Pt4115 схема включения: Светодиодный драйвер на PT4115

PT4115 — Понижающий преобразователь (драйвер светодиодов) — DataSheet

Общее описание

PT4115 представляет собой индуктивный понижающий преобразователь с непрерывным режимом работы, предназначенный для управления одним или несколькими последовательно подключенными светодиодами, питающимися от источника напряжения выше, чем общее напряжение цепи светодиодов. Микросхема может работать от источника питания с напряжением от 6 до 30 В и обеспечивает внешний регулируемый выходной ток до 1,2 А. В зависимости от напряжения питания и внешних компонентов, PT4115 может обеспечивать выходную мощность более 30 Вт. PT4115 включает в себя выключатель питания и схему контроля выходного тока, которая использует внешний резистор для установки номинального среднего выходного тока, а на отдельный вход DIM можно подавать либо постоянное напряжение, либо широкий диапазон ШИМ. Если подать напряжение 0,3 В или меньше на вывод DIM, отключает выход и микросхема переходит в ждущий режим. PT4115 выпускается в корпусах SOT89-5 и ESOP8.

Свойства

  • Малое количество подключаемых внешних компонентов
  • Широкий диапазон напряжения питания: от 6 до 30 В
  • Выходной ток до 1.2 А
  • Один вывод для включения/выключения и регулировки яркости, использующий постоянное напряжение или ШИМ
  • Частота коммутации до 1 МГц
  • Номинальная точность поддержания выходного тока 5%
  • Встроенная схема отключения для защиты светодиодов
  • Высокий К.П.Д. (до 97%)
  • Отслеживание тока на стороне высокого напряжения
  • Гистерезисное управление: без компенсации
  • Регулируемый постоянный ток светодиода
  • Корпус ESOP8 для схем с большой выходной мощностью
  • Соответствует RoHS

Применение

  • Замена низковольтных галогенных ламп светодиодами
  • Освещение в автомобилях
  • Низковольтное промышленное освещение
  • Светодиодное резервное освещение
  • Световые вывески
  • Освещение с использованием безопасного сверхнизкого напряжения
  • Подсветка в ЖК-телевизорах
 
КорпусТемпературный диапазонНомер серииМаркировка
SOT89-5от -40 °C до 85 °CPT4115B89E:Atype PT4115BS9E-B:B typePT4115 xxxxxX
ESOP8от -40 °C до 85 °CPT4115BSOH: A type PT4115BSOH-B:B typePT4115 xxxxxX

 

Типовая схема включения PT4115Типовая схема включения PT4115

 

Расположение выводов для разных корпусов PT4115Расположение выводов для разных корпусов PT4115

 

Назначение выводов
Номер выводаОбозначениеОписание
1SWВыходной ключ. SW — это сток внутреннего N-канального MOSFET-ключа.
2GNDЗемля общая для цепей сигнала и питания.
3DIMЛогический вход для управления яркостью. Когда на вывод DIM поступает сигнал низкого уровня, регулятор тока отключается. Когда на вывод DIM поступает сигнал высокого уровня, регулятор тока подключается.
4CSNКонтроль тока на входе.
5VINПитание.
Exposed PADВнутренне подключен к GND. Соединен  с корпусом для снижения теплового сопротивления.
ESOP8 4,5NCНе подключены

 

Абсолютные максимальные значения
ОбозначениеОписаниеЗначениеЕд. изм.
VINНапряжение питания-0.3~45В
SWНапряжение на выводе стока внутреннего мощного ключа-0.3~45В
CSNНапряжение на выводе контроля тока на входе (По отношению к VIN)+0.3~(-6.0)В
DIMНапряжение на выводе логического вход для управления яркостью-0.3~6В
IswВыходной ток ключа1,5
A
PDmaxРассеиваемая мощность (1)1,5Вт
PtrТепловое сопротивление, SOT89-5 0JA45°C /Вт
PtrТепловое сопротивление, ESOP8 0JA40°C /Вт
TjДиапазон рабочих температур кристаллаот -40 до 150°C
TstgТемпература храненияот -55 до 150°C
Восприимчивость к электростатическим разрядам (2)2кВ
VINVDD напряжение источника питания6 ~ 30В
TOPTРабочая температураот -40 до +85°C
  1. Максимальная рассеиваемая мощности должна снижаться при повышенных температурах и задается TJMAX, θJA и температурой окружающей среды TA. Максимально допустимая рассеиваемая мощность рассчитывается по формуле PDMAX = (TJMAX — TA) / θJA или является числом, указанным в абсолютных максимальных значениях, в зависимости от того, что меньше.
  2. Модель человеческого тела, 100 пФ, разряжаемая через резистор 1,5 кОм.
 Электрические характеристики (*, **)
ОбозначениеОписаниеУсловияМин.Тип.Макс.Ед. изм.
VinВходное напряжение630В
VUVLOНапряжение блокировкиVin пониженно5,1В
VUVLO, HYSUVLO гистерезисVin повышенно500мВ
FswМаксимальная частота переключения1мГц
Чувствительность по току
VCSNСредний текущий порог чувствительности по напряжениюVIN-VCSNA тип9598101мВ
В тип99102105мВ
VСSN_hysПорог чувствительности по гистерезису±15%
ICSNВходной ток на выводе CSNVIN —  VCSN = 5 мВ8
мкА
Рабочий ток
loFFПотребляемый ток в режиме покоя при отключенном выходеVDIM < 0.3 В95мкА
Управление яркостью
VDIMВнутреннее напряжение питанияПлавающий DIM5В
VDIM_HНапряжение высокого уровня на выводе DIM2,5В
VDIM_LНапряжение низкого уровня на выводе DIM0,3В
VDIM_DC
Регулировка яркости постоянным током0,52,5В
fDIMМаксимальная частотаfosc= 500 кГц50кГц
DPWM_LFДиапазон коэффициента заполнения для низкочастотного диммированияfDIM =100 Гц0,02%1
Диапазон регулировки яркости5000:1

 

ОбозначениеОписаниеУсловияМин.Тип.Макс.Ед. изм.
Вход управления яркостью (DIM)
DPWM_HFКоэффициент заполнения высокочастотного диммированияfDIM = 20 кГц4%1
Диапазон регулировки яркости25:1
RDIMПодтягивающее сопротивление внутри микросхемы, подключенное к источнику питания200кОм
IDIM_LТок утечкиVDIM = 025мкА
Выходной ключ
RswСопротивление в открытом состоянииVIN= 12 В0,6Ом
VIN= 24 В0,4
ISWmeanДопустимый ток1,2А
ILEAKТок утечки0,55мкА
Тепловая защита
TSDТепловой порог отключения160°C
Tso-hysГистерезис теплового отключения20°C

*Типовые параметры измеряются при 25 ° С и представляют собой параметрическую норму.

**Минимальные / максимальные пределы гарантируются проектированием, тестом или статистическим анализом.

 

Блок-схема внутреннего устройства микросхемы PT4115Блок-схема внутреннего устройства микросхемы PT4115

 

Описание

Устройство в сочетании с катушкой (L1) и токочувствительным резистором (RS) формирует автоколебательный вольтодобавочный преобразователь с непрерывным режимом работы.

Когда входное напряжение на ввод VIN подается первый раз, начальный ток в L1 и RS равен нулю, а также отсутствует выходной сигнал от токоизмерительной схемы. При этом условии, на выходе компаратора CS присутствует высокий уровень сигнала. Этим осуществляется включение внутреннего переключателя. Вывод SW переключается и находится в состоянии низкого логического уровня, в результате чего ток протекает от VIN к земле через резистор RS, катушку L1 и светодиод(-ы). Ток возрастает со скоростью, определяемой VIN и L1, для создания линейно-изменяющегося  напряжения (VCSN) через сопротивление RS. Когда (VIN-VCSN) > 115 мВ, выход компаратора CS переключается в состояние низкого уровня и переключатель выключается. Ток, проходящий по RS, уменьшается с другой скоростью. Когда (VIN-VCSN) < 85 мВ, переключатель включается снова, а средний ток на светодиоде определяется по формуле:

Блок-схема внутреннего устройства микросхемы PT4115

Схема измерения тока с высокой стороны и встроенная схема регулирования тока минимизируют количество внешних компонентов, поддерживая при этом ток через светодиоды с точностью ± 5%, используя 1% -ный резистор.

PT4115 осуществляет диммирование с помощью ШИМ-сигнала на входе DIM. Если на входе DIM напряжение логического уровня ниже 0,3 В PT4115 отключает светодиод. Для того чтобы через светодиод проходил полный ток, на вход DIM необходимо подать напряжение высокого логического уровня не менее 2.5 В. Частота изменения яркости ШИМ колеблется в диапазоне от 100 Гц до более чем 20 кГц.

Выводом DIM можно управлять от внешнего источника постоянного напряжения (VDIM), для регулировки выходного тока до значения ниже номинального среднего значения, определенного резистором RS. Напряжение постоянного тока может быть в пределах от 0,5 В до 2,5 В. Когда напряжение на выводе DIM выше 2,5 В, выходной ток не изменяется. Ток светодиода также можно регулировать с помощью резистора, подключенного к выводу DIM. Внутренний подтягивающий резистор (номиналом 200 кОм) подключен к встроенному стабилизатору напряжения 5 В. Напряжение на выводе DIM делится внутренним и внешним резисторами.

Вывод DIM подтягивается к встроенному стабилизатору напряжения (5 В) резистором номиналом 200 кОм. Он может изменяться при нормальной работе. Когда напряжение, подаваемое на DIM падает ниже порога (0,3 В ном.), выходной переключатель выключается. Внутренний стабилизатор и источник опорного напряжения остаются включенными во время выключения, чтобы иметь опорное напряжение для схемы выключения. Номинальный потребляемый ток в выключенном состоянии 95 мкА и ток утечки ниже 5 мкА.

Кроме того, для обеспечения надежности PT4115 обладает встроенной функцией защитного отключения при перегреве (TSD) и теплоотводящей площадкой. TSD отключает ИС при перегреве (160 ℃).  Также теплоотводящая площадка усиливает рассеивание мощности. В результате PT4115 обеспечивает безопасное прохождение больших токов.

 

Номинальные эксплуатационные характеристики

Применение

Установка номинального среднего выходного тока с помощью внешнего резистора RS

Номинальный средний выходной ток в светодиоде(-ах) определяется номиналом внешнего токочувствительного резистора (RS), подключенного между VIN и CSN, и рассчитывается следующим образом:

Блок-схема внутреннего устройства микросхемы PT4115

Это уравнение справедливо, когда вывод DIM плавает (изменяется) или на нем присутствует напряжение выше 2,5 В (должно быть меньше 5 В). На самом деле, RS устанавливает максимальный средний ток, который может быть скорректирован до меньшего при диммировании.

Регулировка выходного тока с помощью внешнего управляющего напряжения постоянного тока

Вывод DIM может управляться внешним напряжением постоянного тока (VDIM), как показано на рисунке ниже, для регулировки выходного тока на значение ниже номинального среднего значения, определенного токочувствительным резистором RS.

Блок-схема внутреннего устройства микросхемы PT4115

Средний выходной ток определяется следующим образом:

Блок-схема внутреннего устройства микросхемы PT4115

Обратите внимание, что 100% настройка яркости соответствует диапазону:

Блок-схема внутреннего устройства микросхемы PT4115

Регулировка выходного тока с помощью ШИМ-управления

Для регулировки выходного тока до значения ниже номинального среднего значения, установленного резистором RS, применяется широтно-импульсная модуляция (ШИМ) с коэффициентом заполнения на выводе DIM, как показано ниже.

Блок-схема внутреннего устройства микросхемы PT4115

Блок-схема внутреннего устройства микросхемы PT4115

Блок-схема внутреннего устройства микросхемы PT4115

Диммирование с использованием ШИМ обеспечивает уменьшенную яркость за счет модуляции прямого тока светодиода от 0% до 100%. Яркость светодиода контролируется путем регулирования относительных соотношений времени включения и выключения. 25% уровень яркости  достигается за счет включения светодиода при прохождении полного тока в течение 25% времени от периода одного цикла. Для того чтобы обеспечить процесс переключения между включенным и выключенным состоянием невидимый человеческими глазами, частота переключения должна составлять больше 100 Гц. Выше 100 Гц, человеческие глаза усредняют время включения и выключения, видя только эффективную яркость, которая пропорциональна коэффициенту заполнения во время работы светодиодов. Преимущество использования ШИМ диммирования заключается в том, что прямой ток всегда постоянный, поэтому цвет светодиода не меняется при изменении яркости, как это происходит при аналоговом диммировании. Импульсный ток обеспечивает точное регулирование яркости при сохранении чистоты цвета. Частота диммирования PT4115 может достигать 20 кГц.

Режим выключения электропитания

При появлении напряжения ниже 0,3 В на выводе DIM происходит отключение выхода, а ток питания снизится до низкого уровня потребления в режиме ожидания — 95 мкА.

Плавное включение

Внешний конденсатор, подключенный между выводом DIM и землей обеспечит дополнительную задержку плавного включения, увеличив время, необходимое для того, чтобы напряжение на этом выводе поднялось до порога включения и замедление скорости нарастания управляющего напряжения на входе компаратора. Добавление емкости конденсатора увеличивает эту задержку примерно на 0,8 мс/нФ.

Встроенная защита светодиода при обрыве цепи

Если в цепи со светодиодом(-ами) произойдет обрыв, катушка изолируется от вывода SW микросхемы, поэтому микросхема и светодиод не будут повреждены.

Выбор конденсатора

Для развязки входных сигналов необходимо использовать конденсатор с низким ЭПС (ESR), так как ЭПС (ESR) этого конденсатора появляется последовательно с импедансом источника питания и снижает общий КПД. Этот конденсатор должен выдавать относительно высокий пиковый ток в катушку и сглаживать текущую пульсацию на входе. Допустимое минимальное значение конденсатора составляет 4.7 мкФ, если источник входного питания постоянного тока находится близко к устройству, но более высокие значения емкости дают большую производительность при более низких входных напряжениях, особенно когда импеданс источника является высоким. Для выпрямленного входного переменного тока рекомендуется использовать танталовый конденсатор, номинал которого должен быть выше 100 мкФ. Входной конденсатор должен быть расположен как можно ближе к ИС.

Для максимальной стабильности по температуре и напряжению рекомендуется использовать конденсаторы X7R, X5R или лучшим диэлектриком. Конденсаторы с диэлектриком Y5V не подходят для развязки в этом применении и НЕ должны использоваться.

Подходящим конденсатором от производителя Murata является GRM42-2X7R475K-50.

Следующие веб-сайты полезны при поиске альтернатив:

www.murata.com

www.t-yuden.com

www.avxcorp.com

Выбор индуктивности

Рекомендуемые значения индуктивности для PT4115 находятся в диапазоне от 27 мкГн до 100 мкГн. Рекомендуется использовать катушки индуктивности с более высокими номиналами при более низком выходном токе, чтобы минимизировать ошибки из-за задержек переключения, приводящих к увеличению пульсаций и снижению эффективности. Использование катушек индуктивности с более высокими номиналами приводит к меньшему изменению выходного тока в диапазоне напряжений питания. (см. графики).  Индуктивность должна располагаться как можно ближе к микросхеме и иметь низкоомные соединения с выводами SW и VIN. Выбранная катушка индуктивности должна иметь ток насыщения выше пикового выходного тока и номинальное значение постоянного тока выше требуемого среднего выходного тока.

В следующей таблице приведено руководство по подбору индуктивности:

Ток нагузкиИндуктивностьТок насыщения
Iout > 1A27-47 мкГн1.3-1.5 раза от тока нагрузки
0.8A < Iout ≤ 1A33-82 мкГн
0.4A < Iout ≤ 0.8A47-100 мкГн
Iout ≤ 0.4A68-220 мкГн

Подходящие катушки индуктивности для использования с PT4115 приведены в таблице ниже:

Номер партииL (мкГн)DCR (Ом)ISAT (A)Производитель
MSS1038-333270.0892.48CoilCraft

www.coilcraft.com

MSS1038-333330.0932.3
MSS1038-473470.1282
MSS1038-683680.2131.6
MSS1038-1041000.3041.3

Номиналы индуктивности должны быть выбраны для поддержания коэффициента заполнения и времени «вкл»/«выкл» в указанных пределах по напряжению питания и диапазону тока нагрузки.

В качестве руководства можно использовать следующие уравнения.

Время «Включения» для вывода SW:

Блок-схема внутреннего устройства микросхемы PT4115

Время «Выключения» для вывода SW:

Блок-схема внутреннего устройства микросхемы PT4115

Где:

L — индуктивность катушки (Гн)

rL — сопротивление катушки (Ом)

RS — токочувствительное сопротивление (Ом)

Iavg — это необходимый ток для питания светодиода (A)

Δ I – максимальный ток пульсаций в катушки (A) {Внутренне установлен на 0,3 x Iavg}

VIN — напряжение питания (В)

VLED — общее прямое напряжение светодиода (В)

RSW — сопротивление переключателя (Ом) {0,6 Ом номинальное}

VD — прямое напряжение диода при требуемом токе нагрузки (В)

Выбор диода

Для максимальной эффективности и производительности, выпрямитель (D1) должен быть быстродействующим диодом Шоттки с низким ёмкостным сопротивлением и малым обратным током утечки при максимальном рабочем напряжении и температуре.

Эти диоды обеспечивают лучшую эффективность, чем кремниевые, из-за комбинации более низкого прямого напряжения и меньшего времени восстановления.

Важно выбирать детали с пиковым  номинальным значением тока выше пикового тока катушки и постоянным номинальным значением тока выше, чем максимальный выходной ток нагрузки. Очень важно учитывать ток обратной утечки диода в работе при температуре выше 85 °C. Избыточная утечка увеличит рассеиваемую мощности в устройстве, а также при близком расположении к нагрузке может привести к быстрому перегреву.

Более высокое прямое напряжение и перерегулирование из-за обратного времени восстановления в кремниевых диодах увеличат пиковое напряжение на выводе SW. Если используется кремниевый диод, необходимо следить за появлением полного напряжения на контакте SW, включая пульсации питания, не превышающем указанное максимальное значение. Следующие веб-сайты полезны при поиске альтернатив: www.onsemi.com.

Снижение выходных пульсаций

Максимальный пиковый ток пульсаций в светодиоде(-ах) может быть уменьшен, если это необходимо, при помощи шунтирующего конденсатора CLED установленного параллельно светодиоду(-ам), как показано на рисунке ниже:

Блок-схема внутреннего устройства микросхемы PT4115

 

Значение 1uF уменьшит ток пульсации питания в три раза (приблизительно). Пропорционально более низкая пульсация может быть достигнута с более высокими значениями конденсатора. Обратите внимание, что конденсатор не будет влиять на рабочую частоту или эффективность, но это увеличит задержку запуска и уменьшит частоту диммирования за счет снижения скорости повышения напряжения светодиода. Добавляя этот конденсатор, токовый сигнал через светодиод(-ы) изменяется от треугольной формы до более синусоидальной без изменения среднего значения тока.

Внутренний регулятор отключает драйвер от переключателя до тех пор, пока напряжение питания не превысит порог запуска (VUVLO). Выше этого порога устройство начнет работать. Однако при напряжении питания ниже заданного минимального значения коэффициент заполнения при переключении будет высоким, а рассеиваемая мощность устройства будет максимальной. Следует соблюдать осторожность, чтобы избежать использования устройства в таких условиях, чтобы свести к минимуму риск превышения максимально допустимой температуры. (См. Следующий раздел, посвященный тепловым характеристикам). Управление выключателем отключается, когда напряжение питания падает ниже порога пониженного напряжения (VUVLO-0.5V).

Тепловые характеристики

При работе устройства при высоких температурах окружающей среды или при максимальном токе нагрузки следует соблюдать осторожность, чтобы избежать превышения пределов рассеивания мощности. На приведенном ниже графике приведены сведения о снижении рассеиваемой мощности. Это предполагает, что устройство должно быть установлено на печатной плате 25 мм2 c толщиной медного слоя 1 oz, находящейся в невентилируемом помещении.

Блок-схема внутреннего устройства микросхемы PT4115

Обратите внимание, что рассеивание мощности устройства чаще всего будет максимальным при минимальном напряжении питания. Она также будет увеличиваться, если КПД схемы-низкий. Это может быть вызвано использованием непригодных катушек или чрезмерной паразитной емкостью на выходе переключателя. Когда есть ограничения по внутренней рассеиваемой мощности устройства, рекомендуется использовать корпус ESOP8 из-за его повышенной способности рассеивать мощность.

Температурная компенсация выходного тока.

Светодиоды высокой яркости часто должны идут с температурной компенсацией по току, чтобы поддерживать стабильную и надежную работу на всех уровнях управления. Светодиоды обычно монтируются удаленно от устройства, поэтому по этой причине температурные коэффициенты внутренних цепей для PT4115 оптимизированы для минимизации изменения выходного тока при отсутствии компенсации.  Если требуется компенсация выходного тока, можно использовать внешнюю цепь измерения температуры — обычно с использованием термисторов и / или диодов с отрицательным температурным коэффициентом (NTC), установленных очень близко к светодиоду (светодиодам). Выход измерительной цепочки можно использовать для управления выводом DIM, чтобы уменьшить выходной ток с повышением температуры.

Защитное отключение при перегреве

Для обеспечения надежности PT4115 оснащена функцией защитного отключения при перегреве (TSD). TSD отключает ИС при перегреве (160 ℃). Когда температура микросхемы уменьшается (140 ℃), работа ИС снова восстанавливается.

Рекомендации по компоновке

Тщательная компоновка печатной платы имеет решающее значение для достижения низких потерь при переключении и стабильной работы. По возможности используйте многослойную плату для лучшей помехоустойчивости. Минимизируйте шумы заземления, подключив высокоточное заземление, провод заземления входного байпас-конденсатора и заземление выходного фильтра в одну точку (звездой).

Вывод SW

Вывод SW устройства является быстродействующим коммутационным узлом, поэтому дорожки печатной платы должны быть как можно короче. Чтобы свести к минимуму «обрыв» земли, вывод заземления устройства должен быть припаян непосредственно к шине заземления.

Катушки развязывающие конденсаторы и токочувствительный резистор тока

Особенно важно установить катушку и входной развязывающий конденсатор как можно ближе к выводам микросхемы, чтобы минимизировать паразитное сопротивление и индуктивность, что может ухудшит эффективность. Также важно свести к минимуму любое сопротивление дорожки последовательно с токовым резистором RS. Лучше всего подключить VIN непосредственно к одному концу RS а CSN непосредственно к противоположному концу RS без других токов, протекающих в этих дорожках. Важно, чтобы катодный ток диода Шоттки не протекал по дорожке между RS и VIN, так как это может дать кажущуюся более высокую степень тока, чем есть на самом деле из-за сопротивления дорожек.

Схема подключения

Рисунок 1 – Схема подключения светодиода мощностью 1 ВтРисунок 1 – Схема подключения светодиода мощностью 1 Вт Рисунок 2 – Схема подключения 3-х светодиодов мощностью 1 ВтРисунок 2 – Схема подключения 3-х светодиодов мощностью 1 Вт Рисунок 1 – Демонстрационная плата для массового производстваРисунок 1 – Демонстрационная плата для массового производства

Размеры корпусов

Корпус SOT89-5Корпус SOT89-5

 

ОбозначениеМиллиметрыДюймы
МинМаксМинМакс
A1.4001.6000.0550.063
b0.3200.5200.0130.020
b10.3600.5600.0140.022
c0.3500.4400.0140.017
D4.4004.6000.1730.181
D11.400.1.8000.0550.071
E2.3002.6000.0910.102
E13.9404.2500.1550.167
e1.500 Ном0.060 Ном
e12.9003.1000.1140.122
L0.9001.1000.0350.043
Корпус ESOP-8Корпус ESOP-8

 

ОбозначениеРазмеры в миллиметрахРазмеры в дюймах
МинМаксМинМакс
A1.3501.7500.0530.069
A10.0500.1500.0040.010
A21.3501.5500.0530.061
b0.3300.5100.0130.020
c0.1700.2500.0060.010
D4.7005.1000.1850.200
D13.2023.4020.1260.134
E3.8004.0000.1500.157
E15.8006.2000.2280.244
E22.3132.5130.0910.099
e1.270(BSC)0.050(BSC)
L0.4001.2700.0160.050
θ

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Простой LED драйвер для 3w светодиода на PT4115

Микросхема PT4115 от компании PowTech продолжает зарабатывать положительные отзывы среди российских радиолюбителей. Малоизвестному китайскому производителю удалось вместить в компактном корпусе несколько блоков управления с мощным транзистором на выходе. Микросхема разработана для стабилизации тока и питания им светодиодов мощностью более 1 Вт. Драйвер на основе PT4115 имеет минимальную обвязку и высокий КПД. Убедиться в этом и узнать о тонкостях подбора элементов принципиальной схемы поможет данная статья.

Краткое описание микросхемы PT4115

Согласно официальной документации, LED драйвер с функцией диммирования на основе PT4115 обладает следующими техническими характеристиками:

  • диапазон рабочего входного напряжения: 6–30В;
  • регулируемый выходной ток до 1,2А;
  • погрешность стабилизации выходного тока 5%;
  • имеется защита от обрыва нагрузки;
  • имеется вывод для регулировки яркости и включения/выключения при помощи DC или ШИМ;
  • частота переключения до 1 МГЦ;
  • КПД до 97%;
  • обладает эффективным корпусом, с точки зрения рассеивания мощности.

распиновка выводов
Назначение выводов PT4115:

  1. SW. Вывод выходного переключателя (МОП-транзистора), который подключен непосредственно к его стоку.
  2. GND. Общий вывод сигнальной и питающей части схемы.
  3. DIM. Вход для задания диммирования.
  4. CSN. Вход с датчика тока.
  5. VIN. Вывод напряжения питания.

Микросхема PT4115 имеет отдельный вывод для управления включением и выключением светодиодов, а также возможностью регулировки яркости с помощью изменения уровня напряжения или ШИМ на выводе DIM.

Принципиальная схема драйвера

схемаНа рисунке представлены две принципиальные схемы драйвера для 3w светодиода на основе PT4115. Первая схема питается источником постоянного тока напряжением от 6 до 30 вольт. Вторую схему дополняет диодный мост, питается она источником переменного тока с напряжением 12-18В.

На выходе диодного моста рекомендуется дополнительно установить конденсатор емкостью 1000 мкФ. Он сгладит колебания выпрямленного напряжения.

Важным элементом обоих схем является конденсатор CIN. Он непросто сглаживает пульсации, но и компенсирует энергию, накопленную в катушке индуктивности в момент закрытия ключа (МОП-транзистора). Без CIN индуктивная энергия через диод Шоттки D поступит на вывод VIN и спровоцирует пробой микросхемы по питанию. Поэтому включение драйвера без входного конденсатора категорически запрещено.

Индуктивность L подбирается исходя из количества светодиодов и тока в нагрузке.

Согласно документации, в схеме драйвера для 3 ватного светодиода рекомендуется использовать индуктивность на 68-220 мкГн.

Несмотря на имеющиеся табличные данные, допускается монтаж катушки с отклонением номинала индуктивности в большую сторону. При этом снижается эффективность всей схемы, но схема остается работоспособной. На малых токах индуктивность должна быть больше, чтобы компенсировать пульсации, возникающие из-за задержки при переключении транзистора.

Резистор RS выполняет функцию датчика тока. В первый момент времени, при подаче входного напряжения ток через RS и L равен нулю. Затем внутрисхемный CS comparator сравнивает потенциалы до и после резистора RS и на его выходе появляется высокий уровень. Ток в нагрузке, ввиду наличия индуктивности, начинает плавно нарастать до величины, определяемой RS. Скорость увеличения тока зависит не только от величины индуктивности, но и от размера напряжения питания.

Работа драйвера основана на переключении компаратора внутри микросхемы, который постоянно сравнивает уровни напряжения на выводах IN и CSN. Отклонение тока через светодиод от расчетного не превышает 5%, при условии монтажа резистора RS с максимальным отклонением от номинала 1%.

Для включения светодиода на постоянную яркость вывод DIM остаётся не задействован, а ток на выходе определяется исключительно номиналом RS. Управление диммированием (яркостью) можно осуществляться одним из двух вариантов.диммированиеПервый способ предполагает подачу на вход DIM постоянного напряжения в диапазоне от 0,5 до 2,5В. При этом ток будет меняться пропорционально уровню потенциала на выводе DIM. Дальнейший рост напряжения, до 5В, не влияет на яркость и соответствует 100% току в нагрузке. Снижение потенциала ниже 0,3В приводит к отключению всей схемы. Таким образом, можно эффективно управлять работой драйвера без снятия напряжения питания. Второй способ подразумевает подачу сигнала с широтно-импульсного преобразователя с выходной частотой 100-20000 Гц.

Конструкция и детали сборки

Выбор элементов, расположенных в обвязке микросхемы PT4115, следует производить на основании рекомендаций изготовителя. В качестве CIN рекомендуется использовать конденсатор с низким ESR (эквивалентным последовательным сопротивлением). Данный параметр является вредным и негативно влияет на КПД. При питании от стабилизированного источника достаточно одного входного конденсатора ёмкостью не менее 4,7 мкФ, который должен быть размещен в непосредственной близости от микросхемы. При питании от источника переменного тока компания PowTech указывает на необходимость монтажа танталового конденсатора ёмкостью более 100 мкФ.

Типовая схема включения PT4115 для 3w светодиода подразумевает установку катушки индуктивности на 68 мкГн, располагать ее следует максимально близко к выводу SW PT4115.

Катушку индуктивности можно сделать своими руками, используя кольцо из старого компьютера и провод ПЭЛ-0,35.

К диоду D выдвигаются особые требования: малое прямое падение напряжения, малое время восстановления во время переключения и стабильность параметров при росте температуры p-n перехода, чтобы не допустить увеличения тока утечки. Этим условиям отвечает диод Шоттки FR103, способный выдерживать импульсы тока до 30А при температуре до 150°C.

Наконец, самый прецизионный элемент схемы драйвера для 3w светодиода – резистор RS. Минимальное значение RS=0,082 Ом, что соответствует току 1,2 А. Его рассчитывают, исходя из необходимого тока питания светодиода, по формуле:

RS=0,1/ILED, где ILED – номинальное значение тока светодиода, А.

В схеме включения PT4115 для 3w светодиода значение Rs составляет 0,13 Ом, что соответствует току 780 мА. В магазинах не всегда можно найти резистор такого номинала. Поэтому придется вспомнить формулы расчета суммарного сопротивления при последовательном и параллельном включении резисторов:

  • Rпосл=R1+R2+…+Rn;
  • Rпар=(R1xR2)/(R1+R2).

Таким образом, можно с высокой точностью получить нужное сопротивление из нескольких низкоомных резисторов.

В заключение хочется ещё раз подчеркнуть важность стабилизации тока, а не напряжения для обеспечения нормальной длительной работы мощных светодиодов. Известны случаи, когда в светодиодах китайского происхождения ток плавно продолжает нарастать в течение некоторого времени после включения и останавливается на значении, превышающем паспортный номинал. Это приводит к перегреву кристалла и постепенному снижению яркости. Драйвер для 3w светодиода на микросхеме PT4115 – это гарантия стабильной светоотдачи в сочетании с высоким КПД при условии эффективного отвода тепла от кристалла.

Alex_EXE » Светодиодный драйвер PT4115

Светодиоды питаются не напряжением, а током, их нельзя напрямую подключить к привычному источнику питания в виде простого блока питания или набора аккумуляторов: светодиод будет светить, но очень быстро деградирует. Для их включения нужно использовать токоограничивающие драйверы.
Самый простой токоограничитель — резистор включенный последовательно со светодиодом, вариант получше — линейный стабилизатор LM317 включенный в режиме генератора тока. Но линейные стабилизаторы при использовании мощных светодиодов применять не рекомендуется, т.к. они будут все излишки входного напряжения преобразовывать в тепло. С мощными светодиодами нужно применять специальные импульсные драйверы.


Светодиодный драйвер PT4115

В статье пойдёт речь об одном таком распространённом китайском импульсном драйвере светодиодов PT4115. Напряжением до 30В и током до 1,2А.

Микросхемы и готовые собранные модули на китайских интернет площадках достаточно распространены. Применяют их во всевозможной светодиодной технике средней мощности: светодиодные лампы, небольшие прожекторы, световые установки…
Стоимость одной микросхемы примерно 5р, стоимость готового драйвера на основе данной микросхемы примерно 50р (данные актуальны на 4 января 2018, курс доллара примерно 58р).

Характеристики:

Типпонижающий
(step-down)
Напряжение питания6-30В
Выходной токдо 1,2А
Максимальная частота1МГц
Падение напряжения500мВ
Погрешность стабилизации тока5%
Высокая эффективностьдо 97%
Рабочая температура-40 ÷ +85 °С
Тепловая защита160 °С
Защита от обрыва нагрузки

Драйвер оснащен входом управления
При использовании димирования:

Напряжение на входе диммированиядо 5В
Порог 12,5В
Порог 00,3В
Максимальная частота управляющего сигнала50КГц

Драйвер имеет простую схему включения, это вызвано тем, что силовой ключ уже интегрирован в корпус микросхемы. Минимальная обвязка для включения 4 элемента не считая самого драйвера и светодиода.

Схема 1
Схема 1

Ток задается резисторами R1 и R2. Задание тока двумя резисторами выполнено для увеличение точности, т.к. разнообразие номиналов резисторов ограничено, особенно низко омных. Если получилось подобрать нужный номинал одним резистором то второй устанавливать не нужно. Тепловая мощность выделяемая на одном резисторе при максимальном токе в 1,2А будет примерно 0,12Вт, что меньше 0,25Вт для резисторов типоразмера 1206.

Без использования входа димирования формула расчёта протекающего через светодиод тока будет выглядеть следующем образом:

I=0.1/Rs

из которой можем рассчитать сопротивление токозадающего резистора/резисторов.

Rs=0.1/I

Напомню, что при параллельном включении резисторов одинакового номинала их сопротивление делиться пополам, а при использовании разных номиналов:

R=(R1*R2)/(R1+R2)

Примеры расчёта резисторов:

Ток (мА)R1 (Ом)R2 (Ом)
1001
20011
2940,680,68
3430,510,68
4890,430,51
7400,270,27
10000,1
11800,180,16

В зависимости от тока индуктивность катушки:

ТокИндуктивность
1А< Iout27-47uH
0,8А< Iout ≤1А33-82uH
0,4А< Iout ≤0,8А47-100uH
Iout ≤0,4А68-220uH

Яркостью подключенного светодиода можно управлять несколькими способами используя вход DIMM:

1. Изменением напряжения от 0.3 до 2.5В
Формула расчета тока будет выглядеть следующим образом:

I=(0.1*Vdim)/(2.5*Rs)

где Vdim лежит в диапазоне от 0.5 до 2.5В (во время теста светодиод начал светиться в районе 0.3В), что соответствует 0% и 100% яркости. В диапазоне от 2.5 до 5В яркость будет 100%.

2. Используя переменный резистор сопротивлением примерно до 120 ~ 150 кОм
Регулируя сопротивление до 120кОм можно менять яркость от 0 до 100%.

3. ШИМ
На вход димирования можно подать ШИМ сигнал напряжением логической единицы от 2.5В до 5В частотой до 50кГц, изменяя скважность которого можно изменять яркость от 0 до 100%.
Формула расчёта будет:

I=(Vpulse*0.1*D)/(2.5*Rs)

где Vpulse напряжение ШИМ сигнала от 0,5 до 2.5В, а D скважность о 0% до 100%.

Схемы управления
Схемы управления

Если вывод оставить висеть в воздухе (как на схеме 1) то у подключенного светодиода будет максимальная яркость, а на выводе будет примерно 5В, т.е. его специально подтягивать не нужно. Коммутируя вывод к общему проводу светодиод можно выключать.

Для сборки предлагаю небольшую печатную плату размером 25х16мм. Плата соответствует схеме 1.

Печатная плата
Печатная плата

Основой выступает светодиодный драйвер PT4115 в корпусе SOT89-5. Резисторы R1 и R2 типоразмером 1206 сопротивлением по 0.68 Ом задают ток протекающий через светодиод 294мА, ток подбирался под 350мА светодиоды с запасом. 2 амперный диод D1 SS24 был изначально подобран на максимальный рабочий ток драйвера 1.2А, т.к. драйвер работает на значительно меньшем токе его можно заменить на SS14 с током 1А. Индуктивность L1 68мкГн с током 0,9А VLS5045EX-680M размером 5х5х4,5мм, была в наличии. Конденсатор по входу C1 на 100мкФ 35В рассчитан на питание схемы от батарейного или иного другого постоянного выпрямленного и уже сглаженного источника питания напряжением до 30В (максимальное рабочее напряжение драйвера). Что бы питать от переменного источника напряжения (если нужно будет) по входу понадобится поставить диодный мост и добавить ёмкость около 1000мкФ. Вход и выход выполнены PLS2 контактами.

3D вид платы светодиодного драйвера PT4115
3D вид платы светодиодного драйвера PT4115


Плата светодиодного драйвера PT4115

Подтеки на плате — это один слой защитного лака plastik.

Сборочный чертеж
Сборочный чертеж

Это не классический сборочный чертеж выполненный по ГОСТ’у с прилагаемой к нему спецификацией, в таком виде мне удобнее собирать по нему печатные платы для себя, прикрепляю, что бы и Вам было удобнее. Лучше с ним, чем без него. На сборочном рисунке сопротивление токозадающих резисторов отличается от схемы.

Скачать файлы печатной платы для ЛУТ и производства

Содержимое архива:
altium — PCB файл для альтиум (v17.1)
cam — CAM файлы для производства печатной платы
  CAM_drill.Cam — сверловка
  CAM_gerber.Cam — проводники и контур платы
gerber — gerber файлы для производства печатной платы
  PCB1.GKO — контур платы
  PCB1.GTL — проводники
  PCB1.TXT — сверловка
LUT.PDF — PDF файл для ЛУТ

Статья обновлена 29.08.2018

О китайских драйверах и китайских даташитах. Пробуем собирать диммер на PT4115

Задумал я собрать диммер для светодиодного освещения стола. Почему-то не купить а именно собрать самостоятельно. В качестве «сердца» выбрал pt4115. Как оказалось, данные микросхемы не совсем соответствуют даташиту, о чем и пойдёт речь далее. Буду краток, и не стану проводить какие-то полномасштабные испытания, опишу только самое главное (с моей точки зрения) несоответствие и проверю пульсации в нескольких режимах

Даташит тут
Индуктивности брал тут
Потенциометры (50кОм) тут

Внешний вид:

Собственно, почитав даташит, я задумал одно, а в итоге получилось так, что это «одно» и близко не похоже на реальность 😉 Пришлось для экспериментов всё переделать…

У меня над столом висит светильник по схеме 3S3P, то есть три параллельные цепочки по три последовательно включенных светодиода. на каждую цепочку по одному токоограничивающему резистору. Питается это всё от компового БП, выдающего 12.5В.

Схема включения девайса по сути даташитная, но на вход DIM подключен выход потенциометра, включенного по сути между питанием и землёй. я по питанию воткнул еще резистор на 47кОм, чтобы на выходе потенциометра было грубо от 0 до 5В. Кроме того, я повесил по входу электролит на 470 мкф, а по выходу — на 100мкФ. Индуктивность — 33мкГн

Итак, к сути. Даташит нам говорит следующее:

То есть яркость меняется изменением потенциала на входе DIM в диапазоне от 0 до 2.5В. Кроме того, на этом входе есть подтяжка, которая позволяет всего-навсего подключить внешний резистор для регулировки яркости. Ну ок, собираем:




подключаем

И выясняется следующее:
1. никакого напряжения на этом входе нету, ну либо 50кОм резистор его засаживает до нуля. Ну не мегаомник же туда ставить?! выпаивать резюк для проверочки мне уже лень, честно говоря.
2. максимальная яркость и максимальный ток достигается нифига не при 2.5В, а вовсе даже при 3.5!

Вот вам зависимость выходного тока от управляющего напряжения. Ток измерялся клещами, поэтому там скорее всего есть изрядная погрешность, но суть думаю понятна и так. При напряжении менее 0.3В выход отключается, всё что от 3.5В и выше — максимальная яркость.

Ну и проверим пульсации. На телефон понтное дело ничего не видно, карандашный тест без проблем, и всё это потому что на выходе у нас вот что:

50-60мВ на 1А и 30-40мВ на 350мА — это слёзы, а не пульсации, понятное дело что это очень хорошо и круто работает.

Без выходного конденсатора уровень пульсаций выше, и составляет порядка 350-400мВ (везде имеется в виду значение пик-ту-пик) независимо от выходного тока.

При этом ни на глаз, ни на камеру ничего не видно. Но думаю лучше конденсатор на выходе всё же поставить.

Выводы: драйверы хорошие, с простой схемой включения, с низкими пульсациями, но как обычно — «доверяй но проверяй». Думается, для адекватного управления нужно повесить стабилитрон вольта на 4, и с него уже снимать «опорное» для потенциометра регулировки яркости.

Простой драйвер постоянного тока на LM317 и PT4115 для подключения мощных светодиодов

Чтобы правильно подключить светодиоды и обеспечить им долгую и продуктивную работу требуется источник стабильного тока или, как его называют, драйвер для светодиодов. Как выбрать готовый или собрать самому простой драйвер для подключения светодиодов – в этой статье.

Основной параметр при подключении светодиодов – это не напряжение, а именно величина тока, протекающего через него. Известно не мало случаев, когда после включения светодиодов, особенно “китайских”, ток через них медленно продолжает увеличиваться (по мере нагрева) и через некоторое время может достигать значений, серьезно превышающих номинальные. Все это приводит к перегреву кристалла, скорой деградации, морганию в предсмертной конвульсии и неминуемого выхода из строя.

Для обеспечения одинакового тока, светодиоды к стабилизатору тока подключаются последовательными группами.

Линейный драйвер на LM317

Описание и Характеристики

По-сути, LM317 представляет собой стабилизатор напряжения, который можно включить и как стабилизатор тока. Схема драйвера на этой микросхеме проста, как угол дома: вам потребуется сама микросхема и… один опорный резистор – и все! Все детали можно спаять навесным монтажом, прикрутив микросхему прямо к радиатору. Благодаря простоте и доступности при стоимости микросхемы около 0,2 у.е., эта микросхема многие годы пользуется огромной популярностью среди радиолюбителей. Один из аналогов микросхемы – популярная отечественная «КРЕН-ка» КР142ЕН12.

В зависимости от исполнения LM317 может иметь добавочный индекс, характеризующий корпус микросхемы. Наиболее распространенный варинат – LM317T в корпусе TO-220 под винт для крепления непосредственно к радиатору охлаждения. LM317D2T в корпусе D2PAK рассчитана для монтажа на плате при небольшой мощности нагрузки.

Принцип регулирования напряжения/тока линейного стабилизатора состоит в том, что стабилизатор изменяет сопротивление p-n перехода выходного мощного транзистора (по сути, последовательного резистора в цепи) и тем самым адаптивно отсекает “лишнее” напряжение или гасит на себе “лишний” ток. Благодаря этому к питающему напряжению не домешиваются какие-либо высокочастотные помехи, поскольку их нет в принципе. Однако, у линейных стабилизаторов есть и серьезный недостаток. Как известно, при прохождении тока через любой резистор, на нем рассеивается мощность в виде тепла. Поэтому у линейного стабилизатора на LM317 склонность к сильному нагреву и, как следствие, достаточно низкий КПД.

Макс. выходной ток, А1,5
Напряжение питания, В4,2 … 40
Напряжение на выходе, В1,2 … 37
Температура, °C0…125

Схемы и примеры включения

Схема подключения LM317 для стабилизатора тока предельна проста – просто подключить опорный резистор заданного номинала между ножками выхода и регуляторным входом. Значения сопротивления и мощности опорного резистора можно расчитать по упрощеной формуле:

R = 1,25 / IoutP = 1,25 ⋅ Iout

Полученные значения округляем до ближайшего значения номиналов сопротивления и до ближайшего бо́льшего значения мощности, например для подключения полуваттных SMD 5730 получаем резистор на 8,2 Ом, мощностью 0,25 Вт, а для светодиодов на 1 Вт (300 мА), соответственно – 4,3 Ом и 0,5 Вт. Может оказаться, что резисторов требуемого номинала нет в наличии, тогда можно скомбинировать составной резистор из нескольких одинаковых, соединив из параллельно. В таком случае суммарное сопротивление такого составного резистора будет равно сопротивлению каждого резистора поделенного на их кол-во, а мощность будет равно мощности каждого резистора помноженного на их кол-во. Для простоты расчетов в Сети есть достаточно много он-лайн калькуляторов, например, такой.

Для работы стабилизатора тока на LM317 происходит падение напряжения не менее 3 В – это надо учитывать при подборе входного напряжения и количества последовательно соединенных светодиодов. Например, рабочее напряжение для SMD 5730 – 3,3…3,4 В. Следовательно, если подключать по 3 светодиода в группе, то входное напряжение должно быть от 13 В (рабочее напряжение исправной бортовой сети автомобиля – 14 В).

При всей свое простоте линейный стабилизатор тока на LM317 отличается низким КПД и потребностью в дополнительным охлаждением.

Импульсный драйвер на PT4115

Описание и Характеристики

Стабилизатор тока на базе PT4115 относится к “ключевым” или импульсным устройствам, т.е. регулировка величины тока через подключенную нагрузку осуществляется не за счет ограничения тока на полупроводниках, как это делается в линейных стабилизаторах LM317, а благодаря высокочастотному открытию/закрытию выходного ключа.

В импульносном стабилизаторе PT4115 постоянный ток преобразуется в импульсный с высокой частотой, а затем снова сглаживается до постоянного. Вот как раз, в момент формирования импульсов, и происходит регулировка величины тока за счет уменьшения или увеличения длительности самого импульса или пауз между ними (скважности). Поскольку импульсный регулятор ничего не ограничивает, а просто замыкает/размыкает цепь, то падения мощности не происходит, а значит импульсный регулятор мало греется и имеет высокий КПД (до 97%!). Поэтому, импульсный драйвер может иметь очень маленькие размеры и не требует громоздкого охлаждения.

Для работы стабилизатора тока на PT4115 требуется минимум деталей. Кроме того, PT4115 может работать как диммер: для этого подается на специальный вход постоянное напряжение в диапазоне 0,3…2,5 В или сигнал ШИМ.

Макс. выходной ток, А1,2
Напряжение питания, В6 … 30
Напряжение на выходе, В1,2 … 37
Температура, °C-40 … +80

Схемы и примеры включения

Схема источника стабильного тока с использованием PT4115 стандартна и использует минимум обвязки. Кроме самой микросхемы потребуется сглаживающий конденсатор, задающий низкоомный резистор (скорее всего составной), диод Шоттки да катушка индуктивности (дроссель). При подключении к источнику переменного напряжения потребуется еще диодный мост. Все детали достаточно миниатюрны и позволяю собрать плату размером с пять копеек.

Для нормальной работы стабилизатора наличие конденсатора (лучше танталовый) в цепи питания обязательно, иначе при включении микросхема неминуемо выйдет из строя. Конденсатор не просто сглаживает пульсации питания, его основная задача – компенсация тока самоиндукции, возникающего в дросселе при закрытии ключа. Без конденсатора ток самоиндукции через диод Шоттки вызовет пробой микросхемы.

Параметры опорного резистора рассчитываем по упрощенной формуле:

R = 0,1 / Iout

Для одноваттных светодиодов (300мА) получаем резистор на 0,33 Ом. Для получения такого резистора можно “бутербродом” спаять параллельно 3 SMD резистора на 1 Ом.

Идуктивность дросселя определяется в зависимочсти от тока нагрузки по таблице:

Ток нагрузкиИндуктивность, мкГн
Iout > 1A27 … 47
0.8A < Iout ≤ 1A33 … 82
0.4A < Iout ≤ 0.8A47 … 100
Iout ≥ 0.4A68 … 220

При питании схемы от источника постоянного напряжения достаточно одного входного конденсатора ёмкостью не менее 4,7 мкФ. При подключении к переменному напряжению через выпрямительный диодный мост необходим танталовый конденсатор емкостью не менее 100мкФ. Конденсатор и катушку индуктивности необходимо подключать как можно ближе к микросхеме.

Просмотры: 11 991

ДРАЙВЕР СВЕТОДИОДОВ НА PT4115

   В поисках драйвера для мощного светодиода, который также может действовать как диммер для LED 10 Вт, нашел микросхему PT4115, которая заинтересовала своей простотой и функционалом. Она работает от входного напряжения питания в диапазоне от 6 до 30 В и обеспечивает внешне регулируемый выходной ток до 1,2 ампера, и, теоретически, может обеспечить до 30 Вт выходной мощности. Эффект снижения яркости достигается с помощью переменного напряжения постоянного тока, например, от генератора на таймере 555. Уровень ниже 0,3 В на DIM контакте PT4115 позволит выключить светодиод и логический уровень на DIM не менее 2,5 В необходим для полного включения тока через диод. Частота ШИМ от 100 Гц до более чем 20 кГц.

ДРАЙВЕР ДИОДОВ НА PT4115

   Потенциал управляющего контакта DIM может быть обусловлен и постоянным напряжением в диапазоне от 0,5 В и 2,5 В. Если напряжение выше 2,5 В -выходной ток будет постоянным и не сможет больше увеличивается.

Схема LED драйвера на PT4115

Схема LED драйвера на PT4115

   Схема довольно проста и использует 12 — 24 В переменки, или же вы можете предоставить напряжения постоянного тока, которое не должно превышать 30 В, тогда конечно нужно удалить диоды D1, D2, D3 и D4. Rs резистор рассчитывается по следующей формуле: Rs = 0,1 / Івых (A). Например, если нам нужно 500 мА выходного тока, тогда Rs = 0,1 / 0,5 А = 0,2 Ом.

ДРАЙВЕР СВЕТОДИОДОВ в лампу

   Катушки L могут быть выбраны с помощью приведенной ниже таблицы:

ДРАЙВЕР СВЕТОДИОДОВ НА PT4115 - катушка

Номиналы деталей схемы

  • D1-D4 = любые выпрямительные диоды
  • Cin = 100µF/35V
  • D5 = 1N5819

ДРАЙВЕР СВЕТОДИОДОВ PT4115

Примечания к схеме

  1. Низкоомный резистор 0,2 Ом можно также набрать параллельным включением 4-х резисторов по 0,8 Ом, тогда и мощность каждого из них может быть меньшей в 4 раза.
  2. Защитный диод 1N5817 имеет предельное обратное напряжение 20 В. Лучше поставить 1N5818, он на 30 В, как и сама PT4115.
  3. Для фильтрации хорошо подходят конденсаторы твердотельные, танталовые или керамика. Керамика бывает до 4.7 и даже 10 микрофарад, твердотельные и танталовые есть и на 47 мкФ. Это все SMD элементы, но их можно паять советским 25 Вт паяльником, так как они довольно габаритные. Если требуется ёмкость побольше — то ставить уже электролит, low-ESR варианты приветствуются. Рекомендуется использовать параллельное включение конденсаторов различных типов, например, электролита на 220, твердотельного на 10 и керамики на 0,1 микрофарады — такая комбинация имеет низкое сопротивление переменному току как по низкой, так и по высокой частоте.
   Светодиоды

Зарядное устройство на основе микросхемы PT4115

В статье предложено универсальное зарядное устройство на микросхеме РТ4115 — импульсном стабилизаторе тока для питания светодиодов. С помощью этого устройства можно заряжать током до 1А аккумуляторы и батареи с номинальным напряжением от 2,5 В до 24 В.

Микросхема РТ4115 [1] представляет собой импульсный стабилизатор тока, и её основное назначение — питание осветительных светодиодов высокой яркости. Структурная схема этой микросхемы, взятая из [1], показана на рис. 1. В состав микросхемы входят ключ на полевом транзисторе, управляемый драйвером (GATE DRIVER), на вход которого поступают сигналы с компараторов CS COMPARATOR и UVLO COMPARATOR, а также с буферного каскада управления (DIM BUFFER), источник образцового напряжения Bandgap REF и стабилизатор напряжения питания REGULATOR. С помощью первого компаратора осуществляется контроль за потребляемым током, второй контролирует напряжение питания и выключает драйвер при его снижении до 5,1 В и менее. Стабилизатор напряжения обеспечивает стабильным напряжением 5 В все узлы микросхемы.

Рис. 1. Структурная схема микросхемы РТ4115

 

Микросхему выпускают в двух типах корпусов: SOT89-5 и ESOP-8. Основная схема включения для первого типа корпуса показана на рис. 2. Максимальная частота, на которой работает импульсный преобразователь, — 1 МГц. Рекомендуемая индуктивность дросселя — 68 мкГн, он должен быть рассчитан на ток больший, чем ток нагрузки. Диод должен быть быстродействующим, желательно Шоттки, конденсатор С1 — блокировочный, его установка обязательна. Резистор R1 — датчик тока, с его помощью устанавливают максимальный ток нагрузки: Iмакс = 0,1 /R1. Для этой микросхемы Iмакс = 1,2 А, а максимальная рассеиваемая мощность — 1,5 Вт, мощность нагрузки может достигать 30 Вт. Напряжение источника питания — 6…30 В. КПД, в зависимости от варианта применения, — до 97 %. Интервал рабочих температур микросхемы — -40…+85 оС. Имеется встроенная защита от превышения температуры, порог её срабатывания — 160 оС при гистерезисе 20 оС.

Рис. 2. Схема включения для первого типа корпуса

 

Подавая определённые сигналы на вход DIM, можно регулировать ток нагрузки от 1макс до нуля. Эти сигналы могут быть как аналоговыми (постоянное напряжение), так и импульсными. При изменении постоянного напряжения от 0,5 до 2,5 В выходной ток изменяется практически от нуля до Iмакс. При напряжении менее 0,3 В работа преобразователя прекращается. Потребляемый при этом микросхемой ток не превышает 100 мкА. Изменяя коэффициент заполнения импульсного сигнала (амплитуда напряжения — 5 В, максимальная частота — 50 кГц) от 0,02…0,04 до 1, можно изменять выходной ток в тех же пределах относительно максимального значения.

Используя описанные выше параметры микросхемы РТ4115, на её основе можно сделать универсальное экономичное зарядное устройство (ЗУ). В отличие от ЗУ на линейных микросхемах, например, LM317 или LN200, предлагаемое устройство существенно экономичнее, поскольку стабилизатор тока на микросхеме РТ4115 импульсный.

Схема универсального ЗУ показана на рис. 3. С его помощью можно заряжать различные аккумуляторы и аккумуляторные батареи напряжением от 2,5 до 24 В. Максимальный ток зарядки — 1 А, он, конечно, зависит от мощности источника питания ЗУ. Импульсный стабилизатор тока собран на микросхеме DA1, накопительном дросселе L1 и выпрямительном диоде VD2. Конденсатор С1 — блокировочный по цепи питания, конденсатор С2 сглаживает пульсации напряжения на заряжаемом аккумуляторе, который подключают к гнёздам XS1 и XS2. Датчик тока собран на резисторе R1. Поскольку в большинстве случаев точного измерения тока зарядки не требуется, для его контроля и индикации применён стрелочный амперметр PA1 с пределом 1 А. Регулировку тока зарядки осуществляют с помощью переменных резисторов R6 (грубо) и R8 (плавно).

Рис. 3. Схема универсального ЗУ

 

На ОУ DA3 совместно с регулируемым источником образцового напряжения — микросхемой DA2 (параллельный стабилизатор напряжения) — реализован узел контроля и ограничения напряжения на заряжаемом аккумуляторе. Светодиод HL1 служит индикатором режима работы ЗУ. Резистор R9 — токоограничивающий. Поскольку сама микросхема РТ4115 требует минимального напряжения питания 6 В, напряжение питания ЗУ должно быть примерно на 6 В больше, чем максимальное напряжение аккумулятора или аккумуляторной батареи.

Для установки конечного напряжения зарядки используют внешний вольтметр (мультиметр), который подключают к гнёздам XS3, XS4. Сделано это для упрощения конструкции, но ничто не мешает ввести в это Зу модули цифрового амперметра и вольтметра, которые можно недорого приобрести в Интернете.

Процедура зарядки следующая. К гнёздам XS3 и XS4 подключают вольтметр и с помощью резисторов R2 (грубо) и R3 (плавно) устанавливают напряжение, до которого следует зарядить аккумуляторную батарею. Регуляторы тока (R6, R8) устанавливают на минимум и подключают батарею. При этом напряжение на неинвертирующем входе ОУ DA3 будет больше, чем на инвертирующем, поэтому на выходе ОУ будет напряжение, близкое к напряжению питания, и светодиод HL1 станет светить. Напряжение на светодиоде — около 2,6 В, оно используется как образцовое для установки тока зарядки резисторами R6 и R8. Начинается процесс зарядки.

По мере зарядки напряжение на аккумуляторной батарее увеличивается, и постепенно напряжения на входах ОУ DA3 сравниваются. Как только напряжение на инвертирущем входе превысит напряжение на неинвертирующем, на выходе ОУ напряжение уменьшится. Яркость светодиода HL1 также уменьшится или он совсем погаснет. Это приводит к тому, что напряжение на движке резистора R6, от которого зависит ток зарядки, уменьшается. В результате и ток зарядки уменьшается. Таким образом, на батарее аккумуляторов в дальнейшем поддерживается постоянное напряжение, азарядный ток уменьшается, что можно контролировать с помощью амперметра.

Рис. 4. Печатная плата устройства и расположение элементов на ней

 

Большая часть элементов размещена на печатной плате из фольгированного с двух сторон стеклотекстолита толщиной 1,5…2 мм, чертёж которой показан на рис. 4. В устройстве применены переменные резисторы СП4-1, СП3-4, СП3-9 или аналогичные импортные, постоянные резисторы — для поверхностного монтажа, R1 — типоразмера 2512, остальные — типоразмера 1206. Конденсаторы С1-С3 — танталовые для поверхностного монтажа типоразмера C или D. Диод VD1 — быстродействующий Шоттки с допустимым током не менее 2…3 А, светодиод может быть другого свечения с диаметром корпуса 3.5 мм, главное, чтобы у него номинальное напряжение было в пределах 2,5…2,7 В. Для подключения источника питания можно применить любое гнездо. Гнезда XS1, XS2 — также любые, например зажимы «крокодил». Гнёзда XS3, XS4 должны быть рассчитаны на подключение щупов вольтметра (мультиметра). Дроссель — выводной RLB1314 [2] или бескорпусный серии MSS1038 [3]. Амперметр — М42303 со встроенным шунтом, но можно приме-нить и другой. Если его внутреннее сопротивление (шунт) 0,1.0,15 Ом, можно обойтись без датчика тока (резистора R1), его функцию сможет выполнить сам амперметр. Для этого его подключают взамен резистора R1, а контакты на плате для подключения амперметра замыкают. Соединительные провода должны быть толстые и короткие.

Как уже было отмечено выше, напряжение источника питания должно быть на 6 В больше максимального напряжения заряжаемой аккумуляторной батареи, но не более 30 В. Источник питания должен обеспечивать максимальную мощность, поступающую на аккумулятор в процессе зарядки.

Налаживание проводят в следующей последовательности. Установив движки резисторов R2 и R3 в нижнее по схеме положение, подборкой резистора R4 устанавливают максимальное значение напряжения зарядки. При напряжении питания 30 В это напряжение — 24 В.

При большом внутреннем сопротивлении аккумуляторной батареи ближе к концу её зарядки возможно скачкообразное изменение тока, при этом светодиод начнёт мигать. Эта информация может быть также полезной.

Рис. 5. Внешний вид устройства

 

Внешний вид устройства показан на рис. 5. В качестве корпуса была использована пластмассовая кассета от 3,5-дюймовых дискет. Она обрезана, и в ней сделаны соответствующие отверстия для резисторов, гнёзд, светодиода и амперметра. Чтобы случайно не «сбить» установленное напряжение зарядки, оси переменных резисторов R2 и R3 ручками можно не снабжать. Задняя стенка изготовлена из отрезка пластмассы толщиной 2.3 мм, на ней установлено гнездо питания.

Литература

1. PT4115. 30V, 1.2A Step-down Hie Brightness LED Driver with 5000:1 Dimming. URL: https://datasheetspdf.com/pdf-file 735494/PowTech/PT4115/1 (30.08.19).

2. RLB Series Radial Inductors. — URL:https://static.chipdip.ru/lib/229/DOC000 29038.pdf (30.08.19).

3. MSS1038 Series Shielded Surface Mou Power Inductors. — URL:https://www coilcraft.com/MSS1038.cfm (30.08.19).

Автор: И. Нечаев, г. Москва

Драйвер СИД высокой мощности с затемнением и PT4115 — электрические схемы

Я искал драйвер светодиода, который также может работать как диммер для моих светодиодов мощностью 10 Вт, и нашел интересную микросхему PT4115. Он работает от источника питания от 6 В до 30 В и обеспечивает регулируемый извне выходной ток до 1,2 А и теоретически может обеспечить выходную мощность до 30 Вт.

Эффект диммирования достигается с помощью переменного напряжения постоянного тока путем регулировки переменного резистора или сигнала ШИМ, например, от микросхемы 555 IC.Логический уровень ниже 0,3 В на DIM заставляет PT4115 выключить светодиод, а логический уровень на DIM должен быть не менее 2,5 В, чтобы включить полный ток светодиода. Частота ШИМ диммирования колеблется от 100 Гц до более 20 кГц.

Регулировка яркости с помощью вывода «DIM» на PT4115

Эффект затемнения достигается с помощью ШИМ, обеспечиваемого платой Arduino UNO.

На вывод DIM может подаваться внешнее напряжение постоянного тока от 0,5 В до 2.5V. Если напряжение выше 2,5 В, выходной ток будет постоянным и не увеличиваться.

Схема драйвера светодиода с диммером

Pt4115 dimmer led driver

Схема довольно проста и использует источник питания от 12 В до 24 В переменного тока, или вы можете обеспечить напряжение постоянного тока, которое не должно превышать 30 В, но вы должны удалить диоды D1, D2, D3 и D4. Резистор Rs рассчитывается по следующей формуле: Rs = 0,1 / Iout (A). Например, если нам нужен выходной ток 500 мА для управления светодиодом, тогда Rs = 0.1 / 0,5 А = 0,2 Ом (200 мОм)

Значение катушки L можно выбрать, используя следующую таблицу:

Led driver inductor

Стоимость компонентов

  • D1… D4 = выпрямительные диоды
  • Cin = 100 мкФ / 35 В
  • D5 = 1N5819
  • Rs и L = читать статью
,

% PDF-1.4 % 188 0 obj> endobj Xref 188 81 0000000016 00000 н. 0000002713 00000 н. 0000002797 00000 н. 0000002993 00000 н. 0000003701 00000 н. 0000004321 00000 н. 0000004749 00000 н. 0000004880 00000 н. 0000005013 00000 н. 0000005137 00000 п. 0000005588 00000 н. 0000005624 00000 н. 0000005892 00000 н. 0000006166 00000 п. 0000008987 00000 н. 0000009682 00000 п. 0000009904 00000 н. 0000009981 00000 н. 0000011265 00000 п. 0000012098 00000 п. 0000013068 00000 п. 0000013325 00000 п. 0000014378 00000 п. 0000015215 00000 п. 0000016035 00000 п. 0000016809 00000 п. 0000023386 00000 п. 0000024346 00000 п. 0000027016 00000 п. 0000071253 00000 п. 0000097570 00000 п. 0000185354 00000 н. 0000185591 00000 н. 0000185899 00000 н. 0000225765 00000 н. 0000226009 00000 н. 0000226226 00000 н. 0000226282 00000 н. 0000226327 00000 н. 0000226530 00000 н. 0000226669 00000 н. 0000227112 00000 н. 0000227476 00000 н. 0000227642 00000 н. 0000228070 00000 н. 0000228403 00000 н. 0000228790 00000 н. 0000229140 00000 н. 0000229484 00000 н. 0000229862 00000 н. 0000230259 00000 н. 0000230722 00000 н. 0000231210 00000 н. 0000231488 00000 н. 0000231819 00000 н. 0000232122 00000 н. 0000232313 00000 н. 0000232695 00000 н. 0000233009 00000 н. 0000233366 00000 н. 0000233742 00000 н. 0000233924 00000 н. 0000234422 00000 н. 0000234723 00000 п. 0000235154 00000 п. 0000235705 00000 н. 0000235875 00000 п. 0000236385 00000 н. 0000236713 00000 н. 0000237187 00000 н. 0000237486 00000 н. 0000237951 00000 н. 0000238247 00000 н. 0000238679 00000 н. 0000239048 00000 н. 0000239216 00000 н. 0000239627 00000 н. 0000239957 00000 н. 0000246574 00000 н. 0000246815 00000 н. 0000001916 00000 н. прицеп ] >> startxref 0 %% EOF 268 0 obj> поток xb«f« ̀

.

PT4115 Техническое описание — Драйвер понижающего светодиода 30 В, 1,2 А

Номер детали: PT4115

Функция: Драйвер понижающего светодиода высокой яркости 30 В, 1,2 А с регулировкой яркости 5000: 1

Корпус: SOT89-5, тип контактов ESOP8

Производители: PowTech

Изображение:


Описание:

PT4115 — это индуктивный понижающий преобразователь с непрерывной проводимостью, предназначенный для эффективного управления одним или несколькими последовательно соединенными светодиодами от источника напряжения, превышающего общее напряжение цепи светодиодов. ,
Устройство работает от входного напряжения от 6 В до 30 В и обеспечивает регулируемый извне выходной ток до 1,2 А. В зависимости от напряжения питания и внешних компонентов PT4115 может обеспечить выходную мощность более 30 Вт. PT4115 включает переключатель питания и схему измерения выходного тока на стороне высокого напряжения, в которой используется внешний резистор для установки номинального среднего выходного тока, а специальный вход DIM принимает либо напряжение постоянного тока, либо широкий диапазон импульсного диммирования.Подача напряжения 0,3 В или ниже на вывод DIM отключает выход и переключает устройство в состояние ожидания с низким током.

Распиновка:

ХАРАКТЕРИСТИКИ

1. Простое низкое количество деталей
2. Широкий диапазон входного напряжения: от 6 В до 30 В
3. Выходной ток до 1,2 А
4. Включение / выключение и регулировка яркости с помощью постоянного тока напряжение или ШИМ
5. Частота коммутации до 1 МГц
6. Типичная погрешность выходного тока 5%
7. Встроенная светодиодная защита от разомкнутой цепи
8.Высокая эффективность (до 97%)
9. Датчик тока на стороне высокого напряжения
10. Гистерезисное управление: без компенсации
11. Регулируемый постоянный ток светодиода
12. Корпус ESOP8 для приложений с большой выходной мощностью
13. Соответствует требованиям RoHS

Схема

Другие листы технических данных в файле: PT4115B89E, PT4115B89E-B, PT4115BSOH, PT4115BSOH-B

PT4115 Datasheet PDF Download

.

pt4115 China Resources Powtech (Shanghai) Co., Ltd, pt4115 Лист данных

30 В, 1,2 А понижающий светодиодный драйвер высокой яркости с 5000: 1

ОСОБЕННОСТИ

ЗАЯВКА

PT4115-EN-BRIEF

www.crpowtech.com

Простое малое количество деталей

Широкий диапазон входного напряжения: от 8 В до 30 В

Выходной ток до 1,2 А

Однополюсное включение / выключение и регулировка яркости

с использованием постоянного напряжения или ШИМ

Частота коммутации до 1 МГц

Типичная погрешность выходного тока 5%

Встроенная светодиодная защита от обрыва

Высокий КПД (до 97%)

Датчик тока высокого напряжения

Гистерезисное регулирование: без компенсации

Регулируемый постоянный ток светодиода

Низковольтные галогенные сменные светодиоды

Автомобильное освещение

Низковольтное промышленное освещение

Светодиодное резервное освещение

Знаки световые

Освещение SELV

ЖК-телевизор с подсветкой

Затемнение

Авторские права © 2007, Crpowtech (Shanghai) co., Ltd.

ОБЩЕЕ ОПИСАНИЕ

PT4115 — режим непрерывной проводимости

понижающий индуктивный преобразователь, рассчитанный на

управление одним или несколькими последовательно подключенными светодиодами

эффективно от источника напряжения выше

Общее напряжение цепи светодиодов

. Устройство работает

от источника питания от 8 В до 30 В и

обеспечивает внешне регулируемый выходной ток

до 1,2 А. В зависимости от поставки

напряжение

PT4115 может обеспечить выходную мощность более 30 Вт

мощность.

PT4115 включает выключатель питания и

цепь измерения выходного тока верхнего плеча, которая

использует внешний резистор для установки номинала

средний выходной ток и выделенный DIM

Вход

принимает либо напряжение постоянного тока, либо широкий диапазон

диапазон импульсного затемнения. Подача напряжения

0,3 В или ниже на выводе DIM отключает выход

и переключает устройство на слаботочный

состояние ожидания.PT4115 доступен в

упаковки SOT89-5.

и

внешний

комплектующих,

PT4115

,
Опубликовано в категории: Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *