНиПу. Звоните!

При проектировании системы вентиляции необходимо провести точный расчет площади, т.к. от этого зависят показатели эффективности системы: количество и скорость транспортируемого воздуха, уровень шума и потребляемая электроэнергия.

Обратите внимание! Расчет площади сечения и иных показателей системы вентиляции – достаточно сложная операция, требующая знаний и опыта, поэтому мы настоятельно рекомендуем доверить ее специалистам!

Расчет площади труб

Может производиться согласно требованиям СанПиН, а также в зависимости от площади помещения и количества пользующихся им людей.

  • Расчет для изделий прямоугольного сечения
    Применяется простая формула: A × B = S, где A – ширина короба в метрах, B – его высота в метрах, а S – площадь, в квадратных метрах.
  • Расчет для изделий круглого сечения
    Применяется формула π × D2/4 = S, где π =  3,14, D – диаметр в метрах, а S – площадь, в квадратных метрах.

Пластинчатые, трубчатые, плоские, из оцинкованной и нержавеющей стали. Соединение ниппельное, фланцевое и на шине (№20 и 30). В наличии и на заказ.

Расчет площади фасонных деталей

Расчет площади фасонных деталей по формулам без соответствующего образования и опыта практически невозможен. Для вычислений, как правило, используются специализированные программы, в которые вводятся первичные данные.

Расчет площади сечения

Данный параметр является ключевым, так как определяет скорость движения воздушного потока. При уменьшении площади сечения скорость возрастает, что может привести к появлению постороннего шума, уменьшение площади и снижение скорости – к застойным явлениям, отсутствию циркуляции воздуха и появлению неприятных запахов, плесени.

Формула: L × k/w = S, где Д – расход воздуха в час, в кубометрах; k – скорость движения воздушного потока, w – коэффициент со значением 2,778, S – искомая площадь сечения в м2.

Расчет скорости воздушного потока в системе вентиляции

При расчете необходимо учитывать кратность воздухообмена. Можно воспользоваться таблицей, но отметим, что значения в ней округляются, поэтому, если необходим точный расчет, лучше произвести его по формуле: V/W = N, где V – объем воздуха, поступающий в помещение за 1 час, в м3, W – объем комнаты, в м3, N – искомая величина (кратность).

Формула для количества используемого воздуха: W × N = L, где W – объем помещения, в м3, N- кратность воздухообмена, L – количество потребляемого воздуха в час.

Скорость рассчитывается по формуле: L / 3600 × S = V, где L – количество потребляемого воздуха в час, в м3, S – площадь сечения, в м3, V – искомая скорость, м/с.

Калькулятор расчета площади воздуховодов онлайн

Современный дом невозможно представить без вентиляционной системы. Вентиляция играет важную роль в формировании микроклимата в помещении. Эта сложная конструкция, которая выполняет важную функцию в доме. Она выводит грязный и вредный воздух, который может отрицательно влиять на здоровье человека. Поэтому к обустройству вентиляционной системы нужно подходить со всей ответственностью. Ведь здесь важна любая деталь.

Перед монтажом вентиляционной системы необходимо разработать ее проект. Для этого нужно произвести множество необходимых расчетов, учитывая несколько переменных и факторов. Значительное влияние на работу вентиляционной системы оказывают воздуховоды, точнее их площадь, форма, се чение. Грамотная разработка проекта системы вентиляции требует правильного расчета площади воздуховода. Этот расчет позволяет снизить расход электрической энергии, влияет на герметичность и уровень шума вентиляционной системы. Также вы сможете рассчитать количество необходимых средств, комплектующих и материалов, что позволит избежать задержек при монтаже. Это сбережет ваши средства и нервы.

Существуют три способа для расчета площади воздуховодов и фасонных изделий:

  1. Обратиться к специалистам. Этот способ позволяет получит качественный расчет необходимых показателей. Но он требует дополнительных затрат.
  2. Самостоятельный расчет с использованием специальной формулы. Человеку без соответствующего образования будет трудно разобраться с расчетами самостоятельно.
  3. Использовать онлайн калькулятор для расчета поверхности площади воздуховодов и фасонных частей . Самый быстрый и легкий способ.

Для расчета площади воздуховода воспользуйтесь онлайн калькулятором. Это не требует технического образования и совершенно бесплатно. Онлайн калькулятор позволит вам быстро, не выходя из дома, произвести расчет.

Инструкция:

  • Заполните соответствующие поля для таких показателей как длина, размер сторон изделия в мм.
  • Если в расчете стоит учитывать швы поставьте галочку в последнем поле. Укажите количество швов.
  • Можно использовать дробные значения для вычислений. Для этого используйте точку как разделительный знак.
  • Нажмите кнопку «Рассчитать». Калькулятор мгновенно рассчитает точные показатели по специальной формуле.

941

Расчет площади воздуховодов и вентиляционных систем а так же фасонных изделий

Эффективность функционирования вентиляционных систем зависит от правильного подбора отдельных элементов и оборудования. Расчет площади воздуховода производится с целью обеспечения требуемой кратности смены воздуха в каждом помещении в зависимости от его назначения. Принудительная и естественная вентиляция требует отдельных алгоритмов проектных работ, но имеет общие направления. Во время определения сопротивления воздушному потоку учитывается геометрия и материал изготовления воздуховодов, их общая длина, кинематическая схема, наличие ответвлений. Дополнительно выполняется расчет потерь тепловой энергии для обеспечения благоприятного микроклимата и снижения затрат на содержание здания в зимний период времени.

Расчет площади сечения выполняется на основе данных по аэродинамическому расчету воздуховодов. С учетом полученных значений производится:

  1. Подбор оптимальных размеров поперечных сечений воздуховодов с учетом нормативных допустимых скоростей движения воздушного потока.
  2. Определение максимальных потерь давления в системе вентиляции в зависимости от геометрии, скорости движения и особенностей схемы воздуховода.

Последовательность расчета вентиляционных систем

1.Определение расчетных показателей отдельных участков общей системы. Участки ограничиваются тройниками или технологическими заслонками, расход воздуха по длине всего участка стабильный. Если от участка есть ответвления, то их расход по воздуху суммируется, а для участка определяется общий. Полученные значения отображаются на аксонометрической схеме.

2.Выбор магистрального направления системы вентиляции или отопления. Магистральный участок имеет самый большой расход воздуха среди всех выделенных во время расчетов. Он должен быть наиболее протяженным из всех последовательно расположенных отдельных участков и отводов. Согласно нормативным документам нумерация участков начинается с наименее нагруженного и продолжается по возрастанию воздушного потока.

image001

Примерная схема системы вентиляции с обозначениями ответвлений и участков

3.Параметры сечений расчетных участков системы вентиляции подбираются с учетом рекомендованных стандартами скоростей в воздуховодах и жалюзийных решетках. Согласно государственным стандартам скорость воздуха в магистральных трубопроводах ≤ 8 м/с, в ответвлениях ≤ 5 м/с, в решетках жалюзи ≤ 3 м/с.

С учетом имеющихся предварительных условий выполняются расчеты по вентиляционной системе.

Общие потери давления в воздуховодах:

image002

Расчет прямоугольных воздуховодов по потере давления:

image003

R – удельные потери на трение о поверхность воздуховода;

L – длина воздуховода;

n – поправочный коэффициент в зависимости от показателей шероховатости воздуховодов.

Удельные потери давления для круглых сечений определяются по формуле:

image004

λ – коэффициент величины гидравлического сопротивления трения;

d – диаметр сечения воздуховода;

Рд – фактическое давление.

Для расчета коэффициента сопротивления трения для круглого сечения трубы применяется формула:

image005

image006

Во время расчетов допускается использование таблиц, в которых на основании вышеизложенных формул определены практические потери на трение, показатели динамического давления и расход воздуха для различных скоростей потока для воздуховодов круглой формы.

image007

image008

image009

image010

image011

image012

Нужно иметь в виду, что показатели фактического расхода воздуха в прямоугольном и круглом воздуховодах с одинаковой площадью сечений неодинаковы даже при полном равенстве скоростей движения воздушного потока. Если температура воздуха превышает +20°С, то нужно пользоваться поправочными коэффициентами на трение и местное сопротивление.

Расчет системы вентиляции состоит из расчета основной магистрали и всех ответвлений, подключенных к ней. При этом нужно добиваться положения, чтобы скорость движения воздуха постоянно возрастала по мере приближения к всасывающему или нагнетающему вентилятору. Если схема воздуховода не позволяет учесть потери ответвлений, а их значения не превышают 10% общего потока, то разрешается использовать диаграмму для гашения избыточного давления. Коэффициент сопротивления воздушным потокам диафрагмы рассчитывается по формуле:

image013

Приведенные выше расчеты воздуховодов пригодны для использования следующих типов вентиляции:

  1. Вытяжной. Используется для удаления из производственных, торговых, спортивных и жилых помещений отработанного воздуха. Дополнительно может иметь специальные фильтры для очистки выбрасываемого наружу воздуха от пыли или вредных химических соединений, могут монтироваться внутри или снаружи помещений.
  2. Приточной. В помещения подается подготовленный (нагретый или очищенный) воздух, может иметь специальные приспособления для понижения уровня шума, автоматизации управления и т. д.
  3. Приточно/вытяжной. Комплекс оборудования и устройств для подачи/удаления воздуха из помещений различного назначения, может иметь установки рекуперации тепла, что значительно сокращает затраты на поддержание в помещениях благоприятного микроклимата.

Движение воздушных потоков по воздуховодам может быть горизонтальным, вертикальным или угловым. С учетом архитектурных особенностей помещений, их количества и размеров воздуховоды могут монтироваться в несколько ярусов в одном помещении.

Расчет площади сечения трубопровода

После того как определена скорость движения воздуха по воздуховодам с учетом требуемой кратности обмена, можно рассчитывать параметры сечения воздуховодов по формуле S=R\3600v, где S – площадь сечения воздуховода, R – расход воздуха в м3/час, v – скорость движения воздушного потока, 3600 – временной поправочный коэффициент. Площадь сечения позволяет определить диаметр круглого воздуховода по формуле:

image014

Если в помещении смонтирован воздуховод квадратного сечения, то его рассчитывают по формуле d

e = 1.30 x ((a x b)0.625 / (a + b)0.25).

de – эквивалентный диаметр для круглого воздуховода в миллиметрах;

a и b длина сторон квадрата или прямоугольника в миллиметрах. Для упрощения расчетов пользуйтесь переводной таблицей № 1.

Таблица № 1

image015

Для вычисления эквивалентного диаметра овальных воздуховодов используется формула d = 1.55 S0.625/P0.2

S – площадь сечения воздуховода овального воздуховода;

P ­– периметр трубы.

Площадь сечения овальной трубы вычисляется по формуле S = π×a×b/4

S – площадь сечения овального воздуховода;

π = 3,14;

a = большой диаметр овального воздуховода;

b = меньший диаметр овального воздуховода.
Подбор овального или квадратного воздуховодов по скорости движения воздушного потокаДля облегчения подбора оптимального параметра проектировщики рассчитали готовые таблицы. С их помощью можно выбрать оптимальные размеры воздуховодов любого сечения в зависимости от кратности обмена воздуха в помещениях. Кратность обмена подбирается с учетом объема помещения и требований СанПин.

image016
Расчет параметров воздуховодов и систем естественной вентиляцииВ отличие от принудительной подачи/удаления воздуха для естественной вентиляции важны показания разницы давления снаружи и внутри помещений. Расчет сопротивления и выбор направления надо делать таким способом, чтобы гарантировать минимальную потерю давления потока.

image017

При расчетах выполняется увязка существующих гравитационных давлений с фактическими потерями давления в вертикальных и горизонтальных воздуховодах.

image018

image019


Классификаций исходных данных во время проведения расчетов сечения воздуховодовВо время расчетов нужно принимать во внимание требования действующего СНиПа 2.04.05-91 и СНиПа 41-01-2003. Расчет систем вентиляции по диаметру воздуховодов и используемому оборудованию должен обеспечивать:

  1. Нормируемые показатели по чистоте воздуха, кратности обмена и показателям микроклимата в помещениях. Выполняется расчет мощности монтируемого оборудования. При этом уровень шума и вибрации не может превышать установленных пределов для зданий и помещений с учетом их назначения.
  2. Системы должны быть ремонтнопригодными, во время проведения плановых регламентных работ технологический цикл функционирования предприятий не должен нарушаться.
  3. В помещениях с агрессивной средой предусматриваются только специальные воздуховоды и оборудование, исключающее искрообразование. Горячие поверхности должны дополнительно изолироваться.
Нормативы расчетных условий для определения сечения воздуховодов

Расчет площади воздуховодов должен обеспечивать:

  1. Надлежащие условия по чистоте и температурному режиму в помещениях. Для помещений с избытком теплоты обеспечивать его удаление, а в помещениях с недостатком теплоты минимизировать потери теплого воздуха. При этом следует придерживаться экономической целесообразности выполнения названных условий.
  2. Скорость движения воздуха в помещениях не должна ухудшать комфортность пребывания в помещениях людей. При этом принимается во внимание обязательная очистка воздуха в рабочих зонах. В струе входящего в помещение воздуха скорость движения Nх определяется по формуле Nх = Кn × n. Максимальная температура входящего воздуха определяется по формуле tx = tn + D t1, а минимальная по формуле tcx = tn + D t2. Где: nn, tn – нормируемая скорость воздушного потока в м/с и температура воздуха на рабочем месте в градусах Цельсия, К =6 (коэффициент перехода скорости воздуха на выходе из воздуховода и в помещении), D t1, D t2 – максимально допустимое отклонение температуры.
  3. Предельную концентрацию вредных для здоровья химических соединений и взвешенных частиц согласно ГОСТ 12.1.005-88. Дополнительно нужно учитывать последние постановления Госнадзора.
  4. Параметры наружного воздуха. Регулируются в зависимости от технологических особенностей производственного процесса, конкретного назначения сооружения и зданий. Показатели концентрации взрывоопасных соединений и веществ должны отвечать требованиями противопожарных государственных органов.

Монтаж вентиляционных систем с принудительной подачей/удалением воздуха нужно делать только в тех случаях, когда характеристики естественной вентиляции не могут обеспечивать требуемых параметров по чистоте и температурному режиму в помещениях или здания имеют отдельные зоны с полным отсутствием естественного притока воздуха. Для некоторых помещений площадь воздуховодов подбирается с таким условием, чтобы в помещениях постоянно поддерживался подпор и исключалась подача наружного воздуха. Это касается приямков, подвалов и иных помещений, в которых есть вероятность скапливания вредных веществ. Дополнительно воздушное охлаждение должно присутствовать на рабочих местах, которые имеют тепловое облучение более 140 Вт/м2.
Требования к системам вентиляцииЕсли расчетные данные по системам вентиляции понижают температуру в помещениях до +12°С, то в обязательном порядке нужно предусматривать одновременное отопление. К системам присоединяются отопительные агрегаты соответствующей мощности с целью доведения температурных значений до нормированных государственными стандартами. Если вентиляция монтируется в производственных зданиях или общественных помещениях, в которых постоянно пребывают люди, то нужно предусматривать не менее двух приточных и двух вытяжных постоянно действующих агрегатов. Размер площади воздуховодов должен обеспечивать расчетную величину воздушных потоков. Для соединенных или смежных помещений допускается иметь две системы вытяжки и одну систему притока или наоборот.

Если помещения должны вентилироваться в круглосуточном режиме, то к смонтированным воздуховодам обязательно нужно подключать резервное (аварийное) оборудование. Дополнительные ответвления должны учитываться, по ним делается отдельный расчет площади. Резервный вентилятор можно не устанавливать лишь в случаях если:

  1. После выхода из строя системы вентиляции есть возможность быстро остановить рабочий процесс или вывести людей из помещения.
  2. Технические параметры аварийной вентиляции полностью обеспечивают требования по чистоте и температуре воздуха в помещениях.

Общие требования к воздуховодамРасчет окончательных параметров воздуховодов должен предусматривать возможность:

  1. Монтажа противопожарных клапанов вертикальном или горизонтальном положении.
  2. Установки на межэтажных площадках воздушных затворов. Конструктивные особенности устройств должны гарантировать выполнение нормативных требований по аварийному перекрытию отдельных ответвлений вентиляционной системы и предотвращению распространения дыма или огня по всему зданию. При этом длина участка, на котором присоединяются затворы, не должна быть менее двух метров.
  3. К каждому поэтажному коллектору может присоединяться не более пяти воздуховодов. Узел соединения создает дополнительное сопротивление воздушному потоку, эту особенность нужно учитывать во время расчета размеров.
  4. Установку систем автоматической противопожарной сигнализации. Если привод сигнализации монтируется внутри воздуховода, то при определении его оптимального диаметра следует принимать во внимание уменьшение эффективного диаметра и появление дополнительного сопротивления воздушному потоку из-за завихрений. Такие же требования выдвигаются при установке обратных клапанов, предупреждающих протекание вредных химических соединений из одного производственного помещения в другое.

Воздуховоды из негорючих материалов должны устанавливаться для систем вентиляции с отсосом пожароопасных продуктов или с температурой более +80°С. Главные транзитные участки вентиляции должны быть металлическими. Кроме того, металлические воздуховоды монтируются на чердачных помещениях, в технических комнатах, в подвалах и подпольях.

Общие потери воздуха для фасонных изделий определяются по формуле:

image020

Где р – удельные потери давления на квадратный метр развернутого сечения воздуховода, ∑Ai – обща развернутая площадь. В пределах одной схемы монтажа системы вентиляции потери можно принимать по таблице.

image021

Во время расчетов размеров воздуховодов в любом случае понадобится инженерная помощь, сотрудники нашей компании имеют достаточно знаний для решения всех технических вопросов.

Расчет воздуховодов вентиляции: принципы и пример

Не всегда есть возможность пригласить специалиста для проектирования системы инженерных сетей. Что делать если во время ремонта или строительства вашего объекта потребовался расчет воздуховодов вентиляции? Можно ли его произвести своими силами?

Расчет воздуховодов вентиляции - на фото сеть воздуховодов из жести.

Расчет вентиляции и воздуховодов  позволит составить эффективную систему, которая будет обеспечивать бесперебойную работу агрегатов, вентиляторов и приточных установок. Если все подсчитано правильно, то это позволит уменьшить траты на закупку материалов и оборудования,а в последствии и  на дальнейшее обслуживание системы.

Расчет воздуховодов системы вентиляции для помещений можно проводить разными методами. Например, такими:

  • постоянной потери давления;
  • допустимых скоростей.

Оба они точны и позволяют рассчитать систему воздуховодов с нужными характеристиками производительности и шума. Выбор конкретного способа зависит от предпочтений проектировщика.

Типы и виды воздуховодов

Перед расчетом сетей нужно определить из чего они будут изготовлены. Сейчас применяются изделия из стали, пластика, ткани, алюминиевой фольги и др. Часто воздуховоды изготовляют из оцинкованной или нержавеющей стали, это можно организовать даже в небольшом цеху. Такие изделия удобно монтировать и расчет такой вентиляции не вызывает проблем.

Кроме этого, воздуховоды могут различаться по внешнему виду. Они могут быть квадратного, прямоугольного и овального сечения. Каждый тип обладает своими достоинствами.

  • Прямоугольные позволяют сделать системы вентиляции небольшой высоты или ширины, при этом сохраняется нужная площади сечения.
  • В круглых системах меньше материала,
  • Овальные совмещают плюсы и минусы других видов.

Для примера расчета вентиляции выберем круглые трубы из жести. Это изделия, которые используют для вентиляции жилья, офисных и торговых площадей. Расчет будем проводить одним из методов, который позволяет точно подобрать сеть воздуховодов и найти ее характеристики.

Способ расчета воздуховодов методом постоянных скоростей

Расчет воздуховодов вентиляции нужно начинать с плана помещений.

Используя все нормы определяют нужное количество воздуха в каждую зону и рисуют схему разводки. На ней показываются все решетки, диффузоры, изменения сечения и отводы. Расчет производится для самой удаленной точки системы вентиляции, поделенной на участки, ограниченные ответвлениями или решетками.

Схема разводки системы вентиляции.

Схема разводки системы вентиляции.

Расчет воздуховода для монтажа системы вентиляции заключается в выборе нужного сечения по всей длине, а так же нахождение потери давления для подбора вентилятора или приточной установки. Исходными данными являются значения количества проходящего воздуха в сети вентиляции. Используя схему, проведём расчет диаметра воздуховода. Для этого понадобится график потери давления.
Для каждого типа воздуховодов график разный. Обычно, производители предоставляют такую информацию для своих изделий, либо можно найти ее в справочниках. Рассчитаем круглые жестяные воздуховоды, график для которых показан на нашем  рисунке.

Номограмма для выбора размеров.

Номограмма для выбора размеров

По выбранному методу задаемся скоростью воздуха каждого участка. Она должна быть в пределах норм для зданий и помещений выбранного назначения. Для магистральных воздуховодов приточной и вытяжной вентиляции рекомендуются такие значения:

  • жилые помещения – 3,5–5,0 м/с;
  • производство – 6,0–11,0 м/с;
  • офисы – 3,5–6,0 м/с.

Для ответвлений:

  • офисы – 3,0–6,5 м/с;
  • жилые помещения – 3,0–5,0 м/с;
  • производство – 4,0–9,0 м/с.

Когда скорость превышает допустимую, уровень шума повышается до некомфортного для человека уровня.

После определения скорости (в примере 4,0 м/с) находим нужное сечение воздуховодов по графику. Там же есть потери давления на 1 м сети, которые понадобятся для расчета. Общие потери давления в Паскалях находим произведением удельного значения на длину участка:

Руч=Руч·Руч.

Элементы сети и местные сопротивления

Имеют значение и потери на элементах сети (решетки, диффузоры, тройники, повороты, изменение сечения и т. д.). Для решеток и некоторых элементов эти значения указаны в документации. Их можно рассчитать и произведением коэффициента местного сопротивления (к. м. с.) на динамическое давление в нем:

Рм. с.=ζ·Рд.

Где Рд=V2·ρ/2 (ρ – плотность воздуха).

К. м. с. определяют из справочников и заводских характеристик изделий. Все виды потерь давлений суммируем для каждого участка и для всей сети. Для удобства это сделаем табличным методом.

Расчетная таблица.

Расчетная таблица.

Сумма всех давлений будет приемлимой для этой сети воздуховодов, а потери на ответвлениях должны быть в пределах 10% от полного располагаемого давления. Если разница больше, необходимо на отводах смонтировать заслонки или диафрагмы. Для этого производим расчет нужного к. м. с. по формуле:

ζ= 2Ризб/V2,

где Ризб – разница располагаемого давления и потерь на ответвлении. По таблице выбираем диаметр диафрагмы.

Нужный диаметр диафрагмы.

Нужный диаметр диафрагмы для воздуховодов.

Правильный расчет воздуховодов вентиляции позволит подобрать нужный вентилятор выбрав у производителей по своим критериям. Используя найденное располагаемое давление и общий расход воздуха в сети, это будет сделать несложно.

Компоненты воздуховода и незначительные динамические коэффициенты потерь

Незначительные или динамические потери в системах воздуховодов — это потери давления, вызванные

  • изменением направления воздуха из-за колен, смещений и взлетов
  • ограничения или препятствия в потоке воздуха — вход / выход вентиляторы, демпферы, фильтры и катушки
  • Изменения скорости воздуха из-за изменений размеров воздуховодов

Незначительные или динамические потери давления в компонентах системы воздуховодов могут быть выражены как

Δ p minor_loss = ξ ρ v 2 /2 (1)

, где

ξ = коэффициент незначительных потерь

Δ p minor_loss = незначительные потери давления (Па (Н / м 2 ), фунт / кв.дюйм (фунт / фут 2 ) )

ρ = плотность у воздуха (1.2 кг / м 3 , 2,333 10 -3 слизней / фут 3 )

v = скорость потока (м / с, фут / с)

Незначительные коэффициенты потерь для различных компонентов в Системы распределения воздуховодов:

Компонент или фитинг Коэффициент незначительных потерь
— ξ —
90 o Изгиб, резкий 1,3
90 o изгиб с лопатками 0.7
90 o изгиб, закругленный канал
радиус / диаметр <1
0,5
90 o изгиб, округленный канал
> 1
0,25
45 o изгиб, острый 0,5
45 o изгиб, закругленный канал / радиус
<1
0,2
45 o изгиб, радиус
/ диаметр воздуховода> 1
0.05
T, поток к ветви
(применяется к скорости в ветви)
0,3
Поток из воздуховода в помещение 1,0
Поток из комнаты в воздуховод 0,35
Редукция, коническая 0
Увеличение, резкое
(из-за скорости до уменьшения)
(v 1 = скорость до увеличения и v 2 = скорость после увеличения)
(1 — v 2 / v 1 ) 2
Увеличение, конический угол <8 o
(из-за скорости до уменьшения)
(v 1 = скорость до увеличения и v 2 = скорость после увеличения)
0.15 (1 — v 2 / v 1 ) 2
Увеличение, конический угол> 8 o
(из-за скорости до уменьшения)
(v 1 = скорость до увеличения и v 2 = скорость после увеличения)
(1 — v 2 / v 1 ) 2
Решетки, отношение свободного пространства 0,7 к общей поверхности 3
гриль, 0.6 Отношение свободной площади к общей поверхности 4
Решетки, 0,5 свободной площади к общей поверхности 6
Решетки, 0,4 свободной площади к общей поверхности 10
решетки, отношение 0,3 свободной площади к общей поверхности 20
решетки, отношение свободной площади 0,2 к общей поверхности 50

Пример — незначительные потери в изгибе

второстепенные потери в 90 o с резким изгибом с незначительным коэффициентом потерь 1.3 и скорость воздуха 10 м / с можно рассчитать как

Δ p minor_loss = (1,3) (1,2 кг / м 3 ) (10 м / с) 2 /2

= 78 (н / м 2 , Па)

.

Потеря головки трения в воздуховодах

Основные потери или потери трения в круговом канале из оцинкованной стали с турбулентным потоком могут быть выражены для имперских единиц

Δh = 0.109136 q 1.9 / d e 5,02 (1)

, где

Δh = потеря трения или напора (дюймы, водомер / 100 фут воздуховода)

d e = эквивалентный диаметр воздуховода (дюймы)

q = объемный расход воздуха — (куб. фут — кубический фут в минуту)

Для прямоугольных каналов необходимо рассчитать эквивалентный диаметр.

Калькулятор потерь трения в воздуховодах — Imperial Units

Приведенный ниже калькулятор потерь напора основан на формуле (1) :

Потери напора и скорость воздушного потока для некоторых распространенных размеров воздуховодов и объемы воздушного потока можно взять из таблицы. ниже:

Скорость воздуха не должна превышать определенных пределов во избежание недопустимого образования шума.

Калькулятор потери трения в воздуховодах — единицы СИ

Этот калькулятор потери давления основан на формуле (1) с измененными значениями входа и выхода для единиц СИ.

Воздуховоды — потеря скорости и трения — шаблон Excel

Air Ducts - Velocity and Friction Loss - Excel Template

Этот шаблон Excel можно использовать для расчета скорости и потерь на трение в воздуховодах.

Воздуховоды — диаграмма потерь на трение

Приведенную ниже таблицу можно использовать для оценки потерь на трение в воздуховодах.

Значения по умолчанию для воздушного потока 400 кубических футов в минуту (680 м 3 / ч) , размер воздуховода 8 дюймов (200 мм) и потери на трение 0.28 дюймов / 100 футов (2,3 Па / м) .

Air Ducts - Friction Loss Diagram

Загрузите и распечатайте диаграмму потери трения воздуховодов!

Скорость воздуховода

.

% PDF-1.6 % 2616 0 объектов > endobj Xref 2616 124 0000000016 00000 n 0000003643 00000 n 0000003831 00000 n 0000004248 00000 n 0000004277 00000 n 0000004440 00000 n 0000004925 00000 n 0000006108 00000 n 0000007293 00000 n 0000008475 00000 n 0000009660 00000 n 0000010305 00000 n 0000010440 00000 n 0000011625 00000 n 0000011670 00000 n 0000011757 00000 n 0000011936 00000 n 0000012574 00000 n 0000013201 00000 n 0000013791 00000 n 0000014349 00000 n 0000015037 00000 n 0000015150 00000 n 0000015753 00000 n 0000016354 00000 n 0000017016 00000 n 0000017235 00000 n 0000017410 00000 n 0000019272 00000 n 0000019300 00000 n 0000019387 00000 n 0000020024 00000 n 0000020195 00000 n 0000020831 00000 n 0000021464 00000 n 0000197566 00000 n 0000197814 00000 n 0000306021 00000 n 0000306270 00000 n 0000339970 00000 n 0000340032 00000 n 0000340107 00000 n 0000340222 00000 n 0000340349 00000 n 0000340393 00000 n 0000340518 00000 n 0000340562 00000 n 0000340674 00000 n 0000340718 00000 n 0000340863 00000 n 0000340907 00000 n 0000341031 00000 n 0000341146 00000 n 0000341190 00000 n 0000341327 00000 n 0000341371 00000 n 0000341464 00000 n 0000341563 00000 n 0000341701 00000 n 0000341745 00000 n 0000341892 00000 n 0000342043 00000 n 0000342179 00000 n 0000342223 00000 n 0000342320 00000 n 0000342410 00000 n 0000342506 00000 n 0000342550 00000 n 0000342662 00000 n 0000342706 00000 n 0000342836 00000 n 0000342880 00000 n 0000342998 00000 n 0000343128 00000 n 0000343259 00000 n 0000343303 00000 n 0000343434 00000 n 0000343570 00000 n 0000343673 00000 n 0000343716 00000 n 0000343760 00000 n 0000343804 00000 n 0000343848 00000 n 0000343983 00000 n 0000344027 00000 n 0000344164 00000 n 0000344208 00000 n 0000344252 00000 n 0000344296 00000 n 0000344404 00000 n 0000344448 00000 n 0000344551 00000 n 0000344595 00000 n 0000344639 00000 n 0000344683 00000 n 0000344772 00000 n 0000344877 00000 n 0000344921 00000 n 0000344965 00000 n 0000345009 00000 n 0000345114 00000 n 0000345217 00000 n 0000345261 00000 n 0000345404 00000 n 0000345448 00000 n 0000345549 00000 n 0000345593 00000 n 0000345724 00000 n 0000345768 00000 n 0000345903 00000 n 0000345947 00000 n 0000346087 00000 n 0000346131 00000 n 0000346262 00000 n 0000346306 00000 n 0000346350 00000 n 0000346394 00000 n 0000346499 00000 n 0000346543 00000 n 0000346587 00000 n 0000346631 00000 n 0000346724 00000 n 0000346768 00000 n 0000002776 00000 n прицеп ] / Предыдущая 1433956 >> startxref 0 %% EOF 2739 0 объектов > поток hb«`b`AXX8 & p2 Fe? x715spfPpwXĻRx / = a`XAjC78X: cy z% 6e5Y]% lj 횲 G ‘⡩ + «VzllvY5K0aHV \ c +`% gRsCt

.
Размеры, воздуховод, воздуховоды, воздуховоды, воздух, поток, калибровка, трение, потери, давление, скорость, VAV
Характеристики и функции программы

Эта программа расчета в Excel позволяет измерять и провести расчет потерь давления на воздуховоды и системы воздухораспределения.

AeroDuct можно распространять с расчетом в английской системе (э.г., унции, фунты, дюймы и футы) и общие единицы в метрической системе (например, граммы, килограммы, метры, и сантиметры). ,

применяется ко всем типам воздуховодов и особенно учитывает по условиям эксплуатации и специфическим характеристикам по воздуховоды, такие как:

  • Температура воздуха, передаваемого
  • Уровень над уровнем моря или находится установка
  • Характер различных типов используемых материалов (стальные воздуховоды, медь, ПВХ, встроенные стены и т. Д.)
  • Геометрические формы воздуховодов (круглые, четырехугольные, продолговатые)
  • Различные типы коэффициентов потери давления
  • Le Contrôle des Vitesses Silencieuses De Pass D’Air.
  • Контроль скорости воздуха.

Дополнительные модули расчетов включены в программу, такие как как:

  • K-фактор редактор локальных потерь давления
  • Эквивалентный калькулятор K-фактора.
  • Калькулятор для оценки моторизованной мощности вентилятора, согласно до расчетной нагрузки.

Программа расчета оснащена настраиваемой командной строкой, предоставляющей доступ к различным процедурам, полям вычисления и макрокоманды.

Рабочие файлы создаются отдельно, что позволяет уменьшить объем данных место хранения.

Отображение таблицы расчета потери давления

Рабочий файл может быть составлен из различных вычислительных листов. Вы можете от тот же файл, чтобы вставить новый лист вычислений или дублировать вычисления лист в процессе изучения аналогичных воздуховодов и сделать дополнительные модификации после этого.

Если вы забыли некоторые элементы из воздуховода, вы можете добавить строки расчета где угодно, не ухудшая этапы расчетов.

Вы также можете выбрать единицу давления по вашему выбору в исследовании:

  • Па (Паскаль)
  • фунтов на квадратный фут (фунт / кв. Фут) = 47,88026 Па
  • Торр / мм рт.ст. (133,3226 Па)
  • дюймов (248,6 Па)
  • кПа (= 1000 Па)
  • фунтов на квадратный дюйм (фунт за квадратный дюйм (фунт / кв.3 (1200 кг / м3) — (эквивалент до: 68 ° F (20 ° C) — 40%)

    Основной поток воздуха корректируется автоматически в функции:

    • высоты над уровнем моря.
    • От скорости утечки воздуха оценили в воздуховодах.
    • от температуры воздушного потока в воздуховоде по сравнению с базовой температурой учитывается при расчете установки или расхода воздуха ссылка.

    Реальная скорость воздушного потока в воздуховоде осуществляется от скорректированной расход воздуха.

    Отображение желтым цветом соответствующей ячейки означает, что скорость воздуха выше чем тихие значения, рекомендуемые в установках при низком давлении.

    Настоятельно рекомендуется предусмотреть коэффициент запаса прочности:

    .
    • Собрания часто проводятся плохо, частично перекрывая проход жидкости.
    • Предполагаемый пыльный воздуховод может быть рассмотрен.
    • Со старением воздуховода возможная коррозия может увеличить давление потери от трения.

    В общей сложности таблица отображает в дополнении:

    • Показатели шероховатости поверхности.
    • Плотность воздуха.
    • Динамическая вязкость воздуха.
    • число Рейнольдса.

    Все цветные ячейки расчета запрограммированы.

    Рекомендуемая скорость воздуха

    Установки «низкого давления» (максимальная скорость от 1550 до 2000 ф / мин — от 8 до 10 м / с)

    Поток воздуха в воздуховодах Максимальная скорость
    — максимальный расход <175 кубических футов в минуту (300 м³ / ч) 490 фут / мин (2.5 м / с)
    — максимальный расход <590 кубических футов в минуту (1000 м³ / ч) 590 фут / мин (3 м / с)
    — максимальная скорость потока <1200 куб.м / час (2000 м³ / ч) 785 фут / мин (4 м / с)
    — максимальный расход <2350 кубических футов в минуту (4000 м³ / ч) 980 фут / мин (5 м / с)
    — максимальный расход <5900 кубических футов в минуту (10000 м³ / ч) 1180 фут / мин (6 м / с)
    — максимальный расход> 5900 кубических футов в минуту (10000 м³ / ч) 1380 фут / мин (7 м / с)

    Установки «высокого давления» (скорости воздуха> до 2000 фут / мин — 10 м / с) — эжекторные конвекторы, системы с переменным объемом воздуха (VAV) или переменные Индукционные установки и др.

    Поток воздуха в воздуховодах Вал Коридоры Помещения
    — от 59000 до 41000 кубометров в минуту — (от 100000 до 70000 м3 / ч) 5800 фут / мин (30 м / с)
    — от 41000 до 23500 кубометров в минуту — (от 70000 до 40000 м3 / ч) 4900 фут / мин (25 м / с)
    — от 23500 до 14700 куб. Футов в минуту — (40000 ÷ 25000 м3 / ч) 4300 фут / мин (22 м / с) 3940 фут / мин (20 м / с)
    — от 14700 до 10000 куб. Футов в минуту — (25000 — 17000 м3 / ч) 3940 фут / мин (20 м / с) 3350 фут / мин (17 м / с) 3150 фут / мин (16 м / с)
    — от 10000 до 5900 куб. Футов в минуту — (17000–10000 м3 / ч) 3350 фут / мин (17 м / с) 2950 фут / мин (15 м / с) 2750 фут / мин (14 м / с)
    — от 5900 до 2950 кубометров в минуту — (10000 ÷ 5000 м3 / ч) 2950 фут / мин (15 м / с) 2350 фут / мин (12 м / с) 2350 фут / мин (12 м / с)
    — от 2950 до 1200 куб. Футов в минуту — (5000 ÷ 2000 м3 / ч) 2350 фут / мин (12 м / с) 2000 фут / мин (10 м / с) 2000 фут / мин (10 м / с)
    — уступает 1200 CFM (2000 м3 / ч) 2000 фут / мин (10 м / с) 2000 фут / мин (10 м / с) 2000 фут / мин (10 м / с)
    — Противопожарные заслонки 2000 фут / мин (10 м / с) 2000 фут / мин (10 м / с) 2000 фут / мин (10 м / с)

    Скорость воздуха в воздуховодах не может превышать определенного значения.Это приводит к минимальному секция воздуховодов ниже, из которой ошибочно спускается для следования причины:

    • Увеличение шума шелест воздуха в проливных протоках и особенно на уровне отклонений.
    • Увеличьте потери давления и энергию, потребляемую вентилятором.

    Пример: уменьшение вдвое сечения удваивает увеличение скорости воздуха потери давления и поглощающая способность вентилятора в 4 раза.

    Последнее обновление:

    ,
Опубликовано в категории: Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *