Нихромовая проволока температура нагрева: Нагреватели. Методика и примеры расчета. Статья

Нагреватели. Методика и примеры расчета. Статья

Нихром

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Фехраль

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Нихром в изоляции

Продукция

Цены

Стандарты

Статьи

Фото

Титан

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Вольфрам

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Молибден

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Кобальт

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Термопарная проволока

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Провода термопарные

Продукция

Цены

Стандарты

Статьи

Фото

Никель

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Монель

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Константан

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Мельхиор

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Твердые сплавы

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Порошки металлов

Продукция

Цены

Стандарты

Статьи

Фото

Нержавеющая сталь

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Жаропрочные сплавы

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Ферросплавы

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Олово

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Тантал

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Ниобий

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Ванадий

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Хром

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Рений

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Прецизионные сплавы

Продукция

Описание

Магнитомягкие

Магнитотвердые

С заданным ТКЛР

С заданной упругостью

С высоким эл. сопротивлением

Сверхпроводники

Термобиметаллы

Статья «Нагреватели. Методика и примеры расчета» содержит обзор по расчету нагревателей электрических печей. Рассматриваются материалы, используемые для изготовления нагревателей, их свойства, достоинства и недостатки, условия работы (нихром, вольфрам, молибден и др.), описана цель расчета нагревателей, приведены методики, описанные на конкретных примерах. Также статья содержит справочные таблицы и ссылки на ГОСТы, необходимые для проведения расчета нагревателей электрических печей.

На странице представлена только выдержка из статьи «Нагреватели. Методика и примеры расчета».

Рассчитать нагреватели электрической печи

Калькулятор нагревателей электрических печей

Параметры электрической печи

Параметры нагревателя

Диаметр нагревателя, мм
?

Размеры нагревателей (толщина x ширина), мм

Выбрать из стандартных размеров (толщина х ширина), мм ?
Изменить размер на стандартный
0,1х600,1х1000,1х2000,1х4000,2х2,50,2х80,2х600,3х1,850,3х600,3х4000,35х2,350,35х2,40,5х2,250,5х60,5х81,0х61,0х101,0х151,0х201,2х201,5х101,5х121,5х152,0х102,0х202,0х252,0х302,0х402,5х202,5х252,5х302,5х603,0х203,0х303,0х40

Толщина нагревателя, мм
?

Ширина нагревателя, мм
?

Длина нагревателя, м
?

Масса нагревателя, кг
?

Общая длина нагревателей, м

?

Общая масса нагревателей, кг
?

*Результаты расчета нагревателей электрических печей, выполненного с помощью данного калькулятора, носят информативный характер.

Расчет основан на подходе, рассмотренном в книге «Типовые расчеты по электрооборудованию», Дьяков В.И., а также в статье «Нагреватели. Методика и примеры расчета», Никонов Н. В., и содержит ряд допущений.

В каждом конкретном случае могут появиться дополнительные условия, связанные с конструктивными особенностями печи, а также условиями эксплуатации.

Очень часто при желании сделать или отремонтировать
нагреватель
электропечи своими руками у человека появляется много вопросов. Например, какого диаметра взять проволоку, какова должна быть ее длина или какую мощность можно получить, используя проволоку или ленту с заданными параметрами и т.д. При правильном подходе к решению данного вопроса необходимо учитывать достаточно много параметров, например, силу тока, проходящего через нагреватель, рабочую температуру, тип электрической сети и другие.

В данной статье приводятся справочные данные о материалах, наиболее распространенных при изготовлении нагревателей электрических печей, а также методика и примеры их расчета (расчета нагревателей электрических печей).

Непосредственно нагреватель – один из самых важных элементов печи, именно он осуществляет нагрев, имеет наибольшую температуру и определяет работоспособность нагревательной установки в целом. Поэтому нагреватели должны соответствовать ряду требований, которые приведены ниже.

Требования к нагревателям

Основные требования к нагревателям (материалам нагревателей):
  • Нагреватели должны обладать достаточной жаростойкостью (окалиностойкостью) и жаропрочностью. Жаропрочность — механическая прочность при высоких температурах. Жаростойкость — сопротивление металлов и сплавов газовой коррозии при высоких температурах (более подробно свойства жаростойкости и жаропорочности описаны на странице Жаропрочные сплавы и стали).
  • Нагреватель в электропечи должен быть сделан из материала, обладающего высоким удельным электрическим сопротивлением. Говоря простым языком, чем выше электрическое сопротивление материала, тем сильнее он нагревается. Следовательно, если взять материал с меньшим сопротивлением, то потребуется нагреватель большей длины и с меньшей площадью поперечного сечения. Не всегда в печи может быть размещен достаточно длинный нагреватель. Также стоит учитывать, что, чем больше диаметр проволоки, из которой сделан нагреватель, тем дольше срок его службы. Примерами материалов, обладающих высоким электрическим сопротивлением являются хромоникелевый сплав
    нихром Х20Н80
    , Х15Н60, железохромоалюминиевый сплав фехраль Х23Ю5Т, которые относятся к прецизионным сплавам с высоким электрическим сопротивлением.
  • Малый температурный коэффициент сопротивления является существенным фактором при выборе материала для нагревателя. Это означает, что при изменении температуры электрическое сопротивление материала нагревателя меняется не сильно. Если температурный коэффициент электросопротивления велик, для включения печи в холодном состоянии приходится использовать трансформаторы, дающие в начальный момент пониженное напряжение.
  • Физические свойства материалов нагревателей должны быть постоянными. Некоторые материалы, например карборунд, который является неметаллическим нагревателем, с течением времени могут изменять свои физические свойства, в частности электрическое сопротивление, что усложняет условия их эксплуатации. Для стабилизации электрического сопротивления используют трансформаторы с большим количеством ступеней и диапазоном напряжений.
  • Металлические материалы должны обладать хорошими технологическими свойствами, а именно: пластичностью и свариваемостью, — чтобы из них можно было изготовить проволоку, ленту, а из ленты — сложные по конфигурации нагревательные элементы. Также нагреватели могут быть изготовлены из неметаллов. Неметаллические нагреватели прессуются или формуются, превращаясь в готовое изделие.

Материалы для изготовления нагревателей

Наиболее подходящими и самыми используемыми в производстве нагревателей для электропечей являются прецизионные сплавы с высоким электрическим сопротивлением. К ним относятся сплавы на основе хрома и никеля (хромоникелевые), железа, хрома и алюминия (железохромоалюминиевые). Марки и свойства данных сплавов рассмотрены в ГОСТ 10994-74 «Сплавы прецизионные. Марки». Представителями хромоникелевых сплавов является нихром марок Х20Н80, Х20Н80-Н (950-1200 °С), Х15Н60, Х15Н60-Н (900-1125 °С), железохромоалюминиевых – фехраль марок Х23Ю5Т (950-1400 °С), Х27Ю5Т (950-1350 °С), Х23Ю5 (950-1200 °С), Х15Ю5 (750-1000 °С). Также существуют железохромоникелевые сплавы — Х15Н60Ю3, Х27Н70ЮЗ.

Перечисленные выше сплавы обладают хорошими свойствами жаропрочности и жаростойкости, поэтому они могут работать при высоких температурах. Хорошую жаростойкость обеспечивает защитная пленка из окиси хрома, которая образуется на поверхности материала. Температура плавления пленки выше температуры плавления непосредственно сплава, она не растрескивается при нагреве и охлаждении.

Приведем сравнительную характеристику нихрома и фехрали.
Достоинства нихрома:

  • хорошие механические свойства как при низких, так и при высоких температурах;
  • сплав крипоустойчив;
  • имеет хорошие технологические свойства – пластичность и свариваемость;
  • хорошо обрабатывается;
  • не стареет, немагнитен.
Недостатки нихрома:
  • высокая стоимость никеля — одного из основных компонентов сплава;
  • более низкие рабочие температуры по сравнению с фехралью.
Достоинства фехрали:
  • более дешевый сплав по сравнению с нихромом, т.к. не содержит никель;
  • обладает лучшей по сравнению с нихромом жаростойкостью, напрмер, фехраль Х23Ю5Т может работать при температуре до 1400 °С (1400 °С — максимальная рабочая температура для нагревателя из проволоки Ø 6,0 мм и более; Ø 3,0 — 1350 °С; Ø 1,0 — 1225 °С; Ø 0,2 — 950 °С).
Недостатки фехрали:
  • хрупкий и непрочный сплав, данные негативные свойства особенно сильно проявляются после пребывания сплава при температуре большей 1000 °С;
  • т.к. фехраль имеет в своем составе железо, то данный сплав является магнитным и может ржаветь во влажной атмосфере при нормальной температуре;
  • имеет низкое сопротивление ползучести;
  • взаимодействует с шамотной футеровкой и окислами железа;
  • во время эксплуатации нагреватели из фехрали существенно удлиняются.
Также сравнение сплавов фехраль и нихром производится в статье Сравнение сплавов фехраль и нихром.

В последнее время разработаны сплавы типа Х15Н60Ю3 и Х27Н70ЮЗ, т.е. с добавлением 3% алюминия, что значительно улучшило жаростойкость сплавов, а наличие никеля практически исключило имеющиеся у железохромоалюминиевых сплавов недостатки. Сплавы Х15Н60ЮЗ, Х27Н60ЮЗ не взаимодействуют с шамотом и окислами железа, достаточно хорошо обрабатываются, механически прочны, нехрупки. Максимальная рабочая температура сплава Х15Н60ЮЗ составляет 1200 °С.

Помимо перечисленных выше сплавов на основе никеля, хрома, железа, алюминия для изготовления нагревателей применяют и другие материалы: тугоплавкие металлы, а также неметаллы.

Среди неметаллов для изготовления нагревателей используют карборунд, дисилицид молибдена, уголь, графит. Нагреватели из карборунда и дисилицида молибдена используют в высокотемпературных печах. В печах с защитной атмосферой применяют угольные и графитовые нагреватели.

Среди тугоплавких материалов в качестве нагревателей могут использоваться вольфрам, молибден, тантал и ниобий. В высокотемпературных вакуумных печах и печах с защитной атмосферой применяются нагреватели из молибдена и вольфрама. Молибденовые нагреватели могут работать до температуры 1700 °С в вакууме и до 2200 °С – в защитной атмосфере. Такая разница температур обусловлена испарением молибдена при температурах выше 1700 °С в вакууме. Вольфрамовые нагреватели могут работать до 3000 °С. В особых случаях применяют нагреватели из тантала и ниобия.

Обычно в качестве исходных данных для расчета нагревателей электрических печей выступают мощность, которую должны обеспечивать нагреватели, максимальная температура, которая требуется для осуществления соответствующего технологического процесса (отпуска, закалки, спекания и т.д.) и размеры рабочего пространства электрической печи. Если мощность печи не задана, то ее можно определить по эмпирическому правилу. В ходе расчета нагревателей требуется получить диаметр и длину (для проволоки) или площадь сечения и длину (для ленты), которые необходимы для изготовления нагревателей.

Также необходимо определить материал, из которого следует делать нагреватели (данный пункт в статье не рассматривается). В данной статье в качестве материала для нагревателей рассматривается хромоникелевый прецизионный сплав с высоким электрическим сопротивлением нихром Х20Н80, который является одним из самых популярных при изготовлении нагревательных элементов.

Определение диаметра и длины нагревателя (нихромовой проволоки) для заданной мощности печи (простой расчет)

Пожалуй, наиболее простым вариантом расчета нагревателей из нихрома является выбор диаметра и длины нихромовой проволоки при заданной мощности нагревателя, питающего напряжения сети, а также температуры, которую будет иметь нагреватель. Несмотря на простоту расчета, в нем имеется одна особенность, на которую мы обратим внимание ниже.

Пример расчета диаметра и длины нагревательного элемента

Исходные данные:
Устройство мощностью P = 800 Вт; напряжение сети U = 220 В; температура нагревателя 800 °C. В качестве нагревательного элемента используется нихромовая проволока Х20Н80.

1. Сначала необходимо определить силу тока, которая будет проходить через нагревательный элемент:
    I = P / U = 800 / 220 = 3,63 А.

2. Теперь нужно найти сопротивление нагревателя:
    R = U / I = 220 / 3,63 = 61 Ом;

3. Исходя из значения полученной в п. 1 силы тока, проходящего через нихромовый нагреватель, нужно выбрать диаметр проволоки. И этот момент является важным. Если, например, при силе тока в 6 А использовать нихромовую проволоку диаметром 0,4 мм, то она сгорит. Поэтому, рассчитав силу тока, необходимо выбрать из таблицы соответствующее значение диаметра проволоки. В нашем случае для силы тока 3,63 А и температуры нагревателя 800 °C выбираем нихромовую проволоку с диаметром d = 0,35 мм и площадью поперечного сечения S = 0,096 мм2.

Общее правило выбора диаметра проволоки можно сформулировать следующим образом: необходимо выбрать проволоку, у которой допустимая сила тока не меньше, чем расчетная сила тока, проходящего через нагреватель. С целью экономии материала нагревателя следует выбирать проволоку с ближайшей большей (чем расчетная) допустимой силой тока.

Таблица 1

Допустимая сила тока, проходящего через нагреватель из нихромовой проволоки, соответствующая определенным температурам нагрева проволоки, подвешенной горизонтально в спокойном воздухе нормальной температуры
Диаметр нихромовой проволоки, ммПлощадь поперечного сечения нихромовой проволоки, мм2Температура нагрева нихромовой проволоки, °C
2004006007008009001000
Максимальная допустимая сила тока, А
519,65283105124146173206
412,637,060,080,093,0110,0129,0151,0
37,0722,337,554,564,077,088,0102,0
2,54,9116,627,540,046,657,566,573,0
23,1411,719,628,733,839,547,051,0
1,82,5410,016,924,929,033,139,043,2
1,62,018,614,421,024,528,032,936,0
1,51,777,913,219,222,425,730,033,0
1,41,547,2512,017,420,023,327,030,0
1,31,336,610,915,617,821,024,427,0
1,21,136,09,814,015,818,721,624,3
1,10,955,48,712,413,916,519,121,5
1,00,7854,857,710,812,114,316,819,2
0,90,6364,256,79,3510,4512,314,516,5
0,80,5033,75,78,159,1510,812,314,0
0,750,4423,45,37,558,49,9511,2512,85
0,70,3853,14,86,957,89,110,311,8
0,650,3422,824,46,37,158,259,310,75
0,60,2832,5245,76,57,58,59,7
0,550,2382,253,555,15,86,757,68,7
0,50,19623,154,55,25,96,757,7
0,450,1591,742,753,94,455,25,856,75
0,40,1261,52,343,33,854,45,05,7
0,350,0961,271,952,763,33,754,154,75
0,30,0851,051,632,272,73,053,43,85
0,250,0490,841,331,832,152,42,73,1
0,20,03140,651,031,41,651,822,02,3
0,150,01770,460,740,991,151,281,41,62
0,10,007850,10,470,630,720,80,91,0

Примечание:
  • если нагреватели находятся внутри нагреваемой жидкости, то нагрузку (допустимую силу тока) можно увеличить в 1,1 — 1,5 раза;
  • при закрытом расположении нагревателей (например, в камерных электропечах) необходимо уменьшить нагрузки в 1,2 — 1,5 раза (меньший коэффициент берется для более толстой проволоки, больший — для тонкой).

4. Далее определим длину нихромовой проволоки.
    R = ρ · l / S,
где R — электрическое сопротивление проводника (нагревателя) [Ом], ρ — удельное электрическое сопротивление материала нагревателя [Ом · мм2 / м], l — длина проводника (нагревателя) [мм], S — площадь поперечного сечения проводника (нагревателя) [мм2].

Таким образом, получим длину нагревателя:
    l = R · S / ρ = 61 · 0,096 / 1,11 = 5,3 м.

В данном примере в качестве нагревателя используется нихромовая проволока Ø 0,35 мм. В соответствии с ГОСТ 12766.1-90 «Проволока из прецизионных сплавов с высоким электрическим сопротивлением. Технические условия» номинальное значение удельного электрического сопротивления нихромовой проволоки марки Х20Н80 составляет 1,1 Ом · мм2 / м (ρ = 1,1 Ом · мм2 / м), см. табл. 2.

Итогом расчетов является необходимая длина нихромовой проволоки, которая составляет 5,3 м, диаметр — 0,35 мм.

Таблица 2

Удельное электрическое сопротивление нихрома (номинальное значение) — по ГОСТ 12766.1-90
Марка сплаваДиаметр, ммУдельное электрическое сопротивление ρном, мкОм·м
Х20Н80-Нот 0,1 до 0,5 включ.1,08
от 0,5 до 3,0 включ.1,11
Св. 3,01,13
Х15Н60, Х15Н60-Нот 0,1 до 3,0 включ.1,11
Св. 3,01,12
Х23Ю5ТВсе диаметры1,39

Определение диаметра и длины нагревателя (нихромовой проволоки) для заданной печи (подробный расчет)

Расчет, представленный в данном пункте, является более сложным, чем выше. Здесь мы учтем дополнительные параметры нагревателей, попытаемся разобраться с вариантами подключения нагревателей к сети трехфазного тока. Расчет нагревателя будем проводить на примере электрической печи. Пусть исходными данными являются внутренние размеры печи.

1. Первое, что необходимо сделать — посчитать объем камеры внутри печи. В данном случае возьмем h = 490 мм, d = 350 мм и l = 350 мм (высота, ширина и глубина соответственно). Таким образом, получаем объем V = h · d · l = 490· 350 · 350 = 60 · 10 6 мм3 = 60 л (мера объема).

2. Далее необходимо определить мощность, которую должна выдавать печь. Мощность измеряется в Ваттах (Вт) и определяется по эмпирическому правилу: для электрической печи объемом 10 — 50 литров удельная мощность составляет 100 Вт/л (Ватт на литр объема), объемом 100 — 500 литров — 50 — 70 Вт/л. Возьмем для рассматриваемой печи удельную мощность 100 Вт/л. Таким образом мощность нагревателя электрической печи должна составлять P = 100 · 60 = 6000 Вт = 6 КВт.

Стоит отметить, что при мощности 5-10 кВт нагреватели изготовляют, обычно, однофазными. При больших мощностях для равномерной загрузки сети нагреватели делают трехфазными.

3. Затем нужно найти силу тока, проходящего через нагреватель I = P / U, где P — мощность нагревателя, U — напряжение на нагревателе (между его концами), и сопротивление нагревателя R = U / I.

Здесь может быть два варианта подключения к электрической сети:

  • к бытовой сети однофазного тока — тогда U = 220 В;
  • к промышленной сети трехфазного тока — U = 220 В (между нулевым проводом и фазой) или U = 380 В (между двумя любыми фазами).
Далее расчет будет проведен отдельно для однофазного и трехфазного подключения.

Бытовая сеть однофазного тока

     I = P / U = 6000 / 220 = 27,3 А — ток проходящий через нагреватель.
Затем необходимо определить сопротивление нагревателя печи.
     R = U / I = 220 / 27,3 = 8,06 Ом.

Рисунок 1 Проволочный нагреватель в сети однофазного тока

Искомые значения диаметра проволоки и ее длины будут определены в п. 5 данного параграфа.

Промышленная сеть трехфазного тока

При данном типе подключения нагрузка распределяется равномерно на три фазы, т.е. по 6 / 3 = 2 КВт на фазу. Таким образом, нам требуется 3 нагревателя. Далее необходимо выбрать способ подключения непосредственно нагревателей (нагрузки). Способов может быть 2: “ЗВЕЗДА” или “ТРЕУГОЛЬНИК”.

Стоит заметить, что в данной статье формулы для расчета силы тока (I) и сопротивления (R) для трехфазной сети записаны не в классическом виде. Это сделано для того, чтобы не усложнять изложение материала по расчету нагревателей электротехническими терминами и определениями (например, не упоминаются фазные и линейные напряжения и токи и соотношения между ними). С классическим подходом и формулами расчета трехфазных цепей можно ознакомиться в специализированной литературе. В данной статье некоторые математические преобразования, проведенные над классическими формулами, скрыты от читателя, и на конечный результат это не оказывает никакого влияния.

При подключении типа “ЗВЕЗДА” нагреватель подключается между фазой и нулем (см. рис. 2). Соответственно, напряжение на концах нагревателя будет U = 220 В.
Ток, проходящий через нагреватель —
     I = P / U = 2000 / 220 = 9,10 А.
Сопротивление одного нагревателя —
     R = U / I = 220 / 9,10 = 24,2 Ом.

Рисунок 2 Проволочный нагреватель в сети трехфазного тока. Подключение по схеме «ЗВЕЗДА»

При подключении типа “ТРЕУГОЛЬНИК” нагреватель подключается между двумя фазами (см. рис. 3). Соответственно, напряжение на концах нагревателя будет U = 380 В.
Ток, проходящий через нагреватель —
     I = P / U = 2000 / 380 = 5,26 А.
Сопротивление одного нагревателя —
     R = U / I = 380/ 5,26 = 72,2 Ом.

Рисунок 3 Проволочный нагреватель в сети трехфазного тока. Подключение по схеме «ТРЕУГОЛЬНИК»

4. После определения сопротивления нагревателя при соответствующем подключении к электрической сети необходимо подобрать диаметр и длину проволоки.

При определении указанных выше параметров необходимо анализировать удельную поверхностную мощность нагревателя, т.е. мощность, которая выделяется с единицы площади. Поверхностная мощность нагревателя зависит от температуры нагреваемого материала и от конструктивного выполнения нагревателей.

Пример
Из предыдущих пунктов расчета (см. п. 3 данного параграфа) нам известно сопротивление нагревателя. Для 60 литровой печи при однофазном подключении оно составляет R = 8,06 Ом. В качестве примера возьмем проволоку нихромовую Х20Н80 диаметром 1 мм. Тогда, чтобы получить требуемое сопротивление, необходимо l = R / ρ = 8,06 / 1,4 = 5,7 м нихромовой проволоки, где ρ — номинальное значение электрического сопротивления 1 м проволоки по ГОСТ 12766.1-90, [Ом/м]. Масса данного отрезка проволоки из нихрома составит m = l · μ = 5,7 · 0,007 = 0,0399 кг = 40 г, где μ — масса 1 м проволоки. Теперь необходимо определить площадь поверхности отрезка проволоки длиной 5,7 м. S = l · π · d = 570 · 3,14 · 0,1 = 179 см2, где l – длина проволоки [см], d – диаметр проволоки [см]. Таким образом, с площади 179 см2 должно выделяться 6 кВт. Решая простую пропорцию, получаем, что с 1 см2 выделяется мощность β = P / S = 6000 / 179 = 33,5 Вт, где β — поверхностная мощность нагревателя.

Полученная поверхностная мощность слишком велика. Нагреватель расплавится, если нагреть его до температуры, которая обеспечила бы полученное значение поверхностной мощности. Данная температура будет выше температуры плавления материала нагревателя.

Приведенный пример является демонстрацией неправильного выбора диаметра проволоки, которая будет использоваться для изготовления нагревателя. В п. 5 данного параграфа будет приведен пример с правильным подбором диаметра.

Для каждого материала в зависимости от требуемой температуры нагрева определено допустимое значение поверхностной мощности. Оно может определяться с помощью специальных таблиц или графиков. В данных расчетах используются таблицы.

Для высокотемпературных печей (при температуре более 700 – 800 °С) допустимая поверхностная мощность, Вт/м2, равна βдоп = βэф · α, где βэф – поверхностная мощность нагревателей в зависимости от температуры тепловоспринимающей среды [Вт / м2], α – коэффициент эффективности излучения. βэф выбирается по таблице 3, α — по таблице 4.

Если печь низкотемпературная (температура менее 200 – 300 °С), то допустимую поверхностную мощность можно считать равной (4 — 6) · 104 Вт/м2.

Таблица 3

Эффективная удельная поверхностная мощность нагревателей в зависимости от температуры тепловоспринимающей среды
Температура тепловоспринимающей поверхности, °Сβэф, Вт/cм2 при температуре нагревателя, °С
80085090095010001050110011501200125013001350
1006,17,38,710,312,514,1516,419,021,824,928,436,3
2005,97,158,5510,1512,014,016,2518,8521,6524,7528,236,1
3005,656,858,39,911,713,7516,018,621,3524,527,935,8
4005,26,457,859,4511,2513,315,5518,120,924,027,4535,4
5004,55,77,158,810,5512,614,8517,420,223,326,834,6
6003,54,76,17,79,511,513,816,419,322,325,733,7
70023,24,66,258,0510,012,414,917,720,824,332,2
8001,252,654,26,058,110,412,915,718,822,330,2
8501,43,04,86,859,111,714,517,621,029,0
9001,553,45,457,7510,31316,219,627,6
9501,83,856,158,6511,514,518,126,0
10002,054,36,859,712,7516,2524,2
10502,34,87,6510,7514,2522,2
11002,555,358,512,019,8
11502,855,959,417,55
12003,156,5514,55
13007,95

Таблица 4

Значение коэффициента эффективности излучения
Размещение нагревателейКоэффициент α
Проволочные спирали, полузакрытые в пазах футеровки0,16 — 0,24
Проволочные спирали на полочках в трубках0,30 — 0,36
Проволочные зигзагообразные (стержневые) нагреватели0,60 — 0,72
Ленточные зигзагообразные нагреватели0,38 — 0,44
Ленточные профилированные (ободовые) нагреватели0,56 — 0,7


Проволочные спирали, полузакрытые в пазах футеровки


Проволочные спирали на полочках в трубках


Проволочные зигзагообразные (стержневые) нагреватели

Предположим, что температура нагревателя 1000 °С, и хотим нагреть заготовку до температуры 700 °С. Тогда по таблице 3 подбираем βэф = 8,05 Вт/см2, α = 0,2, βдоп = βэф · α = 8,05 · 0,2 = 1,61 Вт/см2 = 1,61 · 104 Вт/м2.

5. После определения допустимой поверхностной мощности нагревателя необходимо найти его диаметр (для проволочных нагревателей) или ширину и толщину (для ленточных нагревателей), а также длину.

Диаметр проволоки можно определить по следующей формуле:

, где

d — диаметр проволоки, [м]; P — мощность нагревателя, [Вт]; U — напряжение на концах нагревателя, [В]; βдоп — допустимая поверхностная мощность нагревателя, [Вт/м2]; ρt — удельное сопротивление материала нагревателя при заданной температуре, [Ом·м].
     ρt = ρ20 · k, где ρ20 — удельное электрическое сопротивление материала нагревателя при 20 °С, [Ом·м] k — поправочный коэффициент для расчета изменения электрического сопротивления в зависимости от температуры (по ГОСТ 12766.1-90).

Длину проволоки можно определить по следующей формуле:

, где

l — длина проволоки, [м].

Подберем диаметр и длину проволоки из нихрома Х20Н80. Удельное электрическое сопротивление материала нагревателя составляет
     ρt = ρ20 · k = 1,13 · 10-6 · 1,025 = 1,15 · 10-6 Ом·м.

Бытовая сеть однофазного тока
Для 60 литровой печи, подключенной к бытовой сети однофазного тока, из предыдущих этапов расчета известно, что мощность печи составляет P = 6000 Вт, напряжение на концах нагревателя — U = 220 В, допустимая поверхностная мощность нагревателя βдоп = 1,6 · 104 Вт/м2. Тогда получаем

Полученный размер необходимо округлить до ближайшего большего стандартного. Стандартные размеры для проволоки из нихрома и фехрали можно найти в ГОСТ 12766.1-90, Приложение 2, Таблица 8. В данном случае, ближайшим большим стандартным размером является Ø 2,8 мм. Диаметр нагревателя d = 2,8 мм.

Длина нагревателя l = 43 м.

Также иногда требуется определить массу необходимого количества проволоки.
     m = l · μ, где m — масса отрезка проволоки, [кг]; l — длина проволоки, [м]; μ — удельная масса (масса 1 метра проволоки), [кг/м].

В нашем случае масса нагревателя m = l · μ = 43 · 0,052 = 2,3 кг.

Данный расчет дает минимальный диаметр проволоки, при котором она может быть использована в качестве нагревателя при заданных условиях. С точки зрения экономии материала такой расчет является оптимальным. При этом также может быть использована проволока большего диаметра, но тогда ее количество возрастет.

Проверка
Результаты расчета могут быть проверены следующим способом. Был получен диаметр проволоки 2,8 мм. Тогда нужная нам длина составит
     l = R / (ρ · k) = 8,06 / (0,179 · 1,025) = 43 м, где l — длина проволоки, [м]; R — сопротивление нагревателя, [Ом]; ρ — номинальное значение электрического сопротивления 1 м проволоки, [Ом/м]; k — поправочный коэффициент для расчета изменения электрического сопротивления в зависимости от температуры.
Данное значение совпадает со значением, полученным в результате другого расчета.

Теперь необходимо проверить, не превысит ли поверхностная мощность выбранного нами нагревателя допустимую поверхностную мощность, которая была найдена в п. 4. β = P / S = 6000 / (3,14 · 4300 · 0,28) = 1,59 Вт/см2. Полученное значение β = 1,59 Вт/см2 не превышает βдоп = 1,6 Вт/см2.

Итоги
Таким образом, для нагревателя потребуется 43 метра нихромовой проволоки Х20Н80 диаметром 2,8 мм, это составляет 2,3 кг.

Промышленная сеть трехфазного тока
Также можно найти диаметр и длину проволоки, необходимой для изготовления нагревателей печи, подключенной к сети трехфазного тока.

Как описано в п. 3, на каждый из трех нагревателей приходится по 2 КВт мощности. Найдем диаметр, длину и массу одного нагревателя.

Подключение типа “ЗВЕЗДА” (см. рис. 2)

В данном случае, ближайшим большим стандартным размером является Ø 1,4 мм. Диаметр нагревателя d = 1,4 мм.

Длина одного нагревателя l = 30 м.
Масса одного нагревателя m = l · μ = 30 · 0,013 = 0,39 кг.

Проверка
Был получен диаметр проволоки 1,4 мм. Тогда нужная нам длина составит
     l = R / (ρ · k) = 24,2 / (0,714 · 1,025) = 33 м.
Данное значение практически совпадает со значением, полученным в результате другого расчета.

Поверхностная мощность составит β = P / S = 2000 / (3,14 · 3000 · 0,14) = 1,52 Вт/см2, она не превышает допустимую.

Итоги
Для трех нагревателей, подключенных по схеме “ЗВЕЗДА”, потребуется
     l = 3 · 30 = 90 м проволоки, что составляет
     m = 3 · 0,39 = 1,2 кг.

Подключение типа “ТРЕУГОЛЬНИК” (см. рис. 3)

В данном случае, ближайшим большим стандартным размером является Ø 0,95 мм. Диаметр нагревателя d = 0,95 мм.

Длина одного нагревателя l = 43 м.
Масса одного нагревателя m = l · μ = 43 · 0,006 = 0,258 кг.

Проверка
Был получен диаметр проволоки 0,95 мм. Тогда нужная нам длина составит
     l = R / (ρ · k) = 72,2 / (1,55 · 1,025) = 45 м.

Данное значение практически совпадает со значением, полученным в результате другого расчета.

Поверхностная мощность составит β = P / S = 2000 / (3,14 · 4300 · 0,095) = 1,56 Вт/см2, она не превышает допустимую.

Итоги
Для трех нагревателей, подключенных по схеме “ТРЕУГОЛЬНИК”, потребуется
     l = 3 · 43 = 129 м проволоки, что составляет
     m = 3 · 0,258 = 0,8 кг.

Если сравнить 2 рассмотренных выше варианта подключения нагревателей к сети трехфазного тока, то можно заметить, что для “ЗВЕЗДЫ” требуется проволока большего диаметра, чем для “ТРЕУГОЛЬНИКА” (1,4 мм против 0,95 мм), чтобы обеспечить заданную мощность печи 6 кВт. При этом требуемая длина нихромовой проволоки при подключении по схеме “ЗВЕЗДА” меньше длины проволоки при подключении типа “ТРЕУГОЛЬНИК” (90 м против 129 м), а требуемая масса, наоборот, больше (1,2 кг против 0,8 кг).

Расчет спирали

При эксплуатации основная задача — это разместить нагреватель расчетной длины в ограниченном пространстве печи. Нихромовая и фехралевая проволока подвергаются навивке в виде спиралей или сгибанию в форме зигзагов, лента сгибается в форме зигзагов, что позволяет вместить большее количество материала (по длине) в рабочую камеру. Наиболее распространенным вариантом является спираль.

Соотношения между шагом спирали и ее диаметром и диаметром проволоки выбирают таким образом, чтобы облегчить размещение нагревателей в печи, обеспечить достаточную их жесткость, в максимально возможной степени исключить локальный перегрев витков самой спирали и в то же время не затруднить теплоотдачу от них к изделиям.

Чем больше диаметр спирали и чем меньше ее шаг, тем легче разместить в печи нагреватели, но с увеличением диаметра уменьшается прочность спирали, увеличивается склонность ее витков лечь друг на друга. С другой стороны, с увеличением частоты намотки увеличивается экранирующее действие обращенной к изделиям части ее витков на остальные и, следовательно, ухудшается использование ее поверхности, а также могут возникнуть местные перегревы.

Практика установила вполне определенные, рекомендуемые соотношения между диаметром проволоки (d), шагом (t) и диаметром спирали (D) для проволоки Ø от 3 до 7 мм. Эти соотношения следующие: t ≥ 2d и D = (7÷10)·d для нихрома и D = (4÷6)·d — для менее прочных железохромоалюминиевых сплавов, таких как фехраль и т.п. Для более тонких проволок отношение D и d, а также t обычно берутся больше.

В статье были рассмотрены различные аспекты, касающиеся расчета нагревателей электрических печей — материалы, примеры расчета с необходимыми справочными данными, ссылками на стандарты, иллюстрациями.

В примерах были рассмотрены методики расчета только проволочных нагревателей. Помимо проволоки из прецизионных сплавов для изготовления нагревателей может применяться и лента.

Расчет нагревателей не ограничивается выбором их размеров. Также необходимо определить материал, из которого должен быть сделан нагреватель, тип нагревателя (проволочный или ленточный), тип расположения нагревателей и другие особенности. Если нагреватель изготавливается в виде спирали, то необходимо определить количество витков и шаг между ними.

Надеемся, что статья оказалась Вам полезной. Мы допускаем её свободное распространение при условии сохранения ссылки на наш сайт http://www.metotech.ru

В случае обнаружения неточностей, просим сообщить нам на адрес электронной почты [email protected] или с помощью системы «Орфус», выделив текст с ошибкой и нажав Ctrl+Enter.

  • Дьяков В.И. «Типовые расчеты по электрооборудованию».
  • Жуков Л.Л., Племянникова И.М., Миронова М.Н., Баркая Д.С., Шумков Ю.В. «Сплавы для нагревателей».
  • Сокунов Б.А., Гробова Л.С. «Электротермические установки (электрические печи сопротивления)».
  • Фельдман И.А., Гутман М.Б., Рубин Г.К., Шадрич Н.И. «Расчет и конструирование нагревателей электропечей сопротивления».
  • http://www.horss.ru/h6.php?p=45
  • http://www.electromonter.info/advice/nichrom.html

Калькулятор расчета спирали из нихрома и фехраля для нагревателей :: информационная статья компании Полимернагрев

Электронагреватели могут производиться с нагревательными спиралями из различных материалов, но наиболее популярными все же являются нихром и фехраль. Нихром — это сплав никеля и хрома, а фехраль – сплав железа, хрома и алюминия. Они имеет высокую коррозионную стойкость и температуру плавления, поэтому и используется в электрических приборах и нагревателях.

Данная статья поможет вам разобраться в расчетах параметров греющих спиралей, а простые и удобные калькуляторы сделают быстрый подсчет нужной длины проволоки и переведут длину в вес и обратно. Воспользуйтесь этими онлайн-калькуляторами нихромовой проволоки, чтобы рассчитать сопротивление, площадь сечения, ток и длину нихромовой и фехралевой проволоки, просто указав мощность и напряжение.

Расчет длины спирали

Расчет веса и длины

Расчет спирали из нихрома и фехраля

Существует несколько способов расчета греющих спиралей, рассмотрим для начала более простой метод, учитывающий только сопротивление материала, а потом включим в расчет еще и изменение сопротивления под воздействием темепературы.

Способ расчета спирали по сопротивлению материала

В данном способе все довольно просто. Нам нужны первоначальные данные, на основе которых мы будем проводить вычисления. Они включают в себя:

  • Мощность нагревательного элемента, который хотите получить

  • Напряжение, при котором спираль будет работать

  • Диаметр и тип проволоки, который имеется в наличии

Предположим, у нас имеется электроприбор, который должен работать с мощностью 12 Вт под напряжением 24 В. При этом мы используем проволоку из нихрома с сечением 0,2 мм.

Для вычислений нам потребуется самая элементарная формула из общеобразовательного курса физики:

Мощность (Р) = Напряжение (U) * Сила тока (I)

Отсюда

І = Р: U = 12 : 24 = 0,5 А

Теперь воспользуемся законом Ома для определения сопротивления:

Сопротивление (R ) = Напряжение (U)  * Сила тока (I) = 24/0,5 = 48 Ом

Теперь нам нужна формула для определения длины проводника:

Длина (L) = Площадь сечения (S) * Сопротивление (R)  / Плотность материала (ρ)

Как же  узнать сопротивление нихромовой проволоки?  Помочь в решении данной задачи нам помогут таблицы плотности материалов или формулы для вычисления значения. Итак, если у нас проволока имеет диаметр 0,2, значит площадь сечения по формуле будет 0,0314 мм2, сопротивление смотрим по таблице и получаем длину проволоки 1,3 м.

Но это все чисто теоретически, ведь мы не знаем, сможет ли выдержать проволока данного диаметра такой ток. Посмотрим таблицу, в ней указаны максимальные значения тока для проволоки определенного диаметра. В нашем случае это 0,65, значит наше значение 0,5 лежит в допустимых пределах.

Также не забывайте учесть среду, в которой будет работать нагреватель. Если вы греете жидкость, можно смело увеличивать силу тока вдвое, а если замкнутое пространство – наоборот, уменьшать.



Способ расчета спирали по температуре

Тот, способ, который мы описывали выше, является не очень точным по той причине, что нами не было взято в расчет изменение сопротивления резистивной проволоки при росте температуры. Поэтому его можно применять только для не слишком высоких температур до 200-250 градусов. Для высокотемпературных печей данный расчет будет совсем неточным, поэтому рассмотрим второй метод.

Возьмем муфельную печь отжига и определим объем камеры и нужную мощность. Помогут с вычислениями нам такие два правила.

  • Если объем печи меньше 50 литров, то подбираем мощность 100 Вт на литр

  • Если же объем печи больше 100 литров, мощность рассчитывается как 50-70 Вт на литр

Допустим, наша печь отжига имеет объем 50 литров, мощность тогда будет 5 кВт. Если напряжение в сети должно быть стандартные 220 В, то сила тока и сопротивление будет равны:

І = 5000:220 = 22,7 А

R = 220:22,7 = 9,7 Ом

Подключение звездой при напряжении 380 В потребует деления мощности на 3 фазы, тогда наша мощность для одной фазы будет равна 5кВт / 3 = 1,66 кВт

Подключение звездой предполагает, что на каждую из фаз будет подаваться напряжение питания 220 В, следовательно значения сопротивления и силы тока будет такими:

І = 1660/220 = 7,54 А

R = 220/7,54 = 29,1 Ом

Второй тип подключения ТЭНов для напряжения в 380 В «треугольник» предполагает подачу линейного напряжения в 380 В, поэтому мы получим:

І = 1660/380 = 4,36 А

R = 380/4,36 = 87,1 Ом

При помощи ниже указанных таблиц мы можем найти удельную поверхностную мощность нагревательного элемента и вычислить на его основе длину проволоки.

Поверхностная мощность = βэф*α(коэффициент эффективности)


В итоге, чтобы наша печь нагрелась до 1000 С, нагревательный элемент должен производить температуру в 1100 градусов. Возьмем таблицы и выберем соответствующие значения. Тогда получим:

  • Поверхностная мощность (Вдоп)=4,3∙0,2=0,86Вт/см2=8600 Вт/м2

  • Диаметр определяется по формуле d=3√((4*Rt*P2)/(π2*U2доп))

Rt — удельное сопротивление материала при нужной температуре берем из таблицы


Если наша спираль изготовлена из нихрома марки Х80Н20, Rt будет равняться 1,025. Значит Рт=1,13 * 106 * 1,025 = 1,15 * 106 Ом на мм

При подключении типа «звезда»: диаметр равен 1,23 мм, длина = 42 м

Если же мы проверим результат по упрощенной формуле L=R/(p*k)

Получим 29,1/(0,82*1,033)= 34 м

Из этого мы видим, что не учитывая температуру мы получаем совсем другое значение длины проволоки и более правильным является выбор второго метода.

Итоги

Онлайн калькулятор для расчета спирали поможет вам с быстрыми предварительными расчетами, но для точного учета всех особенностей даже второго метода расчета с учетом температуры может быть не достаточно. На практике существует еще очень много факторов, которые нужно взять во внимание при расчете параметров нагревателя.

Если вам нужна помощь с расчетами нагревателей – обращайтесь к нам. Наши специалисты имеют огромный опыт в проектировании нагревательных элементов для различного промышленного оборудования. Мы поможем с расчетами оптимальных параметров нагревательных элементов для вашего оборудования и можем изготовить любой тип нагревателей для Вас.


Расчет спирали из нихрома. Намотка нихромовых спиралей. Сопротивление нихрома

 




 

 

Нихромовая спираль

 

Каждый знает, что такое нихромовая спираль. Это нагревательный элемент в виде проволоки, свернутой винтом для компактного размещения.

Эта проволока изготавливается из нихрома – прецизионного сплава, главными компонентами которого являются никель и хром.

«Классический» состав этого сплава – 80% никеля, 20% хрома.

Композицией наименований этих металлов было образовано название, которым обозначается группа хромоникелевых сплавов – «нихром».

 

Самые известные марки нихрома – Х20Н80 и Х15Н60. Первый из них близок к «классике». Он содержит 72—73 % никеля и 20—23 % хрома.

Второй разработан с целью снижения стоимости и повышения обрабатываемости проволоки.

Содержание никеля и хрома в нем уменьшено – до 61 % и до 18 % соответственно. Но увеличено количество железа – 17—29 % против 1,5 у Х20Н80.

 

На базе этих сплавов были получены их модификации с более высокой живучестью и стойкостью к окислению при высокой температуре.

Это марки Х20Н80-Н (-Н-ВИ) и Х15Н60 (-Н-ВИ). Они применяются для нагревательных элементов, контактирующих с воздухом. Рекомендуемая максимальная температура эксплуатации – от 1100 до 1220 °С

 

 

Применение нихромовой проволоки

 

Главное качество нихрома – это высокое сопротивление электрическому току. Оно определяет области применения сплава.

Нихромовая спираль применяется в двух качествах – как нагревательный элемент или как материал для электросопротивлений электрических схем.

Для нагревателей используется электрическая спираль из сплавов Х20Н80-Н и Х15Н60-Н.

 

Примеры применений:

  • бытовые терморефлекторы и тепловентиляторы;
  • ТЭНы для бытовых нагревательных приборов и электрического отопления;
  • нагреватели для промышленных печей и термооборудования.

Сплавы Х15Н60-Н-ВИ и Х20Н80-Н-ВИ, получаемые в вакуумных индукционных печах, используют в промышленном оборудовании повышенной надежности.

Спираль из нихрома марок Х15Н60, Х20Н80, Х20Н80-ВИ, Н80ХЮД-ВИ отличается тем, что его электросопротивление мало меняется при изменении температуры.

Из нее изготавливают резисторы, соединители электронных схем, ответственные детали вакуумных приборов.

 

 

Как навить спираль из нихрома

 

Резистивная или нагревательная спираль может быть изготовлена в домашних условиях. Для этого нужна проволока из нихрома подходящей марки и правильный расчет требуемой длины.

 

Расчёт спирали из нихрома опирается на удельное сопротивление проволоки и требуемую мощность или сопротивление, в зависимости от назначения спирали. При расчете мощности нужно учитывать максимально допустимый ток, при котором спираль нагревается до определенной температуры.

 

 

 

 

Учет температуры

 

Например, проволока диаметром 0,3 мм при токе 2,7 А нагреется до 700 °С, а ток в 3,4 А нагреет ее до 900 °С.

Для расчета температуры и тока существуют справочные таблицы. Но еще нужно учитывать условия эксплуатации нагревателя.

При погружении в воду теплоотдача повышается, тогда максимальный ток можно повысить на величину до 50 % от расчетного.

Закрытый трубчатый нагреватель, наоборот, ухудшает отвод тепла. В этом случае и допустимый ток необходимо уменьшить на 10—50 %.

 

На интенсивность теплоотвода, а значит и на температуру нагревателя, влияет шаг навивки спирали.

Плотно расположенные витки дают более сильный нагрев, больший шаг усиливает охлаждение.

Следует учитывать, что все табличные расчеты приводятся для нагревателя, расположенного горизонтально. При изменении угла к горизонту условия теплоотвода ухудшаются.

 

Расчет сопротивления нихромовой спирали и ее длины

 

Определившись с мощностью, приступаем к расчету требуемого сопротивления.

Если определяющим параметром является мощность, то вначале находим требуемую силу тока по формуле I=P/U.

Имея силу тока, определяем требуемое сопротивление. Для этого используем закон Ома: R=U/I.

 

Обозначения здесь общепринятые:

  • P – выделяемая мощность;
  • U – напряжение на концах спирали;
  • R – сопротивление спирали;
  • I – сила тока.

Расчет сопротивления нихромовой проволоки готов.

 

Теперь определим нужную нам длину. Она зависит от удельного сопротивления и диаметра проволоки.

Можно сделать расчет, исходя из удельного сопротивления нихрома: L=(Rπd2)/4ρ.

 

Здесь:

  • L – искомая длина;
  • R – сопротивление проволоки;
  • d – диаметр проволоки;
  • ρ – удельное сопротивление нихрома;
  • π – константа 3,14.

Но проще взять готовое линейное сопротивление из таблиц ГОСТ 12766.1-90. Там же можно взять и температурные поправки, если нужно учитывать изменение сопротивления при нагреве.

В этом случае расчет будет выглядеть так: L=R/ρld, где ρld – это сопротивление одного метра проволоки, имеющей диаметр d.

 

 

Теперь сделаем геометрический расчет нихромовой спирали. У нас выбран диаметр проволоки d, определена требуемая длина L и есть стержень диаметром D для навивки. Сколько нужно сделать витков? Длина одного витка составляет: π(D+d/2). Количество витков – N=L/(π(D+d/2)). Расчет закончен.

 

 

 

Практичное решение

 

На практике редко кто занимается самостоятельной навивкой проволоки для резистора или нагревателя.

Проще купить нихромовую спираль с требуемыми параметрами и при необходимости отделить от нее нужное количество витков.

 

Для этого стоит обратиться в компанию «ПАРТАЛ», которая с 1995 года является крупным поставщиком прецизионных сплавов, в том числе проволоки нихромовой, ленты и спиралей для нагревателей.

 

Наша компания способна полностью снять вопрос о том, где купить нихромовую спираль, поскольку мы готовы изготовить ее на заказ по эскизам и техническим условиям заказчика.

 

 

 

 

методика проведения вычислений, справочные таблицы

Наиболее значительной деталью электротепловой установки является нагревательный элемент. Основная составляющая часть приборов косвенного нагрева — резистор с высоким удельным сопротивлением. А одним из приоритетных материалов — хромоникелевый сплав. Так как сопротивление нихромовой проволоки высоко, этот материал занимает лидирующее место в качестве сырья для различных видов электротепловых установок. Расчёт нагревателя из нихромовой проволоки проводят с целью определения размеров нагревательного элемента.

Основные понятия

В целом производить расчёт нагревательного элемента из нихрома необходимо по четырём вычислениям: гидравлическому, механическому, тепловому и электрическому. Но обычно подсчёты проводят лишь в два этапа: по тепловым и электрическим показателям.

К тепловым характеристикам относятся:

  • тепловая изоляция;
  • коэффициент полезного действия по теплоте;
  • необходимая теплоотдающая поверхность.

Основной целью расчёта нихрома является определение геометрических размеров нагревательного сопротивления.

К электрическим параметрам обогревателей являются:

  • напряжение питания;
  • способ регулирования мощности;
  • коэффициент мощности и электрический коэффициент полезного действия.

При выборе питающего напряжения для устройств обогрева отдают предпочтение тому, что несёт минимальную угрозу животным и обслуживающему персоналу. Напряжение сети в установках сельского хозяйства составляет 380/200 вольт с частотой тока 50 Герц. В случае применения электроустановок в особо сырых помещениях, при повышенной электроопасности напряжение следует снизить. Его значение должно не превышать 12, 24, 36 вольт.

Регулировать температуру и мощность нагревателя можно двумя способами:

  • меняя напряжение;
  • переменой величины сопротивления.

Наиболее распространённым способом изменять мощность является включение в работу определённого числа секций трехфазной установки. В современных нагревательных установках мощность меняют регулировкой напряжения с помощью тиристоров.

Расчёт по рабочему току основан на табличной зависимости, которая связывает токовую нагрузку на проводник из нихрома, его площадь сечения и температуру.

Табличные данные были составлены для проволоки из нихрома, которая натягивалась в воздухе без учёта колебаний и вибраций при температуре 20 °C.

Для того чтобы перейти к реальным условиям, в расчётах необходимо использовать поправочные коэффициенты.

Алгоритм расчёта для однофазных установок

Расчёт спирали из нихрома следует проводить поэтапно, используя начальные сведения о нагревателе: необходимая мощность и марка нихрома.

Мощность одной секции:

Рс = Р/ (mn)

P — мощность установки, Вт;

m — количество фаз, для однофазной m = 1;

n — число секций в одной фазе, для установок мощностью около 1 квт n = 1.

Рабочий ток одной секции нагревателя:

Ic = P с/(Un)

U — напряжение сети, для однофазных установок U = 220 в

Расчётная температура проволоки:

θр = θд/(Км Кс)

θд — допустимая рабочая температура, выбирается из таблицы 1 в зависимости от материала, °C.

Таблица 1 — Параметры материалов для электрических нагревателей.

МатериалУдельное сопротивление при 20 °C, x10-6Ом·мТемпературный коэффициент сопротивления, x10— 6 °C -1Допустимая рабочая температура, °CТемпература плавления, °C
Нихром двойной (Х20Н80-Н)1,116,512001400
Нихром тройной (Х15Н60-Н)1,116,311001390

Км — коэффициент монтажа, выбирают из таблицы 2 в зависимости от конструктивного исполнения.

Таблица 2 — Коэффициент монтажа для некоторых видов конструкций нагревателей в спокойном потоке воздуха.

Конструктивное исполнение нагревателяКм
Провод при горизонтальном размещении1,0
Спираль из провода без тепловой изоляции0,8 — 0,9
Спираль из провода на огнеупорном каркасе0,7
Провод на огнеупорном каркасе0,6 — 0,7
Нагревательные сопротивления между двумя слоями тепловой изоляции0,5
Нагревательные сопротивления с хорошей тепловой изоляцией0,3 — 0,4

Роль коэффициента монтажа в том, что он даёт возможность учитывать повышение температуры нагревателя в реальных условиях по сравнению с данными справочной таблицы.

Кс — коэффициент окружающей среды, определяется из таблицы 3.

Таблица 3 — Коэффициент поправки на некоторые условия окружающей среды.

Условия окружающей средыКс
Спираль из провода в потоке воздуха со скоростью движения, м /с 
31,8
52,1
103,1
Нагревательный элемент в неподвижной воде2,5
Нагревательный элемент в потоке воды3,0−3,5

Коэффициент среды даёт поправку на улучшение теплоотдачи из-за условий окружающей среды. Поэтому реальные результаты расчётов будут немного отличаться от табличных значений.

Диаметр d, мм и площадь поперечного сечения S, мм 2 выбирается по рабочему току и расчётной температуре из таблицы 4

Таблица 4 — Допустимая нагрузка на нихромовую проволоку при 20 °C, подвешенную в спокойном воздухе горизонтально.

Длина проволоки одной секции:

L = (U ф2S*10-6)/(ρ 20 [1+α(θ р -20)] Рс x103)

ρ 20 — удельное сопротивление при температуре 20 °C, выбирается из таблицы 1;

α — температурный коэффициент сопротивления, определяется из соответствующего столбца в таблице 1.

Диаметр спирали:

D = (6…10) d, мм.

Определяем шаг спирали:

h = (2…4) d, мм

Шаг спирали влияет на производительность работы. При его больших значениях теплоотдача увеличивается.

Количество витков спирали

W = (lx103)/ (√h2+(πD)2)

Длина спирали:

L = h W x10-3

Если назначением проволочного нагревателя является повышение температуры жидкости, рабочий ток увеличивают в 1,5 раза от расчётного значения. В случае расчёта нагревателя с закрытым типом рабочий ток рекомендуется снизить в 1,2 раза.

Классификация нагревателей по температуре

Нагреватели по предельно допустимой температуре подразделяются на пять классов:

  1. 200° C. В этом диапазоне температур наиболее широко распространено использование трубчатых электрических нагревателей. Для того чтобы в рабочем пространстве соблюдалась оптимальная температура, при монтаже ТЕНов необходимо уделить внимание их правильному расположению.
  2. От 200 до 400° C. Используются ленточные нагреватели. Для создания необходимой температуры в рабочей камере охватывают весь её периметр.
  3. От 400 до 600° C. Материалом для нагревателей должен служить лишь резистивный элемент высокого сопротивления. Распространёнными являются константан, фехраль, нихром. С целью обеспечения необходимой температуры нагреватель должен быть открытым для доступа воздуха. Поэтому расположен внутри или снаружи трубки.
  4. От 600 до 1250° C. В печах старого образца используется нихром. Но в этом диапазоне температур он значительно уступает сплаву из алюминия, железа и хрома (фехрали). Поэтому в более современных образцах печей нихром заменён фехралью.
  5. От 1250 до 1700° C. Высокотемпературные нагреватели изготавливают из дисилицида молибдена, карбида кремния. Основным недостатком обогревателей является их дефицит и высокая стоимость.

Параметры, способствующие неполадкам

Наиболее велика вероятность выхода из строя электрических нагревателей вследствие окисления поверхности нагревательного сопротивления.

Факторы, которые влияют на скорость разрушения нагревателя:

  • рабочая температура;
  • условия окружающей среды, в которых работает нагреватель;
  • частота включений.

Из-за того, что электронагревательные установки работают с превышением допустимых значений этих параметров, происходят наиболее частые поломки: обгорание контактов, нарушение механической прочности нихромовой проволоки.

Ремонт нагревательного элемента из нихрома осуществляется с помощью пайки или скручивания.

Самодельный станок для резки пенопласта – электрическая схема

Тепло и звукоизоляционные строительные материалы на рынке представлены в широком ассортименте, это вспененный полиэтилен, минеральная и базальтовая вата и многие другие. Но самым распространенным для утепления и звукоизоляции является экструдированный пенополистирол и пенопласт, благодаря высоким физико-химическим свойствам, простоте монтажа, малому весу и низкой стоимости. Пенопласт имеет низкий коэффициент теплопроводности, высокий коэффициент звукопоглощения, устойчив к воздействию воды, слабых кислот, щелочей. Пенопласт устойчив к воздействию температуры окружающей среды, от минимально возможной до 90˚С. Даже через десятки лет пенопласт не меняет своих физико-химических свойств. Пенопласт также обладает достаточной механической прочностью.

Пенопласт обладает еще очень важными свойствами, это пожароустойчивость (при воздействии огня пенопласт не тлеет как древесина), экологическая чистота (так как пенопласт сделан из стирола, то в таре из него можно хранить даже пищевые продукты). На пенопласте не возникают грибки и очаги бактерий. Практически идеальный материал для утепления и звукоизоляции при строительстве и ремонте домов, квартир, гаражей, и даже упаковки для хранения продуктов питания.

В магазинах строительных материалов пенопласт продается в виде пластин разной толщины и размеров. При ремонте зачастую нужны листы пенопласта разной толщины. При наличии электрического резака пенопласта всегда можно нарезать из толстой пластины листы нужной толщины. Станок также позволяет фигурную пенопластовую упаковку от бытовой техники превратить в пластины, как на фотографии выше, и успешно разрезать толстые листы поролона для ремонта мебели.

Как легко режется пенопласт на самодельном станке, наглядно демонстрирует видео ролик.

Всего просмотров: 71204

При желании сделать резак для пенопласта и поролона многих останавливает сложность с организацией подачи питающего напряжения для разогрева нихромовой струны до нужной температуры. Это препятствие преодолимо, если разобраться в физике вопроса.

Конструкция станка

Основанием приспособления для резки пенопласта послужил лист ДСП (древесно-стружечной плиты). Размер плиты нужно брать исходя из ширины пластин пенопласта, которые планируется разрезать. Я использовал дверку от мебели размером 40×60 см. При таком размере основания можно будет разрезать пластины пенопласта шириной до 50 см. Основание можно сделать из листа фанеры, широкой доски, закрепить струну резки непосредственно на рабочем столе или верстаке.

Натягивать нихромовую струну между двумя гвоздями предел лени домашнего мастера, поэтому я реализовал простейшую конструкцию, обеспечивающую надежную фиксацию и плавную регулировку высоты расположения струны в процессе резки над поверхностью основания станка.

Крепятся концы нихромовой проволоки за пружины, одетые на винты М4. Сами винты закручены в металлические стойки, запрессованные в основание станка. При толщине основания 18 мм, я подобрал металлическую стойку длиной 28 мм, из расчета, чтобы при полном вкручивании винт не выходил за пределы нижней стороны основания, а при максимально выкрученном состоянии обеспечивал толщину нарезки пенопласта 50 мм. Если потребуется нарезать листы пенопласта или поролона большей толщины, то достаточно будет заменить винты более длинными.

Чтобы запрессовать стойку в основание, сначала в нем просверливается отверстие, диаметром на 0,5 мм меньше, чем внешний диаметр стойки. Для того, чтобы стойки легко можно было забить молотком в основание, острые кромки с торцов были сняты на наждачной колонке.

Прежде, чем закручивать в стойку винт, у его головки была проточена канавка, чтобы нихромовая проволока при регулировке не могла произвольно перемещаться, а занимала требуемое положение.

Чтобы проточить в винте канавку, сначала его резьбу нужно защитить от деформации, надев пластиковую трубку или обернуть плотной бумагой. Затем зажать в патроне дрели, включить дрель и приложить узкий надфиль. Через минуту канавка будет готова.

Для исключения провисания нихромовой проволоки из-за удлинения при нагреве, она закреплена к винтам через пружины.

Подходящей оказалась пружина от компьютерного монитора, используемая для натяжения заземляющих проводников на кинескопе. Пружина была длиннее, чем требовалось, пришлось сделать из нее две, для каждой стороны крепления проволоки.

После подготовки всех крепежных деталей можно закреплять нихромовую проволоку. Так как ток при работе потребляется значительный, около 10 А, то для надежного контакта токоподводящего провода с нихромовой проволокой я применил способ крепления скруткой с обжатием. Толщину медного провода при токе 10 А необходимо брать сечением не менее 1,45 мм2. Выбрать сечение провода для подключения нихромовой проволоки можно из таблицы. В моем распоряжении имелся провод сечением около 1 мм2. Поэтому пришлось каждый из проводов сделать из двух сечением 1 мм2, соединенных параллельно.

После снятия изоляции с концов проводов на длину около 20 мм, медные проводники навиваются на струну нихромовой проволочки в месте ее крепления к пружине. Затем, удерживая нихромовую проволочку за петлю плоскогубцами, сделанная обвивка медного провода овивается свободным концом нихромовой в противоположную сторону.

Такой способ соединения токоподводящего медного провода с нихромовым проводом обеспечит большую площадь их контакта и исключит сильный нагрев в месте соединения при работе станка для резки пенопласта. Это подтвердила практика, после продолжительной резки пенопласта, полихлорвиниловая оболочка токоподводящего провода не оплавилась, медный провод в зоне соединения не изменил своего цвета.

Для возможности регулировки толщины резки пенопласта на приспособлении, отвод токоподводящих проводников сделан с петлей. Чтобы провода не мешали при работе, они пропущены через отверстия в основании и закреплены на обратной его стороне скобками. По углам основания прибиты такие же скобки в качестве ножек.

Токоподводящие провода резака, чтобы не запутывались, свиты между собой. На концах проводов для подключения к источнику питания, запаяны накидные клеммы.

Выбор нихромовой проволоки

Нихромовая проволока по внешнему виду мало чем отличается от стальной проволоки, но сделана она из сплава хрома и никеля. Наиболее распространена проволока марки Х20Н80, содержащая 20% хрома и 80% никеля. Однако в отличие от стальной или медной проволоки, нихромовая проволока имеет большее удельное сопротивление и выдерживает, сохраняя, высокую механическую прочность температуру нагрева до 1200˚С. Нихромовая проволока выпускается диаметром от 0,1 мм до 10 мм.

Нихромовая проволока широко используется в качестве нагревательных элементов в бытовых и промышленных изделиях, таких как электрический фен, утюг, электроплитка, лучевые обогреватели, паяльники, водонагреватели и даже в электрочайниках. И это далеко не полный перечень. Так называемые нагреватели типа ТЭН тоже изготовлены из нихромовой проволоки, только спираль размещена в металлической трубке, которая заполнена для изоляции и передаче тепла от спирали к стенкам трубки, кварцевым песком. Привел перечень приборов не случайно, просто из вышедшего из строя нагревательного элемента можно взять нихромовую проволоку для изготовления станка, конечно, если она не успела перегореть от долгой работы.

Резка пенопласта на станке заключается в расплавлении его по линии прохода, разогретой нихромовой проволоки. Температура плавления пенопласта составляет около 270˚С. Чтобы пенопласт плавился при соприкосновении с проволокой, температура ее должна быт в несколько раз больше, так как тепло будет расходоваться не только на плавление, но и за счет теплопроводности поглощаться самим пенопластом, снижая температуру проволоки. Количество поглощаемого пенопластом тепла будет напрямую зависеть от его плотности. Чем плотнее пенопласт, тем больше потребуется тепловой энергии.

Из вышесказанного следует, что в зависимости от плотности пенопласта для его резки необходимо выбирать проволоку соответствующего диаметра, чтобы нихромовая проволока не расплавилась от выделяющегося на ней тепла. Чем выше плотность пенопласта, тем большего диаметра должна быть нихромовая проволока. Стоит заметить, что резаком, на котором установлена проволока для резки плотного пенопласта с успехом будет резаться и неплотный, только продвигать его надо будет быстрее.

Длина нихромовой проволоки для резака выбирается исходя из размеров пластин пенопласта, предназначенного для резки, и от плотности пенопласта не зависит.

В результате продведенных экспериментов, было определено, что для эффективной резки пенопласта мощность, которую необходимо подавать на единицу длины проволоки должна быть в пределах 1,5-2,5 Вт на сантиметр длины проволоки, для такого режим работы лучше всего подходит нихромовая проволока диаметром 0,5-0,8 мм. Она позволяет выделить достаточное количество тепла для быстрой резки пенопласта любой плотности, сохраняя при этом свою механическую прочность. Поэтому для изготовления станка для резки пенопласта была использована нихромовая проволока диаметром 0,8 мм.

Расчет параметров источника электропитания


для нагрева проволоки

Надо отметить, что для разогрева нихромовой проволоки станка для резки пенопласта подойдет источник электропитания как переменного тока, так и постоянного.

С учетом того, что на сантиметре длины проволоки нужно выделять мощность не более 2,5  ватта и длине проволоки 50 см, можно рассчитать мощность источника электропитания. Для этого нужно умножить величину выделяемой мощности на длину проволоки. В результате получается, что для разогрева проволоки станка для резки пенопласт понадобится источник электропитания мощность 125 Вт.

Теперь необходимо определить величину напряжения источника электропитания. Для этого нужно знать сопротивление нихромовой проволоки.

Сопротивление проволоки можно рассчитать по удельному сопротивлению (сопротивлению одного метра проволоки). Удельное сопротивление проволоки из нихрома марки Х20Н80 приведено в таблице. Для других марок нихрома значения отличаются незначительно.

Как видно из таблицы, для проволоки диаметром 0,8 мм удельное сопротивление составляет 2,2 Ом, следовательно, нихромовая проволока длинной 50 см, которая была выбрана для станка резки пенопласта, будет иметь сопротивление 1,1 Ом. Если выбрать проволоку диаметром 0,5 мм, то сопротивление отрезка проволоки длиной 50 см составит 2,8 Ом.

Воспользовавшись преобразованными формулами законов Ома и Джоуля – Ленца, получим формулу для расчета величины питающего напряжения для станка резки пенопласта. Величина питающего напряжения будет равна корню из произведения величины потребляемой мощности и сопротивления проволоки. Для упрощения расчета предлагаю онлайн калькулятор. Он выполняет расчет исходя из того, что на сантиметр длины проволоки необходима мощность 2,5 Вт. Для того, чтобы узнать какой нужен источник питания достаточно ввести в соответствующие поля длину нихоромовой проволоки и ее сопротивление, выбранное из таблицы.

В результате расчетов определено, что для нагрева нихромовой проволоки изготовленного станка необходим источник питания переменного или постоянного тока, выдающий напряжение 11,7 В, и обеспечивающий ток нагрузки 10,7 А, мощностью 125 Вт.

При уменьшении или увеличении длины проволоки, напряжение источника питания необходимо будет пропорционально уменьшить или увеличить соответственно. При этом величина тока не изменится.

Выполненный расчет является оценочным, так как не учтено переходное сопротивление в точках соединения проводов и сопротивление токоподводящих проводников. Поэтому оптимальный режим нагрева проволоки в конечном итоге приходится устанавливать непосредственно при резке пенопласта на приспособлении.

Электрические схемы источника электропитания

Подать питающее напряжение на нихромовую нить станка для резки пенопласта можно с помощью нескольких схем.

Схема с использованием ЛАТР

Наиболее простым вариантом источника электропитания станка для резки пенопласта является автотрансформатор с возможностью плавной регулировки выходного напряжения. Но эта схема имеет существенный недостаток, не имеет гальванической развязки с питающей сетью, так как выход ЛАТРа непосредственно соединен с электросетью. Поэтому при использовании ЛАТРа необходимо его подключать таким образом, чтобы общий провод был подключен к нулевому проводу питающей сети.

Электрическая схема подключения нихромовой спирали к ЛАТРу.

Что такое ЛАТР и как он устроен

Промышленностью выпускаются лабораторные автотрансформаторы, которые принято называть ЛАТР (лабораторный автотрансформатор регулируемый). Они подключаются непосредственно к бытовой электросети 220 В и в зависимости от типа ЛАТРа рассчитаны на различный ток нагрузки.

ЛАТР представляет собой тороидальный трансформатор с одной первичной обмоткой, по виткам которой при вращении расположенной сверху ручки, перемещается графитовое колесико, позволяющее снимать напряжение с любого участка обмотки. Таким способом на выходе ЛАТРа можно изменять напряжение от 0 до 240 В.

Провода к ЛАТРу подсоединяются с помощью клеммной колодки, на которой нарисована его электрическая схема и нанесены надписи «Сеть» и «Нагрузка». К клеммам «Сеть» подсоединяется шнур с вилкой, для подключения к бытовой сети. К клеммам «Нагрузка» подключается изделие, которое нужно запитать напряжением, отличным от бытовой электросети.

Внимание! Один из сетевых проводов, нижние клеммы на фото, соединен непосредственно с одним из проводов нагрузки. Таким образом, если на нижний вывод попадет фаза, то прикосновение к этой цепи может привести к поражению электрическим током.

Поэтому, в случае использования ЛАТРа для нагрева нихромовой проволоки станка резки пенопласта без развязывающего трансформатора, необходимо обязательно индикатором фазы проверить отсутствие фазы на общем проводе. Если на нем фаза, вынуть питающую ЛАТР вилку из розетки и, развернув ее на 180 градусов, опять вставить. Повторно проверить нижний провод на предмет наличия фазы.

Обычно на корпусе ЛАТРа имеется этикетка, на которой приводятся данные по его нагрузочной способности. На ЛАТРе, который изображен на фотографии, этикетка установлена непосредственно на регулировочной ручке.

Из этикетки следует, что это ЛАТР типа ЛОСН, выходное напряжение можно регулировать в диапазоне от 5 до 240 вольт, максимальный ток нагрузки составляет 2 А.

Если расчетный ток не превышает 8 А, то вполне можно запитать нихромовую проволоку через ЛАТР типа РНО 250-2.

Этот ЛАТР позволяет подключать нагрузку с током потребления до 8 А, но учитывая кратковременность работы приспособления для резки пенопласта, вполне выдержит ток нагрузки и 10 А.

Перед использованием ЛАТРа в качестве источника питания, необходимо проверить его работоспособность. Для этого нужно подключить к клеммам «Сеть» ЛАТРа сетевой шнур, а к клеммам «Нагрузка» мультиметр или стрелочный тестер, включенный в режим измерения переменного напряжения, на предел не менее 250 В. Установить ручку регулировки напряжения ЛАТРа в положение минимального напряжения. Вставить вилку в розетку.

Медленно поворачивая ручку ЛАТРа по часовой стрелке убедиться, что выходное напряжение увеличивается. Вернуть ручку ЛАТРа в нулевое положение. Вынуть вилку из сети и подключить провода, идущие от нихромовой нити к клеммам «Нагрузка». Вставить вилку сетевого шнура в розетку и индикатором фазы проверить отсутствие фазы на нихромовой проволоке. Разобравшись с фазой, можно, медленно поворачивая ручку ЛАТРа подать напряжение на нихромовую проволоку. При этом нужно учесть, что проволока нагревается постепенно, в течение нескольких секунд.

Внимание! Категорически запрещается прикасаться к проволоке рукой для проверки степени ее нагрева, когда на нее подано питающее напряжение! Температура проволоки очень высокая и можно получить ожог!

Когда проволока нагреется до чуть заметного свечения, можно приступать к резке пенопласта на станке.

Схема с использованием ЛАТР и понижающего трансформатора

Если величина тока, потребляемого нихромовой проволоки будет больше, чем может обеспечить ЛАТР, то придется дополнительно после него включить понижающий трансформатор по, ниже приведенной электрической схеме.

Как видите, в отличие от предыдущей схемы, к выходу ЛАТРа подключена сетевая обмотка силового трансформатора, нихромовая спираль подсоединена к вторичной выходной обмотке трансформатора. В этой схеме, благодаря развязывающему понижающему трансформатору, нихромовая спираль гальванически не связана с электрической сетью и поэтому безопасна для эксплуатации. В дополнение появилась возможность более плавной регулировки выходного напряжения и следовательно более точной установки температуры резки пенопласта на станке.

Мощность трансформатора и напряжение на его вторичной обмотке берется на основании расчетов, выполненных по выше приведенной методике. Например, для предложенной конструкции станка для резки пенопласта, при диаметре нихромовой проволоки 0,8 мм и длине 50 см, источником электропитания послужил ЛАТР с выходным током 2 А с включенным после него понижающим трансформатором мощностью 150 Вт с напряжением на вторичной обмотке 12 В.

Схема с использованием понижающего трансформатора с отводами вторичной обмотки

Для электропитания нихромовой спирали резака для пенопласта можно применить трансформатор с отводами во вторичной обмотке. Это самый простой, надежный и безопасный вариант, особенно если станок для резки пенопласта будет использоваться регулярно. Ведь при резке пенопласта на приспособлении регулировать температуру нагрева нихромовой проволоки не нужно. Температура подбирается один раз при настройке станка. Поэтому подобрав нужное напряжение, провода от выводов нихромовой проволоки припаиваются к выводам вторичной обмотки трансформатора навсегда.

Несмотря на простоту и надежность этой схемы, стандартных готовых трансформаторов с отводами, да еще и на нужное напряжение нет. Придется найти подходящий трансформатор по напряжению и току на вторичной обмотке и отмотать лишние витки. Можно разобрать трансформатор и отмотав часть вторичной обмотки, намотать ее заново, но уже с отводами. Но эта работа требует знаний и опыта.

Схема с использованием понижающего трансформатора и токоограничивающего конденсатора

Установить стабильный выходной ток с вторичной обмотки трансформатора можно с помощью обыкновенных конденсаторов, включенных в первичную обмотку трансформатора.

Конденсатор должен быть рассчитан на напряжение не менее 300 В и иметь емкость, в зависимости от типа трансформатора и тока потребления нихромовой спиралью, порядка 50 мкФ. На таком принципе стабилизации тока на вторичной обмотке мной разработана Схема зарядного устройства для автомобильных аккумуляторов. Трансформатор должен быть соответствующей мощности и иметь 10% запас по напряжению.

Схема с использованием понижающего трансформатора и тиристорного регулятора мощности

Еще одна, несколько необычная схема регулятора температуры нагрева нихромовой проволоки, с помощью тиристора. Она подобна регулировке с помощью ЛАТРа с трансформатором, но малогабаритная. Классическая схема тиристорного регулятора для этой схемы не подходит, так как искажает форму синусоидального тока.

Поэтому необходима специальная схема тиристорного регулятора, выдающая на выходе синусоидальный сигнал и рассчитанная на работу с индуктивной нагрузкой.

Возможно включение тиристорного регулятора также после вторичной обмотки трансформатора. В данном случае при выборе схемы регулятора следует учесть, что он должен быть рассчитан на ток, который необходим для разогрева нихромовой проволоки.

Схема с использованием любых электроприборов

Если ни одна из выше приведенных электрических схем разогрева нихромовой проволоки для приспособления резки пенопласта не может быть реализована, то предлагаю нестандартную схему ее разогрева.

При подключении любого электроприбора, он потребляет из электросети ток. Величина тока напрямую зависит от мощности электроприбора. Чем больше мощность, тем больше будет течь по проводам ток. Сопротивление куска нихромовой проволоки станка для резки пенопласта чуть больше сопротивления медных проводов и, следовательно, включение станка в разрыв одного из проводов электроприбора на работе его не скажется, а нихромовая проволока будет нагреваться. Этим и можно воспользоваться.

При использовании подключения станка для резки пенопласта по этой схеме, обязательно нужно проследить, чтобы нихромовой провод не был подключен непосредственно к фазному проводу электросети. Физически подключение лучше всего выполнить с помощью переходника, наподобие того, который описан для измерения силы тока потребления.

Подходят для работы в схеме электроприборы непрерывного действия, например обогреватель, пылесос. Оценить, какой ток потребляют электроприборы можно по таблице на странице сайта «Выбор сечения провода кабеля для электропроводки».

Если не известны электрические параметры нихромовой проволоки, то нужно сначала попробовать подключить маломощный электроприбор, например электрическую лампочку 200 Вт (потечет ток около 1 А), далее обогреватель на 1 кВт (4,5 А), и так увеличивать мощность подключаемых приборов, пока нихромовая проволока резака не нагреется до нужной температуры. Электроприборы можно подключать и параллельно.

К недостаткам последней схемы подключения нихромовой спирали следует отнести необходимость определения фазы для правильного подключения и низкий КПД (коэффициент полезного действия), киловатты электроэнергии будут расходоваться бесполезно.


Николай 07.05.2014

Здравствуйте, уважаемый Александр Николаевич!
Меня интересует вопрос резки пенополистирола. Пересмотрев гору информации, остановился на Вашем сайте. У Вас собрана, пожалуй, самая полная и исчерпывающая информация по интересующему меня вопросу.
Хотел бы обратиться к Вам со своим вопросом. Возможно ли использование в качестве источника питания вместо ЛАТРа или понижающего трансформатора, автомобильного зарядного устройства (с регулятором зарядного тока) заводского изготовления?
Заранее благодарю за уделенное мне время! Спасибо за объёмный, информативный сайт! С уважением Николай!

Александр

Уважаемый Николай! Спасибо за добрые слова.
Технически вполне возможно. Зарядное устройство если у него имеется регулятор тока испортить, подключая нихромовую проволоку невозможно. Но тут могут возникнуть трудности. Если зарядное устройство имеет автоматику, то оно может просто не заработать, считая, что аккумулятор не подключен.
Нужно просто попробовать, предварительно установив в ЗУ минимальный ток заряда и подключить к его выходным клеммам требуемой длины и диаметра нихромовую нить. Включить ЗУ и понемногу увеличивать ток пока нить не разогреется до нужной температуры.
Если нить будет разогреваться, но температура не достигнет требуемой, значит, мощности ЗУ не хватает, либо недостаточной величины ток или не хватает напряжения. В случае если не хватает напряжения то, можно либо укоротить длину нити, если это возможно или взять нихром большего диаметра.

Алексей 14.02.2015

Здравствуйте, Александр Николаевич!
Прочитал довольно содержательную и полезную статью по изготовлению станка для резки пенопласта, очень благодарен Вам за предоставленную информацию!
У меня возник вопрос, как рассчитать параметры источника электропитания для нагрева сразу 2-х струн проволоки (для резки пенопласта сразу на несколько заданных размеров), проволока толщиной 1 мм и длина каждой струны 1,5 м и можно ли использовать для такого подключения (2-х струн одновременно) предложенную Вами схему подключения с использованием ЛАТРа и понижающего трансформатора?
Спасибо, с уважением Алексей!

Александр

Здравствуйте Алексей! Я рад, что статьи сайта приносят пользу людям. Спасибо за добрые слова.
Резать сразу двумя струнами можно используя один ЛАТР и один понижающий трансформатор. Нихромовую проволоку лучше не разрезать на две части, а сделать петлю, так ток будет меньше и контактов всего два. То есть нихромовая проволока закрепляется на стойке с пружиной, далее идет над столом на высоте первого реза, на противоположной стороне закрепляется на одной стойке на такой же высоте. Рядом можно установить вторую стойку, чтобы закрепить струну при повороте на следующей высоте. Далее струна возвращается в исходное место, и крепиться через пружину за еще одну стойку. Таким образом, общая длина струны составит 3 м.
По оценочному расчету для нагрева нихромовой проволоки диаметром 1 мм, длиной 3 м, понадобиться мощность 750 Вт (напряжение около 56 В и ток 13 А). При параллельном соединении двух отрезков по 1,5 м ток нужен будет 26 А при напряжении 28 В. Трансформатор понадобиться мощностью, как Вы уже поняли 750 Вт. ЛАТР понадобится на ток не менее 3 А.

Виктор 04.02.2021

Здравствуйте, Александр Николаевич!
Вопрос по станку для резки пенопласта и иже с ним. Могу ли я в качестве ЛАТРа использовать сварочный аппарат инверторного типа. Есть несколько видео в ЮТубе, где народ его применяет. Однако они устанавливают ток 40 А имея проволоку диаметром 0,9-1,0 мм.
У меня будет использоваться нихромовая проволока (диаметр прошу вас подсказать) длиной порядка 1,2 метра (для резки пенопласта шириной 1 метр).
Заранее благодарен за ответ и совет.
С уважением, Виктор.

Александр

Здравствуйте, Виктор!
Сварочный аппарат инверторного типа прекрасно обеспечит нагрев нихромовой нити для резки пенопласта. Но он не должен иметь функцию защиты от короткого замыкания AntiStik, или иметься возможность ее отключения, так как будет срабатывать защита и ток не потечет.
Диаметр проволоки нужно брать 0,9-1,0 мм, и если в инверторе нет возможности регулировать величину тока плавно, то придется, нагрев нити регулировать, подбирая ее длину.
Поэтому лучше всего взять инвертор без функции AntiStik и с возможностью плавной регулировки величины тока, например, сварочный аппарат инвертор РЕСАНТА САИ-160К.

что лучше для нагревателя муфельной печи

Муфельные печи электрические обязательно имеют в своей конструкции нагревательный элемент. Выполненный из нихрома или фехраля, он отвечает за функциональность всей системы. Без этой детали работа оборудования просто невозможна. Изготавливают нагреватели исключительно из качественных и долговечных материалов.

Фехраль и нихром – это два наиболее распространенных сплава для изготовления нагревателей

Нагреватели для муфельных печей: требования к материалам изготовления

Если Вы сомневаетесь, фехраль или нихром, что лучше подойдет в качестве основы для нагревателя муфельной печи, рассмотрите их характеристики. Каждый из них имеет разные показатели:

  • Электрического сопротивления. Чем оно выше, тем лучше. Сплавы с высоким показателем электросопротивления быстрее нагреваются. Использовать их можно в меньших объемах, чем остальное сырье. Это очень удобно. В таком случае появляется возможность установить нагреватель из нихромовой проволоки внутри конструкции. Большого пространства для этого не потребуется.
  • Постоянности физических свойств. Очень трудно работать с динамичными элементами, такими как неметаллы. Приходится прибегать к применению дополнительных трансформаторов. Это может усложнить процесс эксплуатации промышленного сушильного шкафа или муфельной печи.
  • Температурного коэффициента. Когда меняется уровень температур, становится другим и электрическое сопротивление элемента. Нагреватель из нихрома изменяет свои показатели минимально.
  • Жаропрочности. Предельный уровень отличается у разных материалов. Изучив технические характеристики, Вы увидите, насколько устойчив нихром или фехраль к высоким температурам.

Промышленный сушильный шкаф должен иметь очень качественную конструкцию, в том числе, обладать надежным нагревательным элементом

Отличия фехраля и хрома: что выбрать как основу нагревателя

Нихромовые и фехралевые нагреватели являются лучшими для муфельных электропечей. Но и они имеют между собой некоторые отличия

Особенности нихрома

Среди достоинств материала:

  • Сохранение механических свойств при нагреве.
  • Крипоустойчивость.
  • Легкость плавления и сваривания.
  • Простота обработки.
  • Отсутствие процессов старения.

Есть у этого сплава и некоторые недостатки, среди которых:

  • Высокая цена на изготовление нихромовых нагревателей из-за дороговизны никеля.
  • Возможность работы при более низких температурах, в сравнении с фехралевыми элементами.

Чтобы печь гарантировано давала нужный результат в обработке материалов, не забудьте предварительно провести расчет нихромовой проволоки для нагревателя.

Особенности фехрали

Многокомпонентный состав имеет такие позитивные характеристики как:

  • Низкая цена сплава.
  • Высокий уровень жаростойкости.

Некоторые нагреватели для муфельных печей из фехрали способны работать даже при температуре 1400 градусов. Важно, чтобы их диаметр был не менее 6-ти миллиметров

К недостаткам стоит отнести:

  • Хрупкость при температурном режиме более 1000 градусов.
  • Магнитность из-за наличия в составе железа.
  • Удлинение основы во время эксплуатации.
  • Низкий уровень сопротивления ползучести.

Сфера применения нагревателей из нихрома и фехрали

Нихромовый нагреватель наиболее часто используется в конструкциях оборудования для обжига и сушки. Нередко его можно встретить и в основе водонагревателей и электроплит. Высокопроизводительными считаются лабораторные сушильные шкафы с нихромовыми нагревателями.

Лабораторная низкотемпературная печь – это оборудование для максимально точной термообработки

Фехралевые пластины и проволоки востребованы в разработке систем, работающих с температурными режимами до 1400 градусов. Их активно применяют в сфере высокоглиноземной керамики.

Сколько стоят нихромовые или фехралевые нагреватели

Стоимость муфельной печи напрямую зависит от особенностей элементов ее сборки. Важную роль в формировании цены имеет и материал нагревателя. Ключевое отличие фехраль от нихрома в том, что обойдется соединение железа, хрома и алюминия в 3-5 раз дешевле, чем то, где есть никель.

Не стоит спешить при выборе сплава. Для начала просчитайте:

  • Максимальную температуру нагрева.
  • Время бесперебойного функционирования техники.
  • Частоту включений и выключений оборудования.

Только после этого стоит принимать решение о покупке. Не стоит гнаться за более низкой ценой. Если нагреватель будет быстро изнашиваться, его постоянные замены и перебои при эксплуатации прибора обойдутся значительно дороже.

Купить муфельные печи с качественными нагревателями, Вы всегда можете в компании «Лабор». Мы подберем для Вас идеальное решение «под ключ», которое будет надежным и долговечным. Обращайтесь!

Фехралевая и нихромовая проволока: особенности и предназначение

Сплавы нагрева – так называют продукцию из нихрома и фехрали. Проволока и ленты обладают высоким электрическим сопротивлением и не боятся нагрева свыше 1000°С. Поэтому сплавы применяются в промышленности при производстве электротермических приборов: https://td-mc.ru/provoloka-i-lenta-nihromovaya-i-fehralevaya. Несмотря на схожее предназначение, металлопрокат из фехрали и нихрома отличается рабочими характеристиками.

Фехралевая проволока: свойства метиза

Состав металлической проволоки зашифрован в названии: фехраль – сплав железа (Fe), хрома (Cr) и алюминия (Al). Для изготовления используются две популярные марки сплавов: Х23Ю5Т и Х27Ю5Т. Основной компонент – железо: до 70%. Символы Х23 и Х27 указывают процентное содержание хрома в сплаве.

Характеристики фехралевой проволоки:

  • температура плавления: 1350–1400°С;
  • пластичность: 10–16%;
  • сопротивление разрыву проволоки марки Х23Ю5Т равно 764,9 МПа;
  • стойкость к коррозии в вакууме и агрессивных средах, на воздухе;
  • стоимость: фехраль в 3–5 раз дешевле нихрома.

Главное предназначение фехралевой проволоки и лент – изготовление нагревателей для электрооборудования. Благодаря алюминию и железу в составе на поверхности сплава образуется защитная оксидная пленка. Поэтому метизы применяются в нагревательном оборудовании, которое работает в серо- и углеродсодержащей среде, в контакте с высокоглиноземистой керамикой.

Что делают из фехралевой проволоки:

  • элементы сопротивления в бытовых приборах;
  • ТЭН в промышленных печах, сушках;
  • резисторы.

Характеристики проволоки из нихрома

Хром (Cr) и никель (Ni) – два главных компонента в составе нихрома. Для изготовления используется больше 10 разновидностей сплавов, самый популярный – марки Х20Н80. Нихром этой марки на 20% состоит из хрома и на 80% из никеля.

Рабочие свойства нихромовой проволоки:

  • жаростойкость: материал сохраняет стабильность при нагревании до 1200°С;
  • пластичность: минимум 20% при комнатной температуре;
  • сопротивление разрыву: 1000,3 МПа;
  • содержание никеля задерживает образование оксидного слоя на поверхности: сплав менее стоек в средах, содержащих оксиды серы.

Нихром пластичнее и прочнее фехрали, для навивки нихромовый сплав не нужно предварительно нагревать.

Варианты применения метизов из нихрома:

  • резисторы;
  • резаки и электролобзики для нарезки пенопласта;
  • ТЭН в обогревателях, печах, тостерах, других бытовых приборах;
  • нагревательные элементы для промышленных печей;
  • детали электронных сигарет.

Продукция выпускается в виде холоднокатаной проволоки в катушках и бухтах. Также изготавливаются фехралевые и нихромовые ленты, горячекатаный пруток, метизы в кругах.

Фехраль и нихром – жаростойкие сплавы, которые отличаются по химическому составу и специфике применения.

Нагрев нихромовой проволоки с помощью математики

Я буду работать нихромовой проволокой; Итак, я подумал, что изучу некоторые из его свойств. Вот результат.

Сводка (TL; DR)

  1. Для данного состава и калибра проволоки установившаяся температура в неподвижном воздухе полностью определяется током, протекающим через провод. Другими словами, длина провода значения не имеет.
  2. Сопротивление нихромовой проволоки очень мало меняется в зависимости от температуры.Его сопротивление увеличивается только на 7% при изменении от 20 ° C до 400 ° C; и только увеличивается еще на 1% с 400 ° C до 1000 ° C. Температурный коэффициент сопротивления нихрома намного ниже, чем у большинства распространенных металлов
  3. Термическое сопротивление прямого провода на открытом воздухе НЕ является постоянным при повышении температуры.
  4. Для широтно-импульсной модуляции источника постоянного тока или постоянного напряжения рост температуры приблизительно пропорционален квадрату рабочего цикла.Например, по сравнению со 100% -ным рабочим циклом 50% -ный рабочий цикл дает 25% повышение температуры. Это приближение верно, ± 10%, для ΔT <600 ° C.
  5. Из-за теплового расширения нихромовая проволока удлиняется примерно на 1% на каждые 700 ° C повышения температуры.

О нихроме
Нихром — это металлический сплав, состоящий в основном из никеля и хрома. Доступны разновидности нихрома с различными пропорциями никеля и хрома, а также небольшими количествами других элементов.Наиболее распространенными разновидностями являются нихром-80 (наиболее распространенный) и нихром-60, которые содержат примерно 80% и 60% никеля соответственно. Обе разновидности имеют максимальную рабочую температуру около 1100 ° C — 1200 ° C (¹) и температуру плавления выше 1400 ° C (). Хром образует оксидный слой на поверхности проволоки, который защищает проволоку от коррозии. Коррозионная стойкость, высокая температура плавления и более высокое удельное сопротивление, чем у многих других металлов, делают нихром хорошим материалом для электрических нагревательных элементов.

Измерение температуры провода
Я мог придумать только один способ точно измерить температуру провода в свободном неподвижном воздухе, который не зависел бы от знания физических констант, которые я пытался измерить — возможно, тепловизионной камеры. требуется объектив для крупного плана. Поскольку у меня его не было, мне пришлось полагаться на данные производителей проводов.

Ссылки
Для этого обсуждения я использовал данные трех компаний, продающих нихромовую проволоку: Omega, WireTronic и Pelican Wire.Данные из трех источников не совсем совпадают. Если не указано иное, все данные относятся к проводу 30 калибра.

Нагрейте с помощью математики
Эти символы используются в следующем обсуждении:
L = длина провода
ρ = удельное сопротивление или сопротивление на единицу длины. (Это постоянная величина для любого данного типа провода.)
ρ = удельное сопротивление провода при эталонной температуре / температуре окружающей среды. (Это постоянная величина для любого типа проволоки.)
α = температурный коэффициент сопротивления (Это свойство материала.)
R = полное сопротивление провода
P = общая мгновенная мощность, рассеиваемая проводом
ΔT = превышение температуры провода выше температуры окружающей среды, ΔT = T — T
θ = радиальное тепловое сопротивление провода к окружающей среде на обратную единицу длины (Это постоянная величина для любого данного типа провода.)

Основные уравнения
Сопротивление провода зависит от его длины (L) и удельного сопротивления (ρ):
R = ρ * L
Удельное сопротивление провода (ρ) зависит от его длины. удельное сопротивление при температуре окружающей среды (ρ ), температурный коэффициент удельного сопротивления для типа проволоки (α) и повышение температуры (ΔT):
ρ = ρₒ * (1 + α * ΔT)
Повышение температуры провод (ΔT) является функцией мощности, рассеиваемой в проводе (P), длины провода (L) и теплового сопротивления окружающему воздуху (θ):
ΔT = P * (θ / L)

Сопротивление vs.Температура
Сопротивление нихрома, как и всех проводников, зависит от его температуры.
Формула для этого изменения сопротивления обычно имеет следующий вид:
R = Rₒ (1 + α (T-Tₒ))
Где α — температурный коэффициент удельного сопротивления, Rₒ — сопротивление при эталонной температуре. , Tₒ, которая обычно составляет 20 ° C.

Температурный коэффициент удельного сопротивления ( α )
Температурный коэффициент удельного сопротивления, представленный символом α ; определяет изменение сопротивления из-за изменения температуры по следующей формуле:
ρ = ρₒ * (1 + α * ΔT)

Для нихрома α часто задается как константа ≈ 0.00017 ° Cˉ¹. α для нихрома намного ниже, чем для большинства обычных металлов. Например, α меди в 24 раза больше, чем нихрома. α для нихрома не только низкое по сравнению с другими металлами; это очень малая величина в абсолютном выражении. Даже при изменении температуры на 1000 ° C сопротивление увеличивается только на 7%. Что меня удивило, так это то, что α может не быть постоянным в зависимости от температуры.

Я построил график зависимости « ρ / ρₒ » от температуры, предоставленный двумя производителями нихромовой проволоки. Данные WireTronic показывают почти постоянное значение для α в зависимости от температуры; обозначено как ρ / ρₒ — прямая линия. Но, как ни странно, это постоянное значение для α (≈0,00006 ° Cˉ¹) сильно отличается от обычно цитируемого значения 0,00017 ° Cˉ¹ для нихрома. Данные Omega показывают, что α сильно изменяются в зависимости от температуры; но от 20 ° C до 400 ° C Омега показывает точно α = 0.00017 ° Cˉ¹. Хорошо, что α слишком мала, чтобы иметь большое значение.

Термическое сопротивление прямого провода (θ)
Если тепловое сопротивление провода является постоянным при изменении температуры, то повышение температуры провода должно быть линейной функцией рассеиваемой мощности по формуле:
ΔT = P * θ
Но я использовал данные из нескольких таблиц данных нихромовой проволоки, чтобы построить θ для проволоки длиной 1 фут.2 * θ * ρₒ * α)

Вывод:
Для источника постоянного тока, питающего нихромовую проволоку, свойства θ, α и ρ не зависят от длины провода; Таким образом, повышение температуры (ΔT) также не зависит от длины провода и зависит только от тока (I).

Примечание: я был встревожен, увидев, что уравнение ΔT постоянного тока имеет разрыв в точке, где:
I = 1 / √ [θ * ρₒ * α]
Но в остальном уравнение выглядит разумным:
a.2 * ρ / ρₒ в зависимости от температуры. 2) [предположим, что ρ составляет прибл.постоянная по ΔT]

Заключение:
Повышение температуры провода (ΔT) изменяется пропорционально квадрату напряжения (V) и обратно пропорционально квадрату длины провода (L). Поскольку θ также является функцией температуры, эти отношения не пропорциональны. Таким образом, при постоянном напряжении трудно предсказать температуру провода аналитически, а воспроизводимость во многом зависит от соответствия длины провода.

Термическое расширение
Большинство материалов расширяются при повышении температуры.Величина этого расширения выражается следующей формулой, где α — коэффициент линейного теплового расширения.
ΔL = L * α * ΔT
Коэффициент линейного теплового расширения для нихромовой проволоки составляет 14,0E-6. Это в среднем. Коэффициент варьируется на 5-10% от 20 ° C до 1000 ° C. По мере нагревания проволока становится длиннее — примерно на 1% длиннее на каждые 700 ° C повышения температуры. Если ваше приложение требует, чтобы провод был натянут плотно; Было бы неплохо создать пружинный механизм для компенсации расширения и поддержания постоянного натяжения.

Проволока сопротивления из нихрома 60 (NiCr)

Проволока сопротивления из нихрома 60 (NiCr)

нихром 60 (NiCr60) Провод резистивного нагрева длиной 25, 50, 75 или 100 футов упакован в полиэтиленовый пакет

спиральный Нихромовая проволока (сопротивление открытой катушки Проволочные элементы — инфракрасные и воздушные технологические / канальные нагреватели)
5, 10 или 30 фунтов катушки из нихрома или кантала

Нихромовая проволока обычно используется в качестве резистивного нагревателя для резки пенопласта (пенополистирола, полиуретан и др.) ткани и множество других материалов.

Проволока нихром-60 (NiCr60 Тип Сплав 675 Никель-Хромовый сплав)
Никель: 57-58%, Хром: 16%, Кремний: 1,5%, Железо: Остаток

У нас в наличии 16-22, 24, 25, Проволока Нихром-60 калибра 28, 29 и 31, реализуемая стопа (упакована в полиэтиленовый пакет) — обычно используется провод 21 калибра. Это может потребовать немного поэкспериментировать, чтобы определить лучший калибр для вашего материала, и какое правильное напряжение и температура.

Свойства сплава NiCr 60 типа 675:

  • Плотность (вес на кубический дюйм 🙂 0,2979 фунта.
  • Удельный вес при 68F (20C): 8,247
  • Магнитное притяжение: пункт
  • Теплопроводность, Вт / см / C @ 100C (212F): 0,132
  • Приблизительная температура плавления: 2462F (1350C)
  • Максимальная рабочая температура: 1652F (900C)
Коэффициенты удельного сопротивления:
Температура 68F (20C), коэффициент 1.000
Температура 212F (100C), коэффициент 1.019
Температура 392F (200C), коэффициент 1.043
Температура 572F (300C), коэффициент 1.065
Температура 752F (400C), коэффициент 1.085
Температура 932F (500C), коэффициент 1.093
Температура 1112F ( 600C), коэффициент 1,110
Температура 1292F (700C), коэффициент 1,114
Температура 1472F (800C), коэффициент 1,123
Температура 1652F (900C), коэффициент 1,132
Температура 1832F (1000C), коэффициент 1,143

ХАРАКТЕРИСТИКИ ТЕКУЩЕЙ ТЕМПЕРАТУРЫ OF NICHROME 60 ПРЯМОЙ ПРОВОД
Показывает примерный ток в амперах, необходимый для достижения заданной температуры.Применяется только к прямым проводам, натянутым горизонтально на воздухе.

AWG
(Калибр)
Диаметр « Темп. 400F
Темп. 204C
600
316
800
427
1000
538
1200
649
1400
760
1600
871
1800
982
2000F
1093C
16.051 6,13 8,31 10,50 13,11 16,30 20,10 24,10 28,20 32,30
17 0,045 5,31 7,18 9,13 11,30 13,90 16,90 20,30 23.60 27.00
18 0,040 4,66 6,26 7,90 9,75 11,96 14,51 17,37 20,48 23,08
19 0,036 4,09 5,46 6,84 8,41 10,30 12.45 14,87 17,78 19,73
20 0,032 3,58 4,77 5,92 7,25 8,86 10,69 12,72 15,43 16,87
21 0,0285 3,14 4,16 5.13 6,26 7,63 9,17 10,88 13,40 14,40
22 0,0253 2,76 3,63 4,44 5,40 6,56 7,87 9,31 11,63 12,33
24 0,020 2.12 2,76 3,32 4,01 4,86 ​​ 5,80 6,82 8,76 9,01
25 0179 1,84 2,42 2,90 3,44 4,15 4,97 5,86 6,96 7,72

Размер и приблизительный холод Сопротивления для общей мощности

Вт при
Рабочая
Температура
НИХРОМ 60
Ом при 75 градусах
РЕКОМЕНДУЕТСЯ
A.РАЗМЕРЫ Ш.Г.
110-120 Вольт 220-240 Вольт 110-120 В 220-240 Вольт
200 59.050 236,20 Макс. 25-29 Макс. 28-32
250 47,240 188,96 24-28 27-31
300 39.366 157,46 24-28 27-31
350 33,742 134,97 23–27 26-30
400 29,525 118,10 22-26 25–29
450 26,244 104,98 20–24 23–27
500 23.620 94,479 20–24 23–27
550 21,472 85,889 19-23 22–26
600 19,683 79,730 19–23 22–26
650 18,170 72,679 19–23 22–26
700 16.871 67,486 18–22 21–25
750 15,745 62,982 18–22 21–25
800 14,762 59.055 18-22 21–25
850 13,894 55,577 17–21 20-24
900 13.122 52,487 17–21 20-24
950 12,431 49,726 17–21 20–24
1000 11,810 47,240 16-20 19–23
1050 11,247 44,989 16-20 19–23
1100 10.737 42,946 16-20 19–23
1150 10,270 41.078 15–19 18-22
1200 9,8418 39,367 15–19 18–22
1250 9,4479 37,792 14–18 17-21
1300 9.0845 36,338 14-18 17-21
1350 8,7480 35,992 13–17 16-20
1400 8,4356 34,743 13–17 16-20
1450 8,1449 32,579 12–16 15–19
1500 7.8732 31,493 12–16 15–19

Типовая схема «горячей проволоки»

** ВНИМАНИЕ: опасность поражения электрическим током
Нихромовый провод находится под напряжением. Необходимо соблюдать осторожность, чтобы изолировать нихромовая проволока от любого электрического проводника до подачи питания. Никогда не трогай нихромовую проволоку при подаче питания.

Электрические расчеты для приложений с «горячей» проволокой:

Общая сила тока цепи из нихромовой проволоки не должна превышать сила тока регулятора переменного напряжения, питающего цепь.Как эмпирическое правило не должно превышать 80% от общей номинальной силы тока переменной. контроль напряжения.

Закон Ома:
V = I x R Напряжение = Ток x Сопротивление (Ом)
I = V / R Ток = Напряжение / Сопротивление (Ом)
R = Сопротивление V / I (Ом) = Напряжение / Ток

Пример №1:
Расчет необходимого сопротивления цепи «горячего провода». Это приведет к полной настройке (от 0 до 100%) регулируемого напряжения 120 вольт, 15 ампер.

Максимальный рекомендуемый ток цепи = 15 ампер x.80 (80%) = 12 ампер
Максимальное управляющее напряжение = 120 вольт
Используя расчет сопротивления, приведенный выше R = V / I = 120 вольт / 12 ампер = 10 Ом

Пример № 2:
Используя результат из примера № 1, сколько нихромовой проволоки 21 калибра потребуется для удовлетворения требований?

Из таблицы технических характеристик: Сопротивление нихромовой проволоки 21 калибра = 0,831 Ом / фут
Требуемая длина нихромовой проволоки = (Требуемое сопротивление цепи) / (Ом / фут Wire)
Требуемая длина нихромового провода = 10 Ом /.831 Ом / фут = 12,034 фута

Пример № 3:
Из примера № 2 предположим, что вы хотите использовать только 6 футов нихромовая проволока. Какая максимальная регулировка шкалы контроллера может быть сделано без превышения регуляторов переменного напряжения 120 вольт 15 ампер рейтинг?

Регуляторы переменного напряжения имеют регулировку шкалы от 0 до 100% максимального управляющего напряжения. То есть установка 50% на 120 управление напряжением приведет к выходу 120 x.50 (50%) = 60 вольт. Установка 30% на регуляторе 120 вольт будет в результате получается выход 120 x 0,30 (30%) = 36 вольт.

Кусок нихромовой проволоки калибра 21 калибр длиной 6 футов будет иметь общее сопротивление 0,831 Ом / фут x 6 футов = 4,986 Ом.

Напомним, что максимальная рекомендуемая сила тока составляет 15 ампер x 0,80 (80%) = 12. амперы
Используя расчет напряжения сверху V = IxR = 12 ампер x 4,986 Ом = 59,832 вольт

Какой процент настройки циферблата даст 59.832 вольт выход?
% настройки шкалы = (требуемое напряжение / максимальное управляющее напряжение) x 100
% настройки шкалы = (59,832 вольт / 120 вольт) x 100 = 49,86%

Диск на контроллере можно отрегулировать от 0 до 49,86% без превышение номинального тока контроллера.

Пример № 4:
На основании приведенных выше примеров, какова максимальная оценка температура, которую достигает нихромовый провод 21 калибра при 12 ампер?

Из таблицы технических характеристик:
Нихромовая проволока 21 калибра, калибр 10.88 ампер приведет к проводу температура 1600F
Нихромовый провод 21 калибра при 13,40 А приведет к образованию провода температура 1800F
Следовательно, мы можем ожидать, что температура провода упадет в пределах 1600F и 1800F.
Мы можем оценить температуру примерно 1700F при 12 амперах.



Товар ID Каталожный номер Описание Кол-во
MORTHRM10003 ПИ-7 / 8-1 Диаметр 7/8 дюйма.x 7/16 дюйма, керамический изолятор, 13/32 дюйма Отверстие Пакет из 25 предметов
MORTHRM10002 ПИ-5 / 8-1 Керамический изолятор диаметром 5/8 дюйма x 7/16 дюйма W, 1/4 дюйма Отверстие Пакет из 25 предметов
MORTHRM10001 ПИ-3 / 4-1 Керамический изолятор диаметром 3/4 дюйма x 3/8 дюйма W, 5/16 дюйма Отверстие Пакет из 25 предметов
Товар ID Каталожный номер Описание
TGGT (DFGL) Провод — Электропровод. Тефлоновая оплетка, оплетка из стекловолокна.
WIREHT10001 14GA TGGT Провод 14 калибр TGGT Электрический провод питания. 482 F (250C)
ПРОВОД HT10002 12GA TGGT провод Электрический силовой провод TGGT калибра 12. 482 F (250C)
MG (HDL) Провод — Провод электропитания (высокотемпературный)
ПРОВОД HT10003 14GA MG Провод Провод электропитания MG 14 калибра.Высокая температура (842 град. F)
ПРОВОД HT10004 12GA MG провод Провод электропитания MG 12 калибра. Высокая температура (842 град. F)

Номер детали

Каталожный № / Описание Кол. Акций

# 10 Клеммы с резьбовыми шпильками

HTTERM10026

66636 HT2-5 (от 16 до 14 млрд лет.Диапазон проводов CMA Диапазон: 2.050-5.180) Размеры: W: .314, С: .295, L: .630, B: .177, E: .472, Д: .165 50 штук

HTTERM10027

66639 HT5.5-5 (диапазон проводов 12-10 Ga Диапазон CMA: 5.180-13.100) Размеры: W: .374, С: .324, L: .767, B: .255, E: .579, Д: .220 50 штук

Шпилька 1/4 » Кольцевые клеммы

HTTERM10019 66637 (16-14 Ga.Провод) 50 штук
HTTERM10031 66640 HT5.5-6 (проволока 12-10 Ga) 50 штук

Соединители для стыкового сращивания. Высокотемпературный неизолированный сплав сталь, никелированная.

Более Информация
HTTERM10021 66646 HTB2S (16-14 гг.Провод) 50 штук
HTTERM10023 66647 HTB5.5S (провод 12-10 Ga) 50 штук
По желанию Органы управления:
Пейн 18TBP-1-15 , вход 120 В переменного тока, переменное напряжение, твердотельное управление питанием, выход 0-118 В переменного тока, 50/60 Гц, 15 ПРЕДОХРАНИТЕЛЬ AMP, 1.8 кВА при макс. НОМИНАЛЬНОЕ НАПРЯЖЕНИЕ. R L (Ом) Минимальное сопротивление нагрузки = 8 (Для резистивных нагрузок a минимальное сопротивление нагрузки R L всегда определяется напряжением и текущий рейтинг вашего регулятора мощности. Разделение максимальной производительности напряжение (то есть входное напряжение) по номинальному току даст вам это ценить. Закон Ома, E = I * R)
Пейн 18TBP-2-15 , вход 240 В переменного тока, переменное напряжение, твердотельное управление питанием, выход 0-235 В переменного тока, 50/60 Гц (ТАКЖЕ ДЛЯ ВХОДА 220/230 В переменного тока), ПРЕДОХРАНИТЕЛЬ НА 15 АМП, 3.6 кВА при макс. НОМИНАЛЬНОЕ НАПРЯЖЕНИЕ. R L (Ом) Минимальное сопротивление нагрузки = 16 (для резистивных нагрузок a минимальное сопротивление нагрузки R L всегда определяется напряжением и текущий рейтинг вашего регулятора мощности. Разделение максимальной производительности напряжение (то есть входное напряжение) по номинальному току даст вам это ценить. Закон Ома, E = I * R)
Пейн 18TP-1-15 , 120 В переменного тока, вход 50/60 Гц, переменное напряжение, портативный твердотельный государственный регулятор мощности, однофазный, предохранитель на 15 ампер, вилка длиной 6 футов и шнур.
Пейн 18TP-2-15 , вход 240 В переменного тока, переменное напряжение, портативный твердотельный регулятор мощности, однофазный, предохранитель 15 А, вилка длиной 6 футов и шнур. 3600 Вт при 240 В (максимальное номинальное напряжение)
Номер товара Каталог # Описание
PAYNE10001 18ТБП-1-15 Пэйн Инженерное дело, твердотельное реле 120 В Регулируемый регулятор мощности температуры.120 В переменного тока на входе, 0-118 В переменного тока на выходе, 50/60 Гц
PAYNE10002 18ТБП-2-15 Твердотельные накопители Payne Engineering Регулируемый регулятор мощности температуры. 240 В переменного тока на входе, 0-235 В переменного тока на выходе, 50/60 Гц (ТАКЖЕ ДЛЯ ВХОДА 220/230 В переменного тока)

PAYNE10003 18ТП-1-15 120 В переменного тока, предохранитель 15 А, вилка длиной 6 футов и шнур.Портативная твердотельная переменная Регулятор мощности температуры. Однофазный, вход 50/60 Гц. 1800 Вт при 120 В (максимальное номинальное напряжение)
PAYNE10006 49C25-15 Запасной предохранитель для блока управления 18ТП-1-15 (может быть добавлен к вашему заказу после выбрав элемент управления выше)

PAYNE10005 18ТП-2-15 Регулировка переменного напряжения 240 В переменного тока.Портативный твердотельный источник питания контроль. Предохранитель на 15 ампер, вилка длиной 6 футов и шнур. Один этап. 3600 Вт при 240 В (максимальное номинальное напряжение)

Товар ID

Каталожный №

Размер шпули (фут)

ВНУТРЕННИЙ ДЮЙМ

НОМИНАЛ МИНИМУМ МАКСИМУМ
FIBSLEEV10045 # 2 100 0.263 0,258 0,278
FIBSLEEV10046 # 3/8 100 0,387 0,375 0,399
FIBSLEEV10047 # 1/2 100 0,512 0.500 0,524

10-32 Обжимная головка с резьбой

Резьба 10/32 x длина 1-3 / 8 дюймов

MORPARTS10002 Головка для обжима 10-32 Головка для обжима с резьбой
IRTB10001 TB1C / 1-полюсный керамический терминал Блок
IRTB10002 TB2J / 2-полюсный керамический терминал Блок
IRTB10005 TB4J / 4-полюсный керамический терминал Блок

[На главную] [Вверх] [Нихромовая и канталовая проволока]

Мы Дистрибьютор промышленных, коммерческих и Жилые обогреватели и элементы управления. Всегда консультируйтесь инструкции производителя по установке для правильной установки продукты или системы, представленные на этом сайте. © Авторские права 1999-2019 Mor Electric Heating Assoc., Inc.

MOR ELECTRIC HEATING ASSOC., INC.
5880 Alpine Ave. NW — Comstock Park, MI 49321 USA
Тел. 616-784-1121-800-442-2581 — Факс 616-784-7775
Эл. .com

power — Вопрос по терморегулированию нихромовой проволоки

Температура горячего провода пропорциональна Iavg или Irms.2R \ $. У нихрома положительный температурный коэффициент (убедитесь, что это правда), поэтому R не будет постоянным.

Стабильная температура — это точка, при которой электрическая мощность = потеря мощности в проводе. Если последнее непостоянно, то и температуры не будет.

В моем случае следует использовать регулировку среднего или действующего значения тока ШИМ до предварительно установленного значения?

Я бы склонен регулировать до сопротивление провода . Таким образом вы контролируете температуру.Измерьте как ток, так и напряжение, рассчитайте сопротивление и контролируйте это.

В этом случае температура связана только с током?

См. Выше.

Длина не имеет существенного значения?

На разъемах будет дополнительное охлаждение. Чем короче нагревательный провод, тем значительнее они становятся.


Из комментариев:

Если бы я мог использовать дифференциальный усилитель и измерить среднее напряжение на нихроме, а также ток.Как бы вы сформулировали температуру?

Снимите эталонное значение после того, как питание было отключено на время, достаточное для достижения комнатной температуры. Назовите это 100%. После этого измерьте сопротивление, рассчитайте процентное увеличение сопротивления и используйте справочную таблицу или линейное приближение для расчета фактической температуры.


Я немного запутался. В некоторых комментариях под моим вопросом упоминается, что ток пропорционален теплу провода. См. Также эту ссылку: hotwirefoamcutterinfo.com / _NiChromeData.html В одном абзаце говорится: «Знайте, что ваш провод нагревает ТОК, а не напряжение или мощность. Скорее, это фактическое прохождение тока через провод, который в конечном итоге определяет его температуру».

В статье немного не хватает правильного технического объяснения. Последняя строка сбивает с толку, потому что V и я связаны R. Они пытаются объяснить, что управление током означает, что вы получите тот же результат (для данного калибра провода) независимо от длины.Если бы вы управляли по напряжению, вам нужно было бы отрегулировать напряжение в соответствии с длиной провода.

Этот комментарий является первым упоминанием о резке пеной. Я подозревал, что это может быть ваше приложение, и поэтому я говорил о power . Следует отметить несколько моментов:

  • Температура, как уже упоминалось, стабилизируется в точке, где тепло в проволоке = потеря тепла.
  • Это будет меняться в зависимости от того, находится ли проволока на воздухе или в пене для резки.
  • Она будет меняться в зависимости от скорости резки. Чем быстрее вы разрежете, тем больше тепла будет отводиться от вашего провода, и если вы пойдете слишком быстро, провод остынет достаточно, чтобы не порезаться, и вы его сломаете.
  • Часть проволоки за пределами пенопласта будет иметь более высокую температуру, чем при резке, поскольку она не теряет тепло с той же скоростью.

Скорее, именно фактическое прохождение тока через провод в конечном итоге определяет его температуру.«

Опять же, ток устанавливает мощность. Температура зависит от того, что происходит вне провода.


Думаю, не стоит усложнять дизайн. Сделайте свой контроллер мощности регулируемым и добавьте какой-нибудь индикатор тока — возможно, просто мультиметр — последовательно с проводом. Найдите текущее значение, которое подходит для вашей скорости резки пенопласта, и запишите его!

Нихромовая проволока

Нихром 20

Этот сплав имеет умеренную стойкость к окислению.

Области применения: огнеупорные анкерные болты, крепежные элементы и клеммы, прикрепленные к никель-хромовым нагревательным элементам.

Нихром 30

Этот сплав также используется для нагревательных кабелей и канатных нагревателей в элементах размораживания и антиобледенения, резисторах, обогревателях пола, электрических одеялах и подушках, обогревателях плинтусов и автомобильных сиденьях.

Применения: Реостаты для тяжелых условий эксплуатации, нагреватели с открытым змеевиком в системах отопления, вентиляции и кондиционирования воздуха, нагреватели ночного хранения, сплошные горячие плиты, конвекционные нагреватели и тепловентиляторы.

Нихром 40

Применения: Ночные обогреватели, конвекционные обогреватели, сверхмощные реостаты, тепловентиляторы, нагревательные кабели и тросовые обогреватели в элементах размораживания и антиобледенения, электрические одеяла и подкладки, автомобильные сиденья, обогреватели плинтусов и напольные обогреватели, а также резисторы.

Нихром 60

Нихром 60 идеален для использования в качестве нагревательных элементов в бытовых сетях и в средах с умеренной жарой и высокой влажностью.

Области применения: трубчатые элементы в металлической оболочке, используемые, например, в нагревательных плитах, грилях, тостерах и нагревателях. Сплав также используется для подвесных змеевиков в воздухонагревателях в сушилках для одежды, тепловентиляторах, сушилках для рук.

Нихром 70

Нихром 70 отлично подходит для восстановления атмосферы, так как не подвержен «зеленой гнили».

Применение: Нихромовая проволока этого типа используется в электрических нагревательных элементах промышленных печей.

Нихром 80

Нихром 80 имеет очень хорошую стабильность формы. Этот сплав обеспечивает превосходный срок службы по сравнению с другими типами нихромовой проволоки благодаря отличным адгезионным свойствам его поверхностного оксида.

Обычно используется для промышленных печей и нагревательных элементов в бытовой технике.

Область применения: водонагреватели, утюги, гладильные машины, пластмассовые штампы, паяльники, трубчатые элементы в металлической оболочке и картриджные элементы.

Никель-хромовая проволока — электрическое сопротивление в зависимости от повышения температуры

Никель-хромовая проволока для электрического сопротивления:

902 902 902 902 67 902 902 902

2

SWG Диаметр Никель-хром
(мм) (дюйм) ) (Ом / м) Ток (A) от до
поддержание повышения температуры
500 ° C 1000 ° C
12 2 .642 0,104 0,197 38 78
14 2,032 0,080 0,333 26 53
53
40
18 1,219 0,048 0,92 13 27
20 0,914 0.036 1,65 8,5 18
22 0,711 0,028 2,72 6,3 13
24 4,5
26 0,457 0,018 6,60 3,5 7,0
28 0,376 0.0148 9,7 2,7 5,5
30 0,315 0,0124 13,9 2,2 4,5
32
34 0,234 0,0092 25,2 1,6 3,0
36 0,193 0.0076 37,0 1,3 2,3
38 0,152 0,0060 59,0 1,0 1,7
40 0,00273 9267 902 902 902 902 902 902 902 902 902 902 902
42 0,102 0,0040 133 0,65 1,1
44 0,0813 0.0032 208
46 0,0610 0,0024 370
48 0,0406 0,0016 0,0406 0,0016 0,0016
2130
  • SWG — Имперский стандартный калибр для листового металла и проволоки

Пример — Электрический нагреватель

Рассчитайте длину никель-хромового провода калибра 18 в электронагревателе мощностью 2000 Вт, Питание 230 В и макс.температура провода 500 o C.

Ток, необходимый для выработки 2000 Вт, можно рассчитать по закону Ома как

P = UI

или

I = P / U

= (2000 Вт) / (230 В)

= 8,7 A

Макс. ток в проводе 18 калибра с макс. температура 500 o C составляет 13 А, и тепло может производиться по одному проводу.

Общее сопротивление нагревательного провода можно рассчитать по закону Ома как

R = U / I

= (230 В) / (8.7 A)

= 26,4 Ом

Поскольку сопротивление провода составляет 0,92 Ом / м, длину провода можно рассчитать как

l = (26,4 Ом) / (0,92 Ом / м)

= 28,7 м

Насколько сильно нагревается до докрасна нихромовая проволока? — Mvorganizing.org

Насколько сильно нагревается нихромовая проволока докрасна?

Нихромовая проволока типа A может работать в диапазоне высоких температур до 1150 ° C или 2100 ° F.

Почему нагревается нихромовая проволока?

Ответ.Нихром из-за своего высокого удельного сопротивления не позволяет электрической энергии легко проходить через него. Эта электрическая энергия превращается в тепловую. Таким образом, нихромовая проволока нагревается в электрической цепи.

Почему нихромовая проволока светится красным?

Re: Нихромовая проволока раскаленная докрасна. Если нихром очень тонкий (имеет более высокое сопротивление на единицу длины), длина в 6 Ом может быть слишком короткой: мощность может быть достаточно сконцентрированной, чтобы вызвать перегрев и накаливание проволоки.

Почему в лампочке не используется нихромовая проволока?

Нихром также имеет высокое удельное сопротивление, но его температура плавления ниже, чем у вольфрама, поэтому его тонкая проволока (используемая как нить накала) будет плавиться при непрерывном сильном нагреве.

Почему для изготовления нагревательных стержней используется нихром?

Нихром используется для изготовления нагревательных элементов электрических приборов. Потому что нихром не окисляется и не горит легко при высокой температуре, то есть имеет более высокую температуру плавления и кипения, чем металлы.

Какой материал чаще всего используется для изготовления обычных предохранительных проводов?

Ответ: Сплав свинца и олова, так как он имеет низкую температуру плавления и очень высокое сопротивление.

Какой провод лучше всего подходит для домашней электропроводки?

Вот список 10 ведущих компаний по производству электрических проводов в Индии (2021 г.)

  • Провода Polycab.
  • Havells India Ltd.
  • Finolex Cables Ltd.
  • Кабели Sterlite Tech.
  • KEI Industries Ltd.
  • руб. Кабель.
  • V-Guard.
  • Syska Wires.

Убьет ли вас фен в ванной?

Именно поэтому падение электрического прибора в ванну часто приводит к летальному исходу. Вот почему упавший в ванну фен на 120 вольт может убить человека, но если схватить клеммы автомобильного аккумулятора на 12 вольт сухими руками, это не вызовет значительного удара.

Какой мотор используется в фене?

Микро-электродвигатель 12 В

У фенов есть двигатели постоянного тока?

В фенах обычно используются двигатели двух типов: переменного и постоянного тока. Сушилки переменного тока обычно используются в салонах, потому что их мощный поток воздуха быстро сушит волосы. Они, как правило, тяжелее, чем фены постоянного тока, из-за более крупного и мощного двигателя, но они также имеют более длительный срок службы.

Что такое фен для волос с двигателем постоянного тока?

Электродвигатель постоянного тока

: это модели, которые работают на постоянном токе, и их характеристики, хотя и очень хорошие, имеют давление воздуха ниже, чем электродвигатели переменного тока, и характеризуются средним сроком службы около 1200 часов, но имеют гораздо более управляемую и легкую конструкцию.что делает их пригодными для домашнего использования.

Какой фен для волос наивысшей ватт?

Лучший фен на 2000 Вт

  1. RUSK Engineering W8less Professional 2000 Watt Dryer — Самый легкий профессиональный фен с керамической и турмалиновой технологией для вьющихся и афроамериканских волос.
  2. BaBylissPRO Nano Titanium Dryer — лучший профессиональный фен мощностью 2000 Вт для густых волос, отлично подходит для укладки.

Свойства и применение нихромового сплава в промышленности

О нихромовых сплавах

Запатентованный в 1905 году, нихром является старейшим устойчивым к воздуху сплавом с резистивным нагревом (что задокументировано).Сплавы нихрома состоят из никеля, хрома, железа и иногда других элементов. Нихром, который мы используем здесь, в Union City Filament, представляет собой аустенитный сплав с самым высоким содержанием никеля. Этот материал с высоким сопротивлением обычно используется в приложениях с максимальной рабочей температурой до 1250 ° C (2280 ° F).

Свойства нихромовой проволоки

Сплавы

из нихрома известны своей высокой механической прочностью, а также высоким сопротивлением ползучести. Узнайте о некоторых преимуществах использования этого материала ниже.

· Пластичность после использования

Нихром остается пластичным даже после длительного использования.

· Повышенная прочность при нагревании и ползучести

По сравнению с другими воздухостойкими стойкими сплавами нихромовые сплавы имеют более высокую жаропрочность и сопротивление ползучести.

· Более высокий коэффициент излучения

При полном окислении нихромовые сплавы обладают более высокой излучательной способностью по сравнению с другими устойчивыми к воздуху сплавами. Это означает, что при одинаковой поверхностной нагрузке температура элемента у нихрома ниже, чем у других сплавов.

· Немагнитный

Для некоторых низкотемпературных применений предпочтительным является немагнитный материал. Нихром является немагнитным, что делает его предпочтительным выбором по сравнению с другими устойчивыми к воздуху сплавами сопротивления, которые являются немагнитными только при температуре выше 600 ° C (1100 ° F).

· Сопротивление влажной коррозии

Хотя есть некоторые исключения (например, атмосфера, содержащая серу, и определенные контролируемые атмосферы), нихромовые сплавы обычно имеют лучшую коррозионную стойкость при комнатной температуре по сравнению с неокисленными стойкими на воздухе устойчивыми сплавами.

Применения для нихромовых сплавов

Хотя для нагрева можно использовать практически любой токопроводящий провод, большинство металлов проводят электричество с большой эффективностью. Это требует, чтобы металлы были сформированы в тонкие, нежные проволоки, чтобы было достаточно сопротивления для выделения тепла. Когда большинство металлов нагревается, они быстро окисляются, что делает их хрупкими и ломкими при нагревании на воздухе. Однако нихромовая проволока образует внешний слой оксида хрома, который делает проволоку термодинамически стабильной на воздухе, в основном непроницаемой для кислорода, и защищает нагревательный элемент от дальнейшего окисления.

Обладая стойкостью к высоким температурам и хорошей обрабатываемостью, нихром является идеальным материалом для применения в производстве электроприборов с высокими требованиями, например, для фенов и тепловых пушек. Он также обычно используется в электронных сигаретах (электронных сигаретах) и других приложениях для вейпинга (вейпинга).

Некоторые другие распространенные применения для нихромовых сплавов включают в себя: гладильные машины, водонагреватели, паяльники, трубчатые элементы в металлической оболочке, картриджные элементы, кварцевые трубчатые нагреватели, инфракрасные излучатели и другие прецизионные нагревательные элементы (нагреватели).

Дизайн нихромовой нити

Хотите знать, является ли нихром лучшим материалом для вашей нити накала? Наши специалисты из Union City Filament могут помочь спроектировать компонент, наилучшим образом соответствующий потребностям вашего продукта. Являясь лидерами отрасли с 1950 года, мы усовершенствовали лучшие процессы для намотки и обработки нихрома, вольфрама, рения и других сплавов, чтобы гарантировать, что наши продукты выдерживают максимально жесткие допуски по размерам и однородности. Для получения дополнительной информации о наших продуктах свяжитесь с нами сегодня.

.
Опубликовано в категории: Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *