Нагружение бетонных конструкций после бетонирования: Нагружение бетонных конструкций после бетонирования

Нагружение бетонных конструкций после бетонирования

Главная » Статьи » Нагружение бетонных конструкций после бетонирования

Бетонирование: ошибки

Основными условиями качественного бетонирования являются тщательное перемешивание, быстрое и без тряски транспортирование, укладка и квалифицированный уход за бетоном. Всё же конструкция может оказаться дефектной, если не будет соблюдено требуемое качество выполнения рабочих швов, которые образуются в случае, если бетонирование по каким-либо причинам пришлось прервать, и началось твердение уложенного бетона.

Бетонирование можно прекращать лишь в том месте, где в конструкции не будет значительных растягивающих или сжимающих усилий и рабочий шов не нарушит совместную работу всей конструкции. Места возможных швов обозначают в проекте. Перед началом бетонирования конструкции уточняют вероятность образования рабочих швов из-за возможных перерывов в работе.

Нередко совершают ошибку при устройстве рабочих швов, когда прерывают бетонирование в наиболее опасном для конструкции месте, в середине, или выполняют шов в железобетонной плите не параллельно её несущей плоскости. Ошибка, связанная с разжижением бетона водой, приводит к тому, что из-за его текучести невозможно образовать рабочий шов с вертикальным обрезом, поэтому бетон в некоторых местах оказывается уложенным в несколько слоёв. Такая конструкция не способна выдержать проектную нагрузку.

Бытует мнение, что нанесение жидкого цементного раствора на место соединения слоем бетона способствует образованию прочного шва. Цементное молоко не обладает способностью склеивания и отслаивается от поверхности, особенно если она сухая.

Бетонирование фундамента

Бетонные фундаменты весьма распространены при строительстве индивидуальных домов. Для устройства бетонного фундамента обычно отрывается траншея необходимой ширины. Стенки траншеи служат опалубкой, что исключает применение дорогой древесины. Нередко во время укладки бетона грунт с бровки траншеи попадает в свежий бетон и смешивается с ним, снижая его прочность. Бетон может быть загнязнён и осыпающимся со стенок траншеи грунтом при использовании вибратора. Причина загрязнений предупреждается правильным размещением вынутого грунта и распоркой стенок траншеи.

Фундаменты при индивидуальном строительстве возводят и из более экономичного материала — бутобетона. 30–40% его объёма занимают крупные камни или куски бетона, что обеспечивает экономию свежей бетонной смеси.

При устройстве фундамента из бутобетона легко допустить ошибки, которые повлекут за собой неустранимые дефекты. Одной из самых частых причин возникновения дефектов фундамента является использование непригодного для этой цели рыхлого, сланцевидного, слоистого, гигроскопичного камня.

При возведении бутобетонного фундамента допускают ошибку, укладывая бутобетон с применением технологии сооружения фундаментных стен. В результате такой фундамент даёт трещины и разломы, камни выдавливаются в стороны. Фундамент оседает, разрушается, а ремонт его трудновыполним.

Бутобетонная кладка выполняется следующим образом. Камни укладываются в один слой в отрытую траншею без соблюдения особого порядка, затем зазоры заливаются бетонной смесью. После этого укладывается следующий слой камней и снова заливается бетоном.

В правильно изготовленном бутобетонном фундаменте камни не касаются один другого, зазоры между ними не превышают 5 см и камни как бы «плавают» в бетоне. Нижний и верхний слои бетона имеют толщину не менее 15 см, и если не выдержать эту толщину, то камни могут продавить основание.

Грамотно выполненный фундамент при отсутствии правильного ухода образует трещины по границе касания бетона и камня. При устройстве фундамента в холодную погоду имеется опасность промерзания; камни как бы «оттягивают» тепло из тонкого слоя бетона, который быстро замерзает и разрушается.

При сооружении железобетонных ленточных и столбчатых фундаментов допускают ошибку, когда под основание арматуры не укладывают слой монтажного бетона, роль которого состоит в обеспечении твердой и ровной поверхности. Без такого слоя арматурный каркас часто устанавливают на неровную поверхность, поэтому очень трудно обеспечить арматуре необходимый защитный слой.

В большинстве случаев железобетонный фундамент снизу постоянно увлажнён, и арматура, недостаточно защищённая начинает корродировать. Быстро обнаружить допущенную ошибку практически невозможно, и лишь после разрушения конструкции, когда приходится вскрывать фундамент, становится очевидной прчиниа разрушения.

Монолитные железобетонные конструкции

Монтаж арматурного каркаса осуществляется на основе проекта. При индивидуальном строительстве технический контроль практически отсутствует в ущерб качеству работ.

Наиболее часто повторяющейся ошибкой является то, что во время бетонирования монолитных железобетонных плит бетонщики затапливают готовый арматурный каркас. В железобетонных плитах и балках сверху и снизу должны располагаться стальные арматурные стержни, число которых и место расположения рассчитываются конструктором. Обычно их размещают в растянутом поясе, который располагается сверху или снизу, в зависимости от того, как работает балка под действием нагрузки.

Для обеспечения непрерывного бетонирования конструкции бетонную смесь обычно доставляют по верху арматурного каркаса, поскольку свежеуложенный бетон не способен нести нагрузки. Накат для транспортировки устраивают при этом из досок таким образом, чтобы не повредить арматуру. Очень опасно повреждение арматуры в верхнем растянутом поясе в случае, когда консольная балка одним концом жестко закреплена несущей конструкцией.

Неправильное расположение арматуры, работающей на срез, в балке вблизи опор является примером плохого армирования. Наибольшие величины скалывающих напряжений находятся как раз у опор, их уравновешивает прочность бетона, применение хомутов и несущая способность арматуры, рассчитанной на скалывающие усилия. Расположенные в этом месте нижние и верхние стальные стержни также участвуют в восприятии поперечной силы среза. Неправильное размещение арматуры, работающей на срез, в наиболее опасных местах вблизи опор ослабляет поперечное сечение и железобетонная балка «срезается», потому что совместного противодействия бетона и хомутов часто не хватает для уравновешивания скалывающих усилий.

Неправильное армирование является причиной разрушений множества монолитных железобетонных лестниц, когда арматуру, работающую на растяжение, укладывали вдоль линии перелома конструкции. В таком случае под действием нагрузки арматура распрямляется, балка разрушается. При нормальной укладке арматуры нижние растянутые стержни выводят в сжатый пояс, где их и закрепляют. Подобную ошибку допускают при армировании углов рамных конструкций. Неправильное армирование вызывает трудности и при бетонировании: между стержнями арматуры сильно нагруженных балок невозможно уложить бетон. После распалубки обнаруживают, что под стальными вкладышами нет бетона и балка непригодна для восприятия нагрузки, а арматура не защищена от коррозии.

При обнаружении дефекта слабые участки бетона удаляют, место разделывают для повторного бетонирования. Подготовленные для ремонта пустоты обустраивают опалубкой; желательно использовать опалубку с карманами, суть которой состоит в том, что пустоты заполняют с «переполнением» и в бетоне не остается воздушных пузырей. Излишние выступы бетона после твердения скалывают.

После устройства опалубки подготовленное для бетонирования место очищают от пыли грязи; очищенную поверхность тщательно уалажняют, иначе затвердевший бетон поглощает влагу из свежеуложенного и в бетонной смеси остаётся недостаточное для схватывания количество воды, бетон «перегорает» и конструкция не набирает положенной прочности.

Состав бетонной смеси для устранения недоделок определяют в зависимости от потребностей. За основу принимают ремонтную бетонную смесь, приготовленную с минимальным количеством воды, чтобы избежать повышенной усадки, которая вызывает раскрытие трещин по границе старого и нового бетона.

Устройство опалубки

Опалубка должна сохранять форму под действием уплотняющегося при вибрировании бетона. Бетон оказывает значительное давление на нижние и боковые поверхности опалубки, что необходимо учитывать при её устройстве.

После распалубки крупных монолитных железобетонных балок иногда обнаруживается их прогиб, который может достигать 4–5 см. В большинстве случаев прогиб происходит из-за того, что под действием массы бетона во время укладки деревянные конструкции опалубки под балкой упруго прогибаются и бетонная конструкция окончательно фиксируется в таком положении. Этого можно избежать, несколько приподняв опалубку в месте ожидаемого наибольшего прогиба с тем, чтобы во время бетонирования она под действием бетона распрямилась.

После устройства опалубки её очищают от пылы и загрязнений, а затем увлажняют, т.к. сухая древесина впитывает из бетона часть воды, необходимой для схватывания, что может привести к уменьшению прочности бетона. Вместе с впитывающеся водой в древесину внедряются частицы цемента, доски прилипают к бетону и во время разборки либо разрушается опалубка, либо обламываются кромки конструкции. В такой конструкции к арматуре легче проникает влага.

Ещё до устройства опалубки уточняют, как будет проводиться процесс бетонирования. Если опалубку выполняют на высоту этажа — для колонн и стен, то особенно важно предусмотреть на соответствующей высоте отверстия для загрузки бетонной смеси. Часто их устройством пренебрегают, а бетон в опалубку заливают сверху, в результате чего он расслаивается. Укладка бетона через загрузочные отверстия предотвращает расслаивание, а его качество достигает проектного уровня.

Допускают ошибку, не оставляя в нижней части опалубки колонн окон для очистки; убрать загрязнения становится невозможным. Внутрь опалубки попадают различные загрязнения (стружка, куски бетона, грунт и т.п.), препятствующие хорошей связи между затвердевшим и свежеуложенным бетоном. Исправить положение трудно, загрязнённые участки вырубают и заново бетонируют.

Устройство цоколя предполагает защиту стены от водяных брызг и придаёт сооружению законченный вид. Цоколь изготавливают из морозостойкого материала, поскольку он наиболее всего подвержен атмосферным воздействиям. Поверхность железобетонных цоколей может быть различной в зависимости от материалов, применяемых для опалубки.

При возведении цоколя редко допускают ошибки, приводящие к разрушению конструкции, но всё же случаются решения, угрожающие перекосом всему зданию.

www.mensh.ru

Уход за бетоном. Исправление дефектов бетонирования

Твердение бетона представляет собой сложный физико-хими­ческий процесс, при котором цемент, взаимодействуя с водой, образует новые соединения.

Вода проникает вглубь частиц цемента постепенно, в результате чего все новые его порции вступают в химическую реакцию. Этим объясняется постепенный и длительный набор прочности бетона.

При благоприятных условиях твердения прочность бетона непрерывно повышается.

Для нормального твердения бетона необходима температура (20±2)° С с относительной влажностью воздуха не менее 90%.

При таких условиях бетон через 7… 14 суток набирает прочность 60…70% своей 28-суточной прочности. Затем рост прочности замедляется.

Для бетона, находящегося в воде, его прочность выше, чем при твердении бетона в сухой среде. При твердении бетона на воздухе вода быстро испаряется и твердение практически прек­ращается.

Поэтому для достижения бетоном необходимой проч­ности нельзя допускать его преждевременного высыхания.

В теп­лую сухую и ветреную погоду выступающие части (углы, ребра) и открытые поверхности бетонных конструкций высыхают быстрее, чем внутренние его части.

Необходимо предохранять эти эле­менты от высыхания и давать им возможность достигать необ­ходимую прочность.

При твердении бетона изменяется его объем.

Твердея, он дает усадку, которая в поверхностных слоях происходит быстрее, чем во внутренних.

Поэтому при недостаточной влажности бетона в период твердения на его поверхности появляются мел­кие усадочные трещины. Кроме того, трещинообразование воз­можно в результате неравномерного разогрева бетона вслед­ствие выделения теплоты при схватывании и твердении (гидра­тации) цемента.

Трещины снижают качество, прочность и долго­вечность конструкций.

Рост прочности бетона в значительной степени зависит от температуры, при которой происходит твердение.

При температу­ре ниже нормальной твердение бетона замедляется, а при темпе­ратуре -5° С практически прекращается. При повышенной тем­пературе и достаточной влажности процесс твердения ускоряет­ся.

Продолжительность твердения имеет большое практическое значение. Ускорять твердение необходимо, когда требуется быст­ро нагрузить конструкции эксплуатационной нагрузкой или распалубить ее в ранние сроки, при бетонировании зимой и других случаях.

Для ускорения твердения бетона применяют добавки-ускори­тели, вводимые при приготовлении бетонной смеси. Количество добавок-ускорителей твердения берется в процентах от массы цемента и не должно превышать следующих величин: сульфат натрия — 2, нитрат натрия, нитрат кальция, нитрит-натрат кальция — 4, хлорид кальция в бетоне армированных конструк­ций — 2, в бетоне неармированных конструкций — 3.

Добавки-ускорители твердения не следует вводить при ис­пользовании глиноземистого цемента, а также в конструкциях, армированных термически упрочненной сталью, в железобетон­ных конструкциях, предназначенных для эксплуатации в зонах действия блуждающих токов, в конструкциях с напрягаемой арматурой. Полный перечень ограничений по применению доба­вок ускорителей приведен в СНиП 3.03.01-87.

При производстве сборного железобетона для ускорения твер­дения широко применяют тепловую обработку бетона паром или электрическим током.

Ускоряют процесс твердения бетона путем использования быстротвердеющих цементов. Обычно такие бетоны используют при аварийных работах, а также при устройстве стыков различ­ных конструкций.

Чтобы свежеуложенный бетон получил требуемую прочность в назначенный срок, за ним необходим правильный уход: под­держание его во влажном состоянии, предохранение от сотрясе­ний, повреждений, ударов, а также от резких перепадов темпера­туры.

Нарушение режима ухода за бетоном может привести к получению низкого качества и непригодного для эксплуатации бетона, а иногда к разрушению конструкций.

Особенно важен уход за бетоном в течение первых дней после укладки.

Недостат­ки ухода в первые дни могут настолько ухудшить качество бето­на, что практически их нельзя будет исправить в последующие дни.

Благоприятные температурно-влажностные условия для твер­дения бетона создают, предохраняя его от вредного воздействия ветра и попадания прямых солнечных лучей, путем системати­ческой поливки.

Для этого открытые поверхности свежеуложенного бетона укрывают влагоемким покрытием (брезентом или мешковиной), а при отсутствии этих материалов поверхность бе­тона закрывают через 3…4 ч после укладки бетона слоем песка или опилок и поливают водой.

В зависимости от климатических условий частота поливки должна быть такой, чтобы поверхность бетона в период ухода все время была во влажном состоянии.

В сухую погоду открытые поверхности поддерживают во влаж­ном состоянии до достижении бетоном 50…70% проектной проч­ности.

В жаркую погоду поливают также деревянную опалубку.

При снятии опалубки (например, опалубки колонн, стен, балок) увлажняют вертикальные поверхности конструкций.

Наиболее эффективно вертикальные и наклонные поверхности поливать непрерывным потоком воды через систему трубок с мелкими отверстиями. В жарком сухом климате этот способ полива обя­зателен.

Укрытие и поливка бетона требуют значительных затрат тру­да, поэтому тонкостенные конструкции с большой открытой по­верхностью (например, площадки, дороги, аэродромные покры­тия, полы, перекрытия) вместо укрытия и поливки целесообразно покрывать специальными окрасочными составами и защитными пленками.

Наиболее пригодны полимерные композиции. Они обеспечивают наилучшее предохранение от влагопотерь как свежеуложенной бетонной смеси в условиях воздушно-сухого твердения, так и бетона при термообработке и раннему распалубливанию.

Полимерные композиции практически безвредны, менее огнеопасны, а их малая вязкость позволяет механизиро­вать процесс нанесения и снизить расход вещества до 0,5 кг на 1 м2 поверхности. Применение пленкообразующих веществ яв­ляется одним из простых и технологичных условий обеспечения необходимых качественных показателей при раннем распалубливании бетона.

Исправление дефектов бетонирования

После распалубливания монолитные конструкции осматривают и исправляют дефекты бетонирования.

Мелкие неровности и наплы­вы бетона на стенах, колоннах и балках срубают вручную или пнев­матическими зубилами с последующей затиркой неровностей це­ментным раствором состава 1:2…1:2,5.

Открытые бетонные поверхности с мелкими раковинами, не имеющие ноздреватости, после расчистки и смачивания водой за­тирают цементным раствором.

Крупные раковины, образовавшиеся в результате плохого вибрирования или утечки цементного молока, расчищают на всю глубину.

Весь рыхлый бетон выру­бают отбойными молотками с последующей продувкой сжатым воз­духом и промывкой водой. Если позволяют размеры раковины, устанавливают опалубку с козырьком для укладки бетона и бето­нируют.

Для заделки раковин применяют мелкозернистый бетон той же марки по прочности или даже на одну ступень выше.

Бетонную смесь укладывают с тщательным уплотнением.

Замазывать крупные раковины цементным раствором категори­чески запрещается, так как это не устраняет дефекта, а только скрывает его. Крупные раковины в несущих конструкциях сущест­венно ослабляют их.

Ис­правляют такие дефекты торкретированием после тщательной расчистки и удаления рыхлого бетона.

При исправлении де­фектов в плитах, полах или балках вырубать ослабленный бетон следу­ет по форме ласточкина хвоста, с тем, чтобы набетонка луч­ше удерживалась в основном бетоне.

Конструкции, воспринимающие гидростатический напор грунтовых вод, могут течь из-за наличия в бетоне скрытых пустот и раковин вследствие плохого виброуплот­нения бетонной смеси или некачественной подготовки рабочих швов.

Устраняют течь нагнетанием (инъекцией) жирного цементного раствора (молока) внутрь конструкции через перфорирован­ные трубки диаметром 20…30 мм.

Для этого в местах дефектов бурят шпуры, вставляют в них стальные трубки, один конец кото­рых имеет перфорацию, а другой — резьбу, и зачеканивают их в шпуре раствором на быстросхватывающемся цементе.

После того как раствор зачеканки наберет нужную прочность, через трубки с помощью винтового шприца нагнетают раствор на безусадочном или расширяющемся цементе.

При грубых нарушениях технологии бетонных работ (напри­мер, недостаточное уплотнение, чрезмерное вибрирование, при­водящее к расслоению смеси, нарушение технологии ухода за бе­тоном, неправильный подбор состава, наличие большого коли­чества глинистых и пылеватых частиц) возможны серьезные дефекты, снижающие прочность бетона.

Поскольку исправить такие дефекты практически невозможно, сильно дефект­ные конструкции разбирают или соответствующим образом усили­вают.

Залогом успеха при производстве бетонных работ является тщательное выполнение всех технологических процессов.

 

Исправление дефектов бетонирования:

а – в плитах, б, в – в стенах, 1 – раковина, 2 – вырубка по форме ласточкина хвоста, 3 – опалубка, 4 – лоток, 5 – бадья, 6 – вибратор, 7 – сопло, 8 – шланг

Для получения прочных и красивых бетонных поверхностей, ко­торые не требуется штукатурить или облицовывать, необходимы, как известно, чистые и высококачественные материалы, эффектив­ная технология и квалифицированные исполнители.

Обработанные соответствующим образом поверхности железобетонных сооружении могут быть достаточно выразительными и приятными на вид

Опалубка оказывает большое влияние на качество и внешний вид бетонных поверхностей. Правильно выполненная дощатая опа­лубка может дать красивую бетонную поверхность.

Для смазки опалубки необходимо использовать светлые эмульсии.

Иногда кромки досок со стороны, обращенной к бетону, сострагивают на 3-5 мм.

В этом случае на поверхности бетона образуется руст, улучшающий внешний вид конструкции.

Для получения гладкой малопористой поверхности бетона опалубку обшивают влагопогло­щающим картоном, фанерой или тонкими древесностружечными плитами.

Шероховатую однотонную поверхность можно получить после обработки бетона с помощью электрических или пневматических отбойных молотков с рабочими наконечниками в виде бучарды или шарошки. При этом на наружных углах рекомендуется остав­лять узкие необработанные полосы во избежание скалывания бето­на.

Обработка таким способом может скрыть небольшие дефекты бетонирования (раковины, пористость), а также замаскировать ра­бочие швы.

Красивый вид могут иметь бетонные поверхности с обнаженным крупным заполнителем (гравием).

Получают их обработкой не полностью затвердевшего бетона стальными щетками с последую­щей промывкой струей воды под давлением.

Обнажить заполнитель можно применением специальных сма­зок для опалубки, в состав которых входят замедлители схватыва­ния цемента.

В этих случаях тонкий наружный слой несхватившегося раствора смывают струей воды до обнажения гравия.

Поверхности из высокопрочных декоративных бетонов шлифуют.

Так обрабатывают, например, мозаичные полы. За рубежом спо­собом шлифования обрабатывают также стены, пилястры, цоколи зданий.

perekos.net

Строй-справка.ру

Навигация: Главная → Все категории → Cтроительные работы

Бетонирование монолитных бетонных и железобетонных конструкций

Бетонирование монолитных бетонных и железобетонных конструкций

Возведение конструкций зданий и сооружений из монолитного железобетона состоит из выполнения опалубочных, арматурных и бетонных работ.

Виды и установка опалубки. Опалубкой называется форма, служащая для изготовления бетонных и железобетонных конструкций и изделий. Опалубка может быть деревянной, металлической и железобетонной.

Деревянную опалубку ‘обычно изготовляют на специальном опалубочном дворе или в плотничном цехе деревообделочного комбината, где имеется необходимое станочное оборудование для распиловки и острожки лесоматериалов, а также для сборки отдельных элементов опалубки. Для ее изготовления применяют лесоматериалы хвойных пород с влажностью древесины до 25%.

Деревянная опалубка обладает ценными качествами: легкостью, малой теплопроводностью, небольшими силами сцепления с уложенным в нее бетоном. Основными недостатками этой опалубки являются: гигроскопичность, малая сопротивляемость деформациям, ограниченные возможности оборачиваемости и срока службы. Несмотря на указанные недостатки, деревянную опалубку широко применяют при постройке монолитных бетонных и железобетонных конструкций и сооружений.

Металлическую опалубку и оснастку к ней изготовляют в механических мастерских или цехах металлоконструкций. Детали металлической опалубки выполняют из стали СтЗ. Элементы опалубки обрабатывают с высокой точностью. Металлическая опалубка проходит контрольную сборку. Детали, соприкасающиеся с бетоном, покрывают специальной смазкой, а остальные окрашивают, после чего все элементы опалубки маркируют.

Основными преимуществами металлической опалубки являются высокая оборачиваемость (не менее 50 раз), жесткость и исключение деформации при различных режимах влажности. К недостаткам этой опалубки относят высокую стоимость и большую теплопроводность.

Железобетонная опалубка в период бетонирования выполняет роль опалубки, а впоследствии, при строительстве гидротехнических сооружений, является постоянным конструктивным эле-ментом сооружения. Достоинствами железобетонной опалубки в этих случаях являются исключение процесса распалубки, простота креп-ления и большая жесткость. Недостатками этой опалубки являются большие теплопроводность, масса и стоимость.

Металлическую и железобетонную опалубку для монолитных конструкций в практике строительства применяют редко, причем необходимость установки такой опалубки в каждом отдельном случае указывают в рабочем чертеже.

Установку опалубки для монолитных конструкций производят по осям, вынесенным на обноску, после подготовки места, где она должна быть установлена. Подготовка заключается в очистке его от щепы, грязи и строительного мусора. Правила установки опалубки зависят от вида конструкции. Так, опалубку ступенчатых фундаментов устраивают из готовых деревянных щитов, стянутых проволочными скрутками, с распорками из брусков или досок (рис. 149). Щиты опалубки для каждой ступени изготовляют двух размеров: длина одной пары щитов соответствует размерам боковых стенок ступени фундамента. С внутренней стороны этих щитов пришивают планки, которые служат опорой для коротких щитов. Опалубку последующих ступеней устраивают так же, как и первой, и опирают на щиты опалубки нижней ступени.

Виды и установка арматуры. Арматурная сталь подразделяется на горячекатаную стержневую и холоднокатаную проволочную. Арматурные стержни и проволоку изготовляют гладкими или периодического (изменяющегося) профиля. В зависимости от механических свойств арматурные стержни и проволоку делят на классы, а классы на марки.

По назначению арматура делится на рабочую, распределительную, монтажную и хомуты. По способу установки арматуру подразделяют на штучную, арматурные сетки и каркасы.

Штучная арматура может быть прутковой (гибкой) из круглых стержней и жесткой из профильной прокатной стали — двутавровых балок, швеллеров и уголков.

Арматурная сетка (рис. 151) представляет собой взаимно перекрещивающиеся стержни, соединенные в местах пересечения сваркой

или вязкой до укладки ее в дело. Сетки изготовляют в виде отдельных плоских полотнищ требуемого размера или рулонов большой длины, от которых отрезают куски необходимых размеров. Арматурные сетки в основном применяют для армирования плит.

Рис. 150. Арматурная сталь для железобетонных конструкций: а — круглая; б — горячекатаная периодического профиля; в — холодносплющенная

Арматурные каркасы могут быть плоскими и пространственными (рис. 152). Плоские каркасы состоят обычно из продольной арматуры, соединенной между собой специальными монтажными стержнями или хомутами. Пространственные каркасы собирают из нескольких плоских каркасов или сеток путем сварки или вязки. Арматурные каркасы применяют для армирования колонн, балок, ригелей.

Рис. 151. Арматурные сетки: а — отдельная; б — рулонная

Рис. 152. Арматурные каркасы: а — плоский; б — пространственный

Одновременно с сеткой устанавливают нижнюю часть каркаса (арматуры) колонны — выпуски, служащие для соединения вертикальных стержней каркаса колонн. Выпуски устанавливают при помощи деревянной рамки и нижние их концы приваривают к сетке.

Приготовление и транспортирование бетонной смеси. Бетонные работы состоят из следующих основных технологических процессов: приготовления бетонной смеси, транспортирования ее к месту укладки, укладки в опалубку и ухода за бетоном в период его твердения.

Рис. 153. Арматура фундаментов:

Все процессы по приготовлению бетонной смеси полностью механизированы и автоматизированы. При малых объемах бетонных и железобетонных работ бетонную смесь можно приготовлять в построечных условиях. Для этой цели на строительных объектах применяют сборно-разборные комплексно-механизированные бетонные установки. Их обычно устраивают как бетонно-растворные Установки, изготовляющие бетонную смесь и раствор для разных нужд строительства. Следовательно, при выполнении большого объема работ бетонную смесь приготовляют в заводских условиях (так называемый товарный бетон) и централизованно доставляют на строительный объект.

Способы транспортирования бетонной смеси к месту ее укладки зависят от ряда факторов: дальности транспортирования, времени года, состава бетонной смеси. В настоящее время бетонную смесь от места приготовления до места ее укладки в конструкции доставляют в автомобилях-самосвалах, в бадьях (бункерах) на платформах или автомобилях, конвейерами, бетононасосами, в автобетоносмесителях.

Во время транспортирования в целях сохранения однородности и подвижности бетонной смеси ее защищают от попадания атмосферных осадков, вредного воздействия ветра и солнечных лучей, а также от утечки цементного молока (раствора). В зимнее время бетонную смесь при транспортировании необходимо защищать от замораживания. Для этого применяют специально утепленные виды транспорта. Кроме того, бетонную смесь к месту укладки следует доставлять без промежуточных перегрузок.

При любом способе транспортирования бетонную смесь предохраняют от чрезмерного встряхивания во избежание расслаивания. Продолжительность перевозки смеси от места ее приготовления до места укладки не должна превышать 1 ч (с момента выгрузки до окончания уплотнения).

Исходя из условий сохранения необходимых качеств бетонной смеси во время ее доставки к месту укладки выбирают вид транспорта. Перевозка бетонной смеси на автосамосвалах целесообразна при расстоянии до 15—20 км.

Транспортирование в таре (бадьях, бункерах, виброковшах), в кузовах бортовых машин и на железнодорожных платформах применяется на такие же расстояния, как и на автосамосвалах. Железнодорожный транспорт используют на крупных стройках с большим потоком бетонной смеси. Ленточными конвейерами бетонную смесь перемещают при возведении крупных фундаментных массивов и значительной интенсивности бетонирования (150—200 м3/смен). Ее можно подавать по горизонтали на расстояние до 2 км с подъемом до 18° и спуском до 12°. Транспортирование бетонной смеси с помощью бетононасоса применяется также при больших объемах бетонирования конструкций. Дальность подачи смеси по горизонтали и вертикали определяют расчетом.

Автобетоносмесители наиболее целесообразно использовать при значительной удаленности строящегося объекта от централизованного бетонного завода.

При этом бетонную смесь приготовляют в автобетоносмесителя в пути следования непосредственно перед ее укладкой в конструкций Укладку бетонной смеси осуществляют различными способам в зависимости от вида бетонируемой конструкции.

Укладка бетонной смеси и уход за бетоном. При получении товарной бетонной смеси перед укладкой ее в конструкции необходимо проверить паспорт, который выдается заводом-поставщиком на каждую партию бетонной смеси с указанием состава бетона и его марки. При укладке бетонной смеси в опалубку нужно следить за тем, чтобы непроисходило ее расслоение. С этой целью высота свободного падениясмеси в опалубку, как правило, не должна превышать 3 м. Укладывать бетонную смесь в опалубку следует механизированным способом с уплотнением, чтобы не оставались воздушные пазухи. Для уплотнения применяют вибраторы различных ТИПОВ.

Наибольшее распространение имеют электромеханические вибраторы. По способу вибрирования вибраторы делятся на поверхностные и внутренние. Поверхностные вибраторы применяют при небольшой толщине бетона (до 20 см). При большей толщине уплотняемого бетона применяют внутренние (глубинные) вибраторы. Продолжительность вибрирования зависит от вида конструкции, качества бетонной смеси, типа вибратора. Например, продолжительность вибрирования на одном месте поверхностных вибраторов составляет примерно около 1 мин. Увеличение установленного времени вибрирования бетонной смеси может привести к ее расслоению. Основные признаки прекращения вибрирования следующие: заметное оседание бетонной смеси; прекращение выделения воздушных пузырьков; появление на поверхности вибри-руемого бетона так называемого цементного молока.

После укладки бетонной смеси в конструкции начинается процесс твердения. Для обеспечения нормальных условий твердения за бетонной смесью в первые дни требуется особый уход. Основной задачей ухода в летнее время является предохранение смеси от высушивания под действием ветра и солнца. Для этой цели после окончания процесса схватывания бетон поливают водой и укрывают рогожами, мешковиной, матами и др. Срок поливки зависит от вида цемента и температуры наружного воздуха. В сухую погоду при температуре воздуха более + 15° бетон рекомендуется поливать при портландцементе не менее 7 сут., при глиноземистых цементах — не менее 3 сут. и при прочих цементах — не менее 14 сут.

В зимнее время бетонной смеси необходимо обеспечить нормальные условия для приобретения ею прочности не менее 50% от проектной марки. С этой целью после процесса схватывания бетон обычно укрывают теплоизоляционными материалами: матами, опилками, шлаком. Кроме того, свежеуложенный бетон не должен подвергаться ударам и сотрясениям. Движение людей и транспортных средств по забетонированным конструкциям, установка на них лесов и опалубки допускаются только после приобретения бетоном необходимой прочности. Прочность бетона определяют путем испытания в строительной лаборатории серии образцов, а также при помощи ультразвука или эталонного молотка.

Бетонирование и распалубка монолитных конструкций. Бетонирование монолитных конструкций производят только после тщательной проверки состояния опалубки, соответствия уложенной арматуры рабочим чертежам и выполнения всех мероприятий, гарантирующих высокое качество укладки и уплотнени бетонной смеси, а также бесперебойную ее доставку к месту работы. Укладка бетонной смеси в различные конструкции отличается некоторыми особенностями в зависимости от вида этих конструкций.

Рис. 156. Укладка бетонной смеси в фундаменты автомобильным краном непосредственно из бадей

Бетонирование фундаментов (рис. 156) осуществляется: автомобильным краном (при помощи бадей) или автосамосвалами.

Бетонную смесь укладывают в опалубку слоями толщиной 20—40 см в зависимости от типа вибратора. Наибольшая толщина слоя бетонной смеси может составлять 1,25 длины рабочей части вибратора. При более глубоком погружении вибратора может нарушиться структура бетона в ранее уложенном слое. Вибратор погружают в бетонную смесь и выдерживают там в среднем 20 с до появления на поверхности цементного молока, после чего вибратор медленно, плавно и без рывков извлекают из слоя бетонной смеси. Для того чтобы в бетонной смеси после извлечения вибратора не оставались лунки — неплотности, его извлекают при включенном моторе.

Шаг перестановки вибраторов со стоянки на стоянку не должен превышать полутора радиусов действия вибратора. Радиусом действия вибратора называется расстояние, на которое распространяются колебания, обеспечивающие качественное уплотнение бетонной смеси. Это расстояние измеряется между осями вибраторов, расположенных на соседних стоянках, и примерно равно 45—60 см. Вибраторы в пределах бетонируемых участков переставляют в рядовом или шахматном порядке.

Нарастание прочности бетона в монолитных конструкциях контролируется строительной лабораторией путем испытания образцов (кубиков) бетона, а также неразрушающими методами, в результате чего назначаются сроки распалубки бетонных и железобетонных конструкций в зависимости от достигнутой прочности бетона.

Распалубка. Распалубку производят в определенной последовательности, устанавливаемой проектом производства работ (ППР) для каждого вида конструкций. Перед началом распалубки открытые бетонные поверхности (плиты, отдельные балки, ригели) осматривают и обстукивают. Слабый бетон при простукивании молотком издает глухой звук, а при более сильных ударах на нем остаются вмятины, распалубку железобетонных конструкций производят в среднем через 10—12 дней в зависимости от достигнутой бетоном прочности, назначения конструкций, ее массы и нагрузок. Так, летом при температуре наружного воздуха 15—20° несущие боковые щиты опалубки снимают через 2—3 дня после бетонирования, несущую опалубку плит, сводов, прогонов и балок пролетами от 2 до 8 м — при достижении бетоном прочности не менее 70%. Во всех железобетонных конструкциях пролетом 8 м и более несущую опалубку снимают после того, как бетон наберет проектную 100%-ную прочность.

Похожие статьи: Кирпичная кладка

Навигация: Главная → Все категории → Cтроительные работы

Статьи по теме:

stroy-spravka.ru

Строительный миф №2. Нужно ли после заливки бетона ждать 28 суток?

Вопрос: сколько нужно ждать, пока произойдет затвердения бетона? Как и за какое время бетон набирает прочность? Действительно ли нужно ждать 28 суток после того, как залит бетон? Когда можно нагружать бетонные конструкции?

Каждому застройщику или строителю выгоднее построить конструкцию, здание или сооружение за кратчайшие сроки. Но бытует целый ряд мнений о том, что необходимо после выполнения работ по бетонированию конструкций ждать пока конструкция «затвердеет», чтоб потом приступить к следующему этапу строительства.

Как и за какое время бетон набирает прочность?

Нужно ли после заливки бетона ожидать 28 суток?

Для правильного вывода необходимо проанализировать нормативные документы и определить режим, этапы и сроки строительства.

При выполнении бетонных работ сталкиваются с двумя актуальными вопросами:

  1. Через какое время можно снимать опалубку?
  2. Через какое время можно нагружать железобетонный элемент или конструкцию?

Рассмотрим последовательно эти вопросы.

Для сборных железобетонных изделий очень важно определить отпускную прочность.

Отпускная прочность – это набранная прочность бетона, устанавливаемая нормативами, при которой железобетонное изделие возможно поставлять с завода на строительную площадку.

Величина отпускной прочности устанавливается согласно ГОСТов или других нормативных документов в зависимости от:

  • вида и размера конструкции;
  • состава бетона;
  • условий твердения;
  • температуры окружающей среды и климатических условий региона;
  • сроком и величины загрузки;
  • условия транспортировки.

Ниже, в таблице 1 приводятся в зависимости от вида и класса бетона, усредненные значения отпускной прочности в процентах от проектной.

Таблица 1

Вид бетона Отпускная прочность (% от проектного класса бетона)
Тяжелый бетон и бетон на пористом заполнителе с классом С10 и выше 50 %
Тяжелый бетон класса С7,5 и ниже 70 %
Бетон на пористом заполнителе, класс С7,5 и ниже 80 %
Бетон всех видов и классов при автоклавном твердении 100 %

Итак, отпускная прочность сборных железобетонных изделий в зависимости от целого ряда факторов составляет 50÷100% от проектной. Вывод №1: при достижении отпускной прочности можно уже производить монтаж и затем нагружать железобетонные конструкции, с расчетом на то, что полное нагружение (100%) наступит не позже 28 суток от момента изготовления изделий. Более конкретный порядок и сроки нагружения сборных конструкций оговаривается в ППР (проект производства работ).

Также в строительстве существует такое понятие, как распалубочная прочность.

Распалубочная прочность – это минимальная набранная прочность бетона, при которой возможно извлечь опалубку, не повреждая бетон. Для сборных железобетонных изделий опалубочная прочность должна быть достаточная для безопасной транспортировки. Условия и скорость набора прочности для каждого изделия или конструкции определяются предприятием-изготовителем.

В условиях стройплощадки, при изготовлении монолитных конструкций распалубку, как правило выполняют непосредственно перед началом загружения конструкции.

СНиП 3.03.01-87 устанавливает следующие условия распалубки железобетонных конструкций ( смотри таблицу 2).

Таблица 2

Параметр Распалубочная прочность (% от нормативной, на 28 сут)
Прочность бетона (в момент распалубки конструкций), не ниже:
— теплоизоляционного 0,5 МПа
— конструкционно-теплоизоляционного 1,5 МПа
— армированного 3,5 МПа, но не менее 50 % проектной прочности
— предварительно напряженного 14,0 МПа, но не менее 70 % проектной прочности
Распалубка железобетонных конструкций с последующей обработкой бетона (п. 2.34) 70 % от проектной прочности

Российский нормативный документ ТР 80-98 «Технические рекомендации по технологии бетонирования безобогревным способом монолитных конструкций с применением термоса и ускоренного термоса» приводит следующие разрешения по распалубки и нагрузки конструкций, таблица 3.

 Необходимая прочность бетона для распалубки и нагрузки конструкции:

Таблица 3

Строительные конструкции Фактическая нагрузка, % от нормативной
свыше 70% 70% и менее
прочность бетона, % от проектной
Боковые щиты опалубки на фундаменте и колоннах, стенах, ригелей и балок допускается при нормальных условиях твердения Снимать через 6 — 72 ч
Несущие щиты опалубки 100 См. ниже
Длина пролета несущих железобетонных плит до 3 м 100 70
Длина пролета несущих железобетонных плит (кроме плит) до 6 м 100 70
Колонны, несущие конструкции (балки, ригели, плиты) пролетом 6 м и более 100 80
Конструкции с напрягаемой арматурой 100 80

Примечания:

  1. Следует твердо помнить, что полностью на 100 % загружать конструкцию можно только, когда бетон наберет свою полную проектную прочность.
  2. Снимать боковые щиты ненесущей части опалубки можно при условии, когда разность температур между бетоном и наружным воздухом соответствует следующему условию:
  • Dt = 20 °С для конструкций с Мп = 2 – 5;
  • Dt = 30 °С для конструкций с Мп больше 5, где Мп — модуль поверхности конструкции (отношение суммы площадей охлаждаемых поверхностей конструкций в м2 к ее объему в м3), м-1 .

Дальнейшие мероприятия по выполнению опалубочных работ и движение работников по железобетонным конструкциям допускается, когда прочность бетона составляет 1,5 МПа и более. (СНиП 3.03.01-87, п. 2.17). Также, в этом нормативном документе есть указание (п.2.110), что при использовании промежуточных опор (подпорок) для перекрытия пролетов, при частичной или последовательной снятии опалубки, допустимая распалубочная прочность может быть понижена, а это означает большую оборачиваемость опалубки и уменьшения сроков строительства. Более конкретные мероприятия по раннем снятие опалубки должно определятся исходя из конкретных условий строительства и освещаться в ППР.

Некоторые литературные источники указывают следующие значения для распалубки железобетонных конструкций, табл. 4:

 Таблица 4

Конструкция Минимальная распалубочная прочность (% от нормативной, на 28 сут)
Железобетонные плиты и своды с длиной пролета до 2 м 50%
Железобетонные балки с длиной пролета до 8 м 70%
Все несущие железобетонные конструкции с длиной пролета более 8 м 100%
Железобетонные конструкции с жесткой арматурой (колоны, армированные сварными несущими двутавровыми балками) 25%

Вывод №2: исходя из всего выше приведенного и анализируя все таблицы по распалубочной прочности бетона и его нагружении, распалубочная прочность находится в пределах 50…80% от проектной. Тогда:

  1. распалубку конструкции допускается проводить, когда фактическая прочность бетона достигнет 70% от проектной, и в этом случае можно постепенно загружать дальше;
  2. распалубку конструкции допускается проводить, при фактической прочности 50% от проектной, только необходимо установить дополнительные опоры для страховки и исключения прогибов. В этом случае также можно постепенно нагружать конструкцию (ставить опалубку, кладку, и т.д.).
Через сколько времени бетон может набрать распалубочную прочность, при которой можно еще и нагружать конструкцию?

Как уже выше вспоминалось, при разных условиях (температура, влажность, атмосферные осадки и т.д.) разный бетон набирают прочность по разному. На рис. 2 приведен график скорости набора прочности в зависимости от температуры ТВО (тепло влажностной обработки).

Из графика видно, что в лабораторных условиях при постоянной температуре 60°С среднюю распалубочную прочность бетон (70%) приобретает через 32 часа (1,3 сут), а при температуре 30°С – приобретает примерно за 4 сут.

Так как на строительных объектах, в течении суток температура окружающего воздуха колеблется, то берут во внимание среднесуточную температуру, которая летом составляет 18…28°С, а осенью достигает и 5…10°С. При таких температурах бетон будет набирать прочность намного медленнее.

Рис. 1. График скорости набора прочности бетона в зависимости от температуры ТВО (тепло влажностной обработки) [1]

На предприятиях по изготовлению бетона и конструкций из него, должны быть графики набора прочности бетона определенного состава. Для примерного определения прочности конкретного бетона, можно воспользоваться графиками набора прочности в зависимости от вида цемента, температуры и класса бетона (рис. 2) из нормативных документов [2, 3].

Ниже приведен рост прочности бетона в зависимости от температуры окружающего воздуха или ТВО, (в % от R28):

а) класс С15–С25 на основе портландцемента марки М400

б) класс С30 на основе портландцемента марки М500

в) класс С15–С25 на основе шлакопортландцемента марки М400

г) класс С40 на основе портландцемента марки М600

д) быстротвердеющий высокоактивный портландцемент (БТЦ)

Графики набора прочности (табл. 5-9)

Набор прочности бетона класса С15 – С25 на портландцементе марки М400 (% от R28):

Таблица 5

Возраст бетона, сут. Температура бетона, °С
-3 0 5 10 20 30 40 50 60
1/2 1 4 5 12 17 28 38 50
1 3 5 9 12 23 35 45 55 63
2 6 12 19 25 40 55 65 75 80
3 8 18 27 37 50 65 77 85
5 12 28 38 50 65 78 90
7 15 35 48 58 75 87 98
14 20 50 62 72 87 100
28 25 65 77 85 100

Набор прочности бетона класса С30 на портландцементе марки М500 (% от R28):

Таблица 6

Возраст бетона, сут. Температура бетона, °С
-3 0 5 10 20 30 40 50 60
1 8 12 18 28 40 55 65 70
2 16 22 32 50 63 75 85 90
3 10 22 32 45 60 74 85 92 98
5 16 32 45 58 74 85 96
7 19 40 55 66 82 92 100
14 25 57 70 80 92 100
28 30 70 90 90 100

Набор прочности бетона класса С15 – С25 на шлакопортландцементе марки М400 (% от R28):

Таблица 7

Возраст бетона, сут. Температура бетона, °С
-3 0 5 10 20 30 40 50 60
1/2 2 4 7 20 25 32 42
1 3 6 10 16 30 40 50 65
2 3 8 12 18 30 40 60 75 90
3 5 13 18 25 40 55 70 90
5 8 20 27 35 55 65 85
7 10 25 34 43 65 70 92
14 12 35 50 60 80 96 100
28 15 15 65 80 100

Набор прочности бетона класса С40 на портландцементе марки М600 (% от R28):

Таблица 8

Возраст бетона, сут Температура бетона, °С
0 5 10 20 30 40
1 8 13 21 32 45 59
2 17 25 36 52 65 75
3 23 35 46 62 74 83
7 42 57 68 83 90 98
14 58 73 82 94 100
28 71 83 92 100

Набор прочности бетона с применением противоморозных добавок:

Таблица 9

Противоморозная добавка Вид вяжущего Температура твердения бетона, °С Прочность бетона, % от R28 при твердении на морозе через число суток
7 14 28 90
1) Нитрит натрия (в водном растворе), NaNO2 портландцемент -5 25 40 60 100
-10 15 25 35 70
-15 5 10 20 50
2) Нитрит натрия кристаллический, NaNO2 портландцемент -5 25 40 60 100
-10 15 25 35 70
-15 5 10 20 50
3) Нитродап шлакопортландцемент -5 15 25 45 90
-10 10 15 25 60
-15 5 15 40

Вывод №3: из графиков и таблиц видно, что бетон на основе портландцемента при среднесуточной температуре 10 и выше набирает 50% прочности от проектной за 5…7 суток, а бетон на шлакопортландцементе набирает при тех же самых условиях – за 14 и более суток. Зимой при отрицательных температурах с применением даже противоморозных добавок (табл.9) бетон набирает проектную прочность за 90 суток и больше. Для ускорения времени набора требуемой прочности при зимнем бетонировании необходимо использовать электропрогрев.

Для быстрого набора прочности, согласно СНиП 3.03.01-87 «Несущие и ограждающие конструкции. 2. Бетонные работы» (п. 2.15) за бетоном нужен соответствующий уход. Уход за бетоном начинается сразу после укладки его в опалубку и продолжают до момента распалубки. Бетон следует хранить от прямого попадания солнечных лучей и атмосферных осадков, ветра, а также создать тепловлажностные условия для его твердения (накрыть пленкой). Рекомендуется бетон изготовленный на портландцементе в течении 7 суток поливать водой, а на основе малоактивных и шлакопортландцементах поливать не менее 14 суток. При температуре воздуха 15°С рекомендуется поливать бетон через 3 часа в течении первых 3 суток. При средней температуре воздуха от +5 до 0°С полив и смачивания бетона не осуществляется. Полная нагрузка (расчетная) железобетонных конструкций допускается только после того, как бетон будет иметь проектную прочность.

Рекомендации по выполнению фундаментов

Отдельно хотелось заострить внимание на фундаменте, так как есть некоторые особенности его работы:

  1. Наилучшее время для строительства фундамента является лето (хороший температурный режим).
  2. Нежелательно, подвергать фундамент длительному простою, т.к. замокание котлована, морозное пучение, попеременное замораживание и оттаивание грунтов основания приводит к его разрушению.
  3. Выше перечисленные факторы приводят к неравномерной усадке фундамента.
  4. Если все-таки есть необходимость оставить фундамент зимовать, необходимо его «законсервировать» — закрыть и защитить от атмосферных осадков, исключить замокания и затопление грунта вблизи фундамента (примерно 0,4…0,5 м).
  5. Так как бетон при благоприятных условиях набирает 50…80% от проектной прочности за 7…14 дней, тогда допускается нагружать фундамент через 7…14 суток, с учетом, что полное нагружение (100%) наступит только после 28 суток с момента заливки фундамента.
  6. При использовании ускорителей твердения при нормальной температуре возможно уже нагружать фундамент и через 5 дней.
  7. Фундамент следует нагружать равномерно, чтобы избежать неравномерной осадки основания.

Для более точной подстраховки для контроля прочности фундаментов или других железобетонных конструкций изготавливают серию стандартных образцов-кубов 150х150х150 или 100х100х100 мм, которые потом испытывают на сжатие.

Литература:

  1.  Как построить дом. Как бетон набирает крепость? Время затвердевания бетона, график набора крепости. Режим доступа: ссылка на статью.
  2. ТР 80-98 Технические рекомендации по технологии бетонирования безобогревным способом монолитных конструкций с применением термоса и ускоренного термоса. МОСКВА – 1998.
  3. ВСН 20-68 Указания на бетонирование в зимнее время дорожных оснований под асфальтобетонные покрытия в г. Москве.

 Автор публикации эксперт GIDproekt

Конев Александр Анатольевич

 

 

Уход за бетоном. Исправление дефектов бетонирования


Твердение бетона представляет собой сложный физико-хими­ческий процесс, при котором цемент, взаимодействуя с водой, образует новые соединения.

Вода проникает вглубь частиц цемента постепенно, в результате чего все новые его порции вступают в химическую реакцию.

Этим объясняется постепенный и длительный набор прочности бетона.

При благоприятных условиях твердения прочность бетона непрерывно повышается.

Для нормального твердения бетона необходима температура (20±2)° С с относительной влажностью воздуха не менее 90%.

При таких условиях бетон через 7… 14 суток набирает прочность 60…70% своей 28-суточной прочности.

Затем рост прочности замедляется.

Для бетона, находящегося в воде, его прочность выше, чем при твердении бетона в сухой среде.

При твердении бетона на воздухе вода быстро испаряется и твердение практически прек­ращается.

Поэтому для достижения бетоном необходимой проч­ности нельзя допускать его преждевременного высыхания.

В теп­лую сухую и ветреную погоду выступающие части (углы, ребра) и открытые поверхности бетонных конструкций высыхают быстрее, чем внутренние его части.

Необходимо предохранять эти эле­менты от высыхания и давать им возможность достигать необ­ходимую прочность.

При твердении бетона изменяется его объем.

Твердея, он дает усадку, которая в поверхностных слоях происходит быстрее, чем во внутренних.

Поэтому при недостаточной влажности бетона в период твердения на его поверхности появляются мел­кие усадочные трещины.

Кроме того, трещинообразование воз­можно в результате неравномерного разогрева бетона вслед­ствие выделения теплоты при схватывании и твердении (гидра­тации) цемента.

Трещины снижают качество, прочность и долго­вечность конструкций.

Рост прочности бетона в значительной степени зависит от температуры, при которой происходит твердение.

При температу­ре ниже нормальной твердение бетона замедляется, а при темпе­ратуре -5° С практически прекращается.

При повышенной тем­пературе и достаточной влажности процесс твердения ускоряет­ся.

Продолжительность твердения имеет большое практическое значение.

Ускорять твердение необходимо, когда требуется быст­ро нагрузить конструкции эксплуатационной нагрузкой или распалубить ее в ранние сроки, при бетонировании зимой и других случаях.

Для ускорения твердения бетона применяют добавки-ускори­тели, вводимые при приготовлении бетонной смеси.

Количество добавок-ускорителей твердения берется в процентах от массы цемента и не должно превышать следующих величин: сульфат натрия — 2, нитрат натрия, нитрат кальция, нитрит-натрат кальция — 4, хлорид кальция в бетоне армированных конструк­ций — 2, в бетоне неармированных конструкций — 3.

Добавки-ускорители твердения не следует вводить при ис­пользовании глиноземистого цемента, а также в конструкциях, армированных термически упрочненной сталью, в железобетон­ных конструкциях, предназначенных для эксплуатации в зонах действия блуждающих токов, в конструкциях с напрягаемой арматурой.

Полный перечень ограничений по применению доба­вок ускорителей приведен в СНиП 3.03.01-87.

При производстве сборного железобетона для ускорения твер­дения широко применяют тепловую обработку бетона паром или электрическим током.

Ускоряют процесс твердения бетона путем использования быстротвердеющих цементов.

Обычно такие бетоны используют при аварийных работах, а также при устройстве стыков различ­ных конструкций.

Чтобы свежеуложенный бетон получил требуемую прочность в назначенный срок, за ним необходим правильный уход: под­держание его во влажном состоянии, предохранение от сотрясе­ний, повреждений, ударов, а также от резких перепадов темпера­туры.

Нарушение режима ухода за бетоном может привести к получению низкого качества и непригодного для эксплуатации бетона, а иногда к разрушению конструкций.

Особенно важен уход за бетоном в течение первых дней после укладки.

Недостат­ки ухода в первые дни могут настолько ухудшить качество бето­на, что практически их нельзя будет исправить в последующие дни.

Благоприятные температурно-влажностные условия для твер­дения бетона создают, предохраняя его от вредного воздействия ветра и попадания прямых солнечных лучей, путем системати­ческой поливки.

Для этого открытые поверхности свежеуложенного бетона укрывают влагоемким покрытием (брезентом или мешковиной), а при отсутствии этих материалов поверхность бе­тона закрывают через 3…4 ч после укладки бетона слоем песка или опилок и поливают водой.

В зависимости от климатических условий частота поливки должна быть такой, чтобы поверхность бетона в период ухода все время была во влажном состоянии.

В сухую погоду открытые поверхности поддерживают во влаж­ном состоянии до достижении бетоном 50…70% проектной проч­ности.

В жаркую погоду поливают также деревянную опалубку.

При снятии опалубки (например, опалубки колонн, стен, балок) увлажняют вертикальные поверхности конструкций.

Наиболее эффективно вертикальные и наклонные поверхности поливать непрерывным потоком воды через систему трубок с мелкими отверстиями.

В жарком сухом климате этот способ полива обя­зателен.

Укрытие и поливка бетона требуют значительных затрат тру­да, поэтому тонкостенные конструкции с большой открытой по­верхностью (например, площадки, дороги, аэродромные покры­тия, полы, перекрытия) вместо укрытия и поливки целесообразно покрывать специальными окрасочными составами и защитными пленками.

Наиболее пригодны полимерные композиции.

Они обеспечивают наилучшее предохранение от влагопотерь как свежеуложенной бетонной смеси в условиях воздушно-сухого твердения, так и бетона при термообработке и раннему распалубливанию.

Полимерные композиции практически безвредны, менее огнеопасны, а их малая вязкость позволяет механизиро­вать процесс нанесения и снизить расход вещества до 0,5 кг на 1 м2 поверхности.

Применение пленкообразующих веществ яв­ляется одним из простых и технологичных условий обеспечения необходимых качественных показателей при раннем распалубливании бетона.

 

Исправление дефектов бетонирования

После распалубливания монолитные конструкции осматривают и исправляют дефекты бетонирования.

Мелкие неровности и наплы­вы бетона на стенах, колоннах и балках срубают вручную или пнев­матическими зубилами с последующей затиркой неровностей це­ментным раствором состава 1:2…1:2,5.

Открытые бетонные поверхности с мелкими раковинами, не имеющие ноздреватости, после расчистки и смачивания водой за­тирают цементным раствором.

Крупные раковины, образовавшиеся в результате плохого вибрирования или утечки цементного молока, расчищают на всю глубину.

Весь рыхлый бетон выру­бают отбойными молотками с последующей продувкой сжатым воз­духом и промывкой водой. Если позволяют размеры раковины, устанавливают опалубку с козырьком для укладки бетона и бето­нируют.

Для заделки раковин применяют мелкозернистый бетон той же марки по прочности или даже на одну ступень выше.

Бетонную смесь укладывают с тщательным уплотнением.

Замазывать крупные раковины цементным раствором категори­чески запрещается, так как это не устраняет дефекта, а только скрывает его. Крупные раковины в несущих конструкциях сущест­венно ослабляют их.

Ис­правляют такие дефекты торкретированием после тщательной расчистки и удаления рыхлого бетона.

При исправлении де­фектов в плитах, полах или балках вырубать ослабленный бетон следу­ет по форме ласточкина хвоста, с тем, чтобы набетонка луч­ше удерживалась в основном бетоне.

Конструкции, воспринимающие гидростатический напор грунтовых вод, могут течь из-за наличия в бетоне скрытых пустот и раковин вследствие плохого виброуплот­нения бетонной смеси или некачественной подготовки рабочих швов.

Устраняют течь нагнетанием (инъекцией) жирного цементного раствора (молока) внутрь конструкции через перфорирован­ные трубки диаметром 20…30 мм.

Для этого в местах дефектов бурят шпуры, вставляют в них стальные трубки, один конец кото­рых имеет перфорацию, а другой — резьбу, и зачеканивают их в шпуре раствором на быстросхватывающемся цементе.

После того как раствор зачеканки наберет нужную прочность, через трубки с помощью винтового шприца нагнетают раствор на безусадочном или расширяющемся цементе.

При грубых нарушениях технологии бетонных работ (напри­мер, недостаточное уплотнение, чрезмерное вибрирование, при­водящее к расслоению смеси, нарушение технологии ухода за бе­тоном, неправильный подбор состава, наличие большого коли­чества глинистых и пылеватых частиц) возможны серьезные дефекты, снижающие прочность бетона.

Поскольку исправить такие дефекты практически невозможно, сильно дефект­ные конструкции разбирают или соответствующим образом усили­вают.

Залогом успеха при производстве бетонных работ является тщательное выполнение всех технологических процессов.

 

 

Исправление дефектов бетонирования:

а – в плитах, б, в – в стенах, 1 – раковина, 2 – вырубка по форме ласточкина хвоста, 3 – опалубка, 4 – лоток, 5 – бадья, 6 – вибратор, 7 – сопло, 8 – шланг

 

Для получения прочных и красивых бетонных поверхностей, ко­торые не требуется штукатурить или облицовывать, необходимы, как известно, чистые и высококачественные материалы, эффектив­ная технология и квалифицированные исполнители.

Обработанные соответствующим образом поверхности железобетонных сооружении могут быть достаточно выразительными и приятными на вид

Опалубка оказывает большое влияние на качество и внешний вид бетонных поверхностей.

Правильно выполненная дощатая опа­лубка может дать красивую бетонную поверхность.

Для смазки опалубки необходимо использовать светлые эмульсии.

Иногда кромки досок со стороны, обращенной к бетону, сострагивают на 3-5 мм.

В этом случае на поверхности бетона образуется руст, улучшающий внешний вид конструкции.

Для получения гладкой малопористой поверхности бетона опалубку обшивают влагопогло­щающим картоном, фанерой или тонкими древесностружечными плитами.

Шероховатую однотонную поверхность можно получить после обработки бетона с помощью электрических или пневматических отбойных молотков с рабочими наконечниками в виде бучарды или шарошки.

При этом на наружных углах рекомендуется остав­лять узкие необработанные полосы во избежание скалывания бето­на.

Обработка таким способом может скрыть небольшие дефекты бетонирования (раковины, пористость), а также замаскировать ра­бочие швы.

Красивый вид могут иметь бетонные поверхности с обнаженным крупным заполнителем (гравием).

Получают их обработкой не полностью затвердевшего бетона стальными щетками с последую­щей промывкой струей воды под давлением.

Обнажить заполнитель можно применением специальных сма­зок для опалубки, в состав которых входят замедлители схватыва­ния цемента.

В этих случаях тонкий наружный слой несхватившегося раствора смывают струей воды до обнажения гравия.

Поверхности из высокопрочных декоративных бетонов шлифуют.

Так обрабатывают, например, мозаичные полы.

За рубежом спо­собом шлифования обрабатывают также стены, пилястры, цоколи зданий.


Через какое время можно возводить стены после заливки фундамента. Сколько должен отстаиваться мелкозаглубленный ленточный фундамент?

ГлавнаяСтенЧерез какое время можно возводить стены после заливки фундамента

Строительный миф №2. Нужно ли после заливки бетона ждать 28 суток?

Вопрос: сколько нужно ждать, пока произойдет затвердения бетона? Как и за какое время бетон набирает прочность? Действительно ли нужно ждать 28 суток после того, как залит бетон? Когда можно нагружать бетонные конструкции?

Каждому застройщику или строителю выгоднее построить конструкцию, здание или сооружение за кратчайшие сроки. Но бытует целый ряд мнений о том, что необходимо после выполнения работ по бетонированию конструкций ждать пока конструкция «затвердеет», чтоб потом приступить к следующему этапу строительства.

Как и за какое время бетон набирает прочность?

Нужно ли после заливки бетона ожидать 28 суток?

Для правильного вывода необходимо проанализировать нормативные документы и определить режим, этапы и сроки строительства.

При выполнении бетонных работ сталкиваются с двумя актуальными вопросами:

  1. Через какое время можно снимать опалубку?
  2. Через какое время можно нагружать железобетонный элемент или конструкцию?

Рассмотрим последовательно эти вопросы.

Для сборных железобетонных изделий очень важно определить отпускную прочность.

Отпускная прочность – это набранная прочность бетона, устанавливаемая нормативами, при которой железобетонное изделие возможно поставлять с завода на строительную площадку.

Величина отпускной прочности устанавливается согласно ГОСТов или других нормативных документов в зависимости от:

  • вида и размера конструкции;
  • состава бетона;
  • условий твердения;
  • температуры окружающей среды и климатических условий региона;
  • сроком и величины загрузки;
  • условия транспортировки.

Ниже, в таблице 1 приводятся в зависимости от вида и класса бетона, усредненные значения отпускной прочности в процентах от проектной.

Таблица 1

Вид бетона Отпускная прочность (% от проектного класса бетона)
Тяжелый бетон и бетон на пористом заполнителе с классом С10 и выше 50 %
Тяжелый бетон класса С7,5 и ниже 70 %
Бетон на пористом заполнителе, класс С7,5 и ниже 80 %
Бетон всех видов и классов при автоклавном твердении 100 %

Итак, отпускная прочность сборных железобетонных изделий в зависимости от целого ряда факторов составляет 50÷100% от проектной. Вывод №1: при достижении отпускной прочности можно уже производить монтаж и затем нагружать железобетонные конструкции, с расчетом на то, что полное нагружение (100%) наступит не позже 28 суток от момента изготовления изделий. Более конкретный порядок и сроки нагружения сборных конструкций оговаривается в ППР (проект производства работ).

Также в строительстве существует такое понятие, как распалубочная прочность.

Распалубочная прочность – это минимальная набранная прочность бетона, при которой возможно извлечь опалубку, не повреждая бетон. Для сборных железобетонных изделий опалубочная прочность должна быть достаточная для безопасной транспортировки. Условия и скорость набора прочности для каждого изделия или конструкции определяются предприятием-изготовителем.

В условиях стройплощадки, при изготовлении монолитных конструкций распалубку, как правило выполняют непосредственно перед началом загружения конструкции.

СНиП 3.03.01-87 устанавливает следующие условия распалубки железобетонных конструкций ( смотри таблицу 2).

Таблица 2

Параметр Распалубочная прочность (% от нормативной, на 28 сут)
Прочность бетона (в момент распалубки конструкций), не ниже:
— теплоизоляционного 0,5 МПа
— конструкционно-теплоизоляционного 1,5 МПа
— армированного 3,5 МПа, но не менее 50 % проектной прочности
— предварительно напряженного 14,0 МПа, но не менее 70 % проектной прочности
Распалубка железобетонных конструкций с последующей обработкой бетона (п. 2.34) 70 % от проектной прочности

Российский нормативный документ ТР 80-98 «Технические рекомендации по технологии бетонирования безобогревным способом монолитных конструкций с применением термоса и ускоренного термоса» приводит следующие разрешения по распалубки и нагрузки конструкций, таблица 3.

 Необходимая прочность бетона для распалубки и нагрузки конструкции:

Таблица 3

Строительные конструкции Фактическая нагрузка, % от нормативной
свыше 70% 70% и менее
прочность бетона, % от проектной
Боковые щиты опалубки на фундаменте и колоннах, стенах, ригелей и балок допускается при нормальных условиях твердения Снимать через 6 — 72 ч
Несущие щиты опалубки 100 См. ниже
Длина пролета несущих железобетонных плит до 3 м 100 70
Длина пролета несущих железобетонных плит (кроме плит) до 6 м 100 70
Колонны, несущие конструкции (балки, ригели, плиты) пролетом 6 м и более 100 80
Конструкции с напрягаемой арматурой 100 80

Примечания:

  1. Следует твердо помнить, что полностью на 100 % загружать конструкцию можно только, когда бетон наберет свою полную проектную прочность.
  2. Снимать боковые щиты ненесущей части опалубки можно при условии, когда разность температур между бетоном и наружным воздухом соответствует следующему условию:
  • Dt = 20 °С для конструкций с Мп = 2 – 5;
  • Dt = 30 °С для конструкций с Мп больше 5, где Мп — модуль поверхности конструкции (отношение суммы площадей охлаждаемых поверхностей конструкций в м2 к ее объему в м3), м-1 .

Дальнейшие мероприятия по выполнению опалубочных работ и движение работников по железобетонным конструкциям допускается, когда прочность бетона составляет 1,5 МПа и более. (СНиП 3.03.01-87, п. 2.17). Также, в этом нормативном документе есть указание (п.2.110), что при использовании промежуточных опор (подпорок) для перекрытия пролетов, при частичной или последовательной снятии опалубки, допустимая распалубочная прочность может быть понижена, а это означает большую оборачиваемость опалубки и уменьшения сроков строительства. Более конкретные мероприятия по раннем снятие опалубки должно определятся исходя из конкретных условий строительства и освещаться в ППР.

Некоторые литературные источники указывают следующие значения для распалубки железобетонных конструкций, табл. 4:

 Таблица 4

Конструкция Минимальная распалубочная прочность (% от нормативной, на 28 сут)
Железобетонные плиты и своды с длиной пролета до 2 м 50%
Железобетонные балки с длиной пролета до 8 м 70%
Все несущие железобетонные конструкции с длиной пролета более 8 м 100%
Железобетонные конструкции с жесткой арматурой (колоны, армированные сварными несущими двутавровыми балками) 25%

Вывод №2: исходя из всего выше приведенного и анализируя все таблицы по распалубочной прочности бетона и его нагружении, распалубочная прочность находится в пределах 50…80% от проектной. Тогда:

  1. распалубку конструкции допускается проводить, когда фактическая прочность бетона достигнет 70% от проектной, и в этом случае можно постепенно загружать дальше;
  2. распалубку конструкции допускается проводить, при фактической прочности 50% от проектной, только необходимо установить дополнительные опоры для страховки и исключения прогибов. В этом случае также можно постепенно нагружать конструкцию (ставить опалубку, кладку, и т.д.).
Через сколько времени бетон может набрать распалубочную прочность, при которой можно еще и нагружать конструкцию?

Как уже выше вспоминалось, при разных условиях (температура, влажность, атмосферные осадки и т.д.) разный бетон набирают прочность по разному. На рис. 2 приведен график скорости набора прочности в зависимости от температуры ТВО (тепло влажностной обработки).

Из графика видно, что в лабораторных условиях при постоянной температуре 60°С среднюю распалубочную прочность бетон (70%) приобретает через 32 часа (1,3 сут), а при температуре 30°С – приобретает примерно за 4 сут.

Так как на строительных объектах, в течении суток температура окружающего воздуха колеблется, то берут во внимание среднесуточную температуру, которая летом составляет 18…28°С, а осенью достигает и 5…10°С. При таких температурах бетон будет набирать прочность намного медленнее.

Рис. 1. График скорости набора прочности бетона в зависимости от температуры ТВО (тепло влажностной обработки) [1]

На предприятиях по изготовлению бетона и конструкций из него, должны быть графики набора прочности бетона определенного состава. Для примерного определения прочности конкретного бетона, можно воспользоваться графиками набора прочности в зависимости от вида цемента, температуры и класса бетона (рис. 2) из нормативных документов [2, 3].

Ниже приведен рост прочности бетона в зависимости от температуры окружающего воздуха или ТВО, (в % от R28):

а) класс С15–С25 на основе портландцемента марки М400

б) класс С30 на основе портландцемента марки М500

в) класс С15–С25 на основе шлакопортландцемента марки М400

г) класс С40 на основе портландцемента марки М600

д) быстротвердеющий высокоактивный портландцемент (БТЦ)

Графики набора прочности (табл. 5-9)

Набор прочности бетона класса С15 – С25 на портландцементе марки М400 (% от R28):

Таблица 5

Возраст бетона, сут. Температура бетона, °С
-3 0 5 10 20 30 40 50 60
1/2 1 4 5 12 17 28 38 50
1 3 5 9 12 23 35 45 55 63
2 6 12 19 25 40 55 65 75 80
3 8 18 27 37 50 65 77 85
5 12 28 38 50 65 78 90
7 15 35 48 58 75 87 98
14 20 50 62 72 87 100
28 25 65 77 85 100

Набор прочности бетона класса С30 на портландцементе марки М500 (% от R28):

Таблица 6

Возраст бетона, сут. Температура бетона, °С
-3 0 5 10 20 30 40 50 60
1 8 12 18 28 40 55 65 70
2 16 22 32 50 63 75 85 90
3 10 22 32 45 60 74 85 92 98
5 16 32 45 58 74 85 96
7 19 40 55 66 82 92 100
14 25 57 70 80 92 100
28 30 70 90 90 100

Набор прочности бетона класса С15 – С25 на шлакопортландцементе марки М400 (% от R28):

Таблица 7

Возраст бетона, сут. Температура бетона, °С
-3 0 5 10 20 30 40 50 60
1/2 2 4 7 20 25 32 42
1 3 6 10 16 30 40 50 65
2 3 8 12 18 30 40 60 75 90
3 5 13 18 25 40 55 70 90
5 8 20 27 35 55 65 85
7 10 25 34 43 65 70 92
14 12 35 50 60 80 96 100
28 15 15 65 80 100

Набор прочности бетона класса С40 на портландцементе марки М600 (% от R28):

Таблица 8

Возраст бетона, сут Температура бетона, °С
0 5 10 20 30 40
1 8 13 21 32 45 59
2 17 25 36 52 65 75
3 23 35 46 62 74 83
7 42 57 68 83 90 98
14 58 73 82 94 100
28 71 83 92 100

Набор прочности бетона с применением противоморозных добавок:

Таблица 9

Противоморозная добавка Вид вяжущего Температура твердения бетона, °С Прочность бетона, % от R28 при твердении на морозе через число суток
7 14 28 90
1) Нитрит натрия (в водном растворе), NaNO2 портландцемент -5 25 40 60 100
-10 15 25 35 70
-15 5 10 20 50
2) Нитрит натрия кристаллический, NaNO2 портландцемент -5 25 40 60 100
-10 15 25 35 70
-15 5 10 20 50
3) Нитродап шлакопортландцемент -5 15 25 45 90
-10 10 15 25 60
-15 5 15 40

Вывод №3: из графиков и таблиц видно, что бетон на основе портландцемента при среднесуточной температуре 10 и выше набирает 50% прочности от проектной за 5…7 суток, а бетон на шлакопортландцементе набирает при тех же самых условиях – за 14 и более суток. Зимой при отрицательных температурах с применением даже противоморозных добавок (табл.9) бетон набирает проектную прочность за 90 суток и больше. Для ускорения времени набора требуемой прочности при зимнем бетонировании необходимо использовать электропрогрев.

Для быстрого набора прочности, согласно СНиП 3.03.01-87 «Несущие и ограждающие конструкции. 2. Бетонные работы» (п. 2.15) за бетоном нужен соответствующий уход. Уход за бетоном начинается сразу после укладки его в опалубку и продолжают до момента распалубки. Бетон следует хранить от прямого попадания солнечных лучей и атмосферных осадков, ветра, а также создать тепловлажностные условия для его твердения (накрыть пленкой). Рекомендуется бетон изготовленный на портландцементе в течении 7 суток поливать водой, а на основе малоактивных и шлакопортландцементах поливать не менее 14 суток. При температуре воздуха 15°С рекомендуется поливать бетон через 3 часа в течении первых 3 суток. При средней температуре воздуха от +5 до 0°С полив и смачивания бетона не осуществляется. Полная нагрузка (расчетная) железобетонных конструкций допускается только после того, как бетон будет иметь проектную прочность.

Рекомендации по выполнению фундаментов

Отдельно хотелось заострить внимание на фундаменте, так как есть некоторые особенности его работы:

  1. Наилучшее время для строительства фундамента является лето (хороший температурный режим).
  2. Нежелательно, подвергать фундамент длительному простою, т.к. замокание котлована, морозное пучение, попеременное замораживание и оттаивание грунтов основания приводит к его разрушению.
  3. Выше перечисленные факторы приводят к неравномерной усадке фундамента.
  4. Если все-таки есть необходимость оставить фундамент зимовать, необходимо его «законсервировать» — закрыть и защитить от атмосферных осадков, исключить замокания и затопление грунта вблизи фундамента (примерно 0,4…0,5 м).
  5. Так как бетон при благоприятных условиях набирает 50…80% от проектной прочности за 7…14 дней, тогда допускается нагружать фундамент через 7…14 суток, с учетом, что полное нагружение (100%) наступит только после 28 суток с момента заливки фундамента.
  6. При использовании ускорителей твердения при нормальной температуре возможно уже нагружать фундамент и через 5 дней.
  7. Фундамент следует нагружать равномерно, чтобы избежать неравномерной осадки основания.

Для более точной подстраховки для контроля прочности фундаментов или других железобетонных конструкций изготавливают серию стандартных образцов-кубов 150х150х150 или 100х100х100 мм, которые потом испытывают на сжатие.

Литература:

  1.  Как построить дом. Как бетон набирает крепость? Время затвердевания бетона, график набора крепости. Режим доступа: ссылка на статью.
  2. ТР 80-98 Технические рекомендации по технологии бетонирования безобогревным способом монолитных конструкций с применением термоса и ускоренного термоса. МОСКВА – 1998.
  3. ВСН 20-68 Указания на бетонирование в зимнее время дорожных оснований под асфальтобетонные покрытия в г. Москве.

 Автор публикации эксперт GIDproekt

Конев Александр Анатольевич

 

 

gidproekt.com

Сколько должен стоять фундамент после заливки

Процесс строительства дома достаточно сложен и требует хороших знаний в различных вопросах строительства. Сколько должен стоять фундамент после заливки — одна из самых важных проблем. Все слышали, что фундамент обязательно должен отстояться, однако немногие знают, сколько времени должен стоять уже залитый объект. Уход за фундаментом после заливки требуется минимальный — всего-навсего контролировать ровность поверхности фундамента, но при этом, если начать строительство до высыхания объекта, то вполне вероятно, что появятся трещины в фундаменте.

Трещины могут возникнуть из-за недостатка воды, поэтому некоторые рекомендуют после заливки некоторое время поливать водой фундамент.

Стоит отметить, что на время застывания и на уход за объектом влияет большое количество различных факторов — как природных, так и технических. О том, сколько времени необходимо фундаменту для выдержки, как ухаживать за ним, а также что влияет на его качество, будет рассказано ниже.

Какие факторы влияют на застывание и заливку?

Фундаментом называют основание дома, которое должно равномерно распределять нагрузку здания на грунт для предотвращения проседания или обвала строения. Прочность фундамента определяется его типом и используемыми материалами для заливки. Именно от этого зависит долговечность стен и здания в целом. Также это зависит и от времени, данного на то, чтобы фундамент после заливки отстоялся.

На данный момент необходимое количество времени, отводимого на то, чтобы бетон отстоялся, определяется СНиПом, однако в СНиПе указывается только необходимый срок для определенных стандартов, которые не всегда совпадают с реальными условиями для конкретного объекта. На срок для отстоя раствора после заливки фундамента влияют следующие факторы:

  1. Температура и влажность окружающей среды.
  2. Наличие/отсутствие осадков.
  3. Тип и состояние грунта.
  4. Рельеф местности и глубина залегания грунтовых вод.
  5. Качество материалов и технология строительства.
  6. Вид основания.
  7. Тип, к которому принадлежит гидроизоляция фундамента.

Естественно, ни один нормативный акт не сможет учесть все вышеперечисленные условия, поэтому для определения срока отстоя основания следует руководствоваться в первую очередь собственными знаниями и опытом. Чтобы быть уверенным в том, что фундамент отстоялся, следует брать максимально негативные условия для местности, в которой осуществляется строительство, и, исходя из них, рассчитывать срок.

При этом важно планировать стройку так, чтобы к моменту падения температуры ниже +5 градусов Цельсия (т.е. до наступления осени), фундамент был готов. В противном случае его необходимо будет закрывать и утеплять, а укрытие для основания — дело хлопотное, требующее дополнительных ресурсов. После холодов многие удивляются, почему трескается незакрытое основание? Ответ прост — от попадания влаги в микропоры, которая, застывая, разрывает бетон.

При этом, если на климат, грунт и рельеф нельзя повлиять или изменить, то вид основы определяется при строительстве, а гидроизоляция фундамента зависит от используемых материалов и качества выполнения работ.

Тип фундамента и гидроизоляции

От того, какой тип фундамента выбран, зависит очень многое. Соответственно, чем быстрее он схватится и подсохнет, тем быстрее можно начать строительство и закрыть его до начала холодов стенами и крышей. Быстрее всех сохнет столбчатый фундамент. Остальные идут в порядке возрастания — свайные, ленточные, плитные, и дольше всего застывают монолитные основания. При этом на срок готовности основания будет влиять не только вид и форма, но и масса здания. Так для свайных оснований характерны нетяжелые конструкции (часто — сборные дома), что позволяет начать строительство сразу, как только основание схватится.

Плитные и ленточные основы делаются для капитальных построек, имеющих большую площадь, несколько этажей и значительную массу. Поэтому времени на их застывание следует выделить больше. Монолитные основы применяются для мощных строений, поэтому перед высыханием их надо тщательно выровнять и оставить на достаточно долгое время, чтобы они застыли.

Схема монолитного фундамента

При этом важно подбирать для строительства качественные материалы, а перед заливкой проконтролировать правильность создания гидроизоляционного слоя. Для этого нужно обладать определенными знаниями и изучить специализированную литературу.

Сколько времени требуется на застывание?

Незастывший или плохо застывший фундамент не сможет выдержать нагрузок дома и ветра, поэтому важно, чтобы он застыл хорошо. Разберем несколько примеров.

Для ленточного фундамента минимальный рекомендуемый срок застывания — 20 дней. При этом должны быть соблюдены следующие условия: в течение этого времени погода должна была стоять солнечной, с низкой влажностью. Сразу после заливки (через 12-15 часов) все типы оснований следует сверху поливать водой — это необходимо, чтобы верхний слой, который высыхает быстрее всех, не растрескался. Поверхности оснований поливают каждые 2-3 часа в течение 3-5 дней после заливки. Другие манипуляции с основанием категорически запрещены, поскольку оно является единым массивом, и в случае какого-либо нарушения целостности, можно ухудшить прочность основы.

В случае, если погода была пасмурной и местами с осадками, срок застывания ленточного основания увеличивается до месяца. На срок влияет и глубина закладки. Чем она больше, тем дольше заливка должна выстояться.

Профессиональные строители практически всегда дают не меньше месяца для застывания основания дома и только потом его обрабатывают. В это время происходит проседания здания примерно на 75% от итогового проседания (оставшиеся 25% приходятся на первые 2-3 года). При этом, в случае качественного бетонирования, благоприятной погоды и выдержки целого месяца для подсыхания, строение все равно некоторое время будет проседать. Основание полностью отстоится только через год-полтора после завершения строительства полностью (включая и черновую отделку помещения). Поэтому рекомендовано обживать дом только через некоторое время после строительства.

Таким образом, при строительстве важно тщательно распределить время так, чтобы выдерживались все минимально необходимые сроки для возведения здания. Сокращение времени постройки возможно, но в пределах разумного. Если строительство начнется ранее минимально допустимого срока, то стенки дома могут потрескаться буквально сразу после строительства, здание может накрениться или обрушиться. При этом на основание будет действовать не только его собственный вес, но и вес стен, кровли, отделочных материалов (а он не маленький и его нельзя недооценивать).

Никоим образом нельзя нарушить указанный срок, поскольку это может привести к подвижкам основания и грунта, что вызовет полное разрушение здания в будущем, к тому же с возможными человеческими жертвами. При этом и заливку и отстой основания следует проводить в теплое и солнечное время года.

tvoygarazh.ru

Сколько должен отстаиваться ленточный фундамент: усадка бетона

Ленточный фундамент: усадка бетона и осадка грунта

Вернуться к оглавлению

Характеристики и особенности ленточного фундамента

Ленточный фундамент — основание дома в виде ленты, полосы, расположенной полностью под всеми наружными стенами и под некоторыми внутренними простенками (при больших размерах строения).

Основание надежного ленточного фундамента должно опираться на слой земли, где температура грунта всегда выше 0°C.

Ленточный фундамент может быть выполнен из цементной смеси и мелкого щебня или из бутового камня, залитого готовым цементным раствором.

Материал ленточного фундамента — бетон и арматура. Железный каркас из сваренных между собой кусков металлической арматуры предназначен для использования в качестве опорного скелета, укрепляющего бетонную часть фундамента, распределяющего неравномерные нагрузки по всей ленте основания. Бутовый ленточный фундамент в таком каркасе не нуждается. А вот лента из мелкого щебня и бетона, предназначенная для массивного строения, обязательно должная быть укреплена арматурой. Сколько времени должен отстояться фундамент после заливки — вопрос, который задают себе многие хозяева, занимающиеся строительством собственного загородного дома. Сколько должен отстаиваться ленточный фундамент, чтобы выдержать вес конструкции и не дать трещин после возведения строения?

Вернуться к оглавлению

Требование к ленточным фундаментам

Схема монтажа ленточного фундамента.

Главное требование к конструкции и материалам основания здания — обеспечить прочность и долговечность. Фундамент держит на себе стену, простенки, крышу, перекрытия, полы, мебель, систему отопления и водопровод. Глубина фундамента должна предупредить вспучивание дома при зимнем промерзании грунта. Для этого основание надежного фундамента опирают на непромерзающий слой земли на той глубине, где грунт остается теплым (выше 0°C). Замерзшая земля может увеличиваться в размерах, подниматься зимой и опускаться летом. Дом будет стоять без поднятий и опусканий при правильно сооруженном основании. Ленточный фундамент, опирающийся на непромерзающий слой грунта, обеспечит долгий срок службы вашего строения. Возможна ли усадка фундамента в виде ленты после его строительства и при каких условиях усадочные процессы оказывают максимальное воздействие на фундамент-ленту? Как можно предупредить или уменьшить степень воздействия усадочных процессов?

Вернуться к оглавлению

Усадка бетона и осадка грунта

Усадка — процесс уменьшения размеров строительного материала в процессе его затвердевания, просушки. Она становится заметна через некоторое время после завершения строительства. Усадка бетона происходит в процессе его затвердевания, по строительным нормам размер усадки в бетоне составляет 1% от сырой массы.

Осадка — процесс опускания земли после ее перекапывания. Происходит в течение некоторого времени, усиливается после дождей и намокания.

Оба этих процесса сопровождают строительство.

В зависимости от величины усадки и осадки они могут быть скомпенсированы внутри материала или вызвать разрушение здания и его частей.

Усадка бетона и осадка грунта оказывают влияние на возможное проседание ленточного фундамента и на количество времени, необходимое для его отстаивания.

Вернуться к оглавлению

Мелкозаглубленный фундамент: характеристики и особенности

Крепление опалубки при возведении фундамента в котловане и траншее.

Затраты на стоимость капитального заглубленного основания составляют около 30% цены всего дома. Желание удешевить постройку привело к появлению мелкозаглубленных ленточных конструкций, не достающих до непромерзающего грунта, лежащих на промерзающем слое земли, который вспучивается (поднимается) зимой и опускается летом. Глубина залегания мелкого фундамента составляет 50-70 см (для сравнения: глубина нормального фундаментного основания составляет 1-1,5 м). Стоимость строений с мелким заглублением составляет около 10-15% от размеров капиталовложений в здание. В таком строительстве важно выполнить три условия. Первое — стены дома должны иметь относительно небольшой вес, то есть быть не кирпичными, а каркасными, щитовыми, деревянными. Второе — фундамент должен быть обязательно армирован, чтобы при зимнем вспучивании равномерно перераспределить нагрузку и выдержать вес здания без образования больших и малых трещин. Третья — мелкий фундамент можно устраивать на слабо поднимающихся грунтах и подсыпать под него слой песка (30-40 см). Песок имеет свойство уплотняться и амортизировать зимний подъем мерзлой земли.

Вернуться к оглавлению

Процессы усадки в мелкозаглубленном фундаменте

Прочность бетона.

Для мелкозаглубленного основания важным вопросом становится процесс усадки. Поскольку сама по себе такая конструкция имеет более низкую прочность, она обязательно должна выстояться некоторое время, чтобы можно было убедиться в отсутствии трещин. Главное время возникновения усадочных напряжений — мороз и холода. Поэтому, когда бы ни был заложен мелкозаглубленный ленточный фундамент (в начале лета, в его конце, в начале осени), он должен простоять зиму и пережить морозы. Весной, после зимней усадки, можно продолжать дальнейшее строительство.

Для уменьшения сроков, в течение которых должен отстояться заложенный бетон, закладывается блочная конструкция, которую сооружают из готовых заводских блоков. Их укладывают с помощью подъемного крана, и скрепляют между собой сварным соединением арматуры, торчащей из блоков, и цементной стяжкой пространства между блоками. Такая конструкция дает значительно меньшую усадку и требует меньшего времени на устаивание. К тому же конструкция, укрепленная арматурой, обладает повышенной прочностью и способна выдержать вес стен при воздействии пучащих нагрузок.

Вернуться к оглавлению

Для чего необходимо отстояться фундаменту

Причины, вызывающие разрушительную усадку фундамента:

  1. Неравномерность грунта под стенами (разный грунт под домом) дает неравномерную осадку грунтовых масс и, соответственно, неравномерные нагрузки на основание. Например, под углом дома грунт просел сильнее, чем под серединой стены, возникли консольные нагрузки. Фундамент оказался балкой, которая со стороны угла «висит» над землей и держит на себе стену. Как поведет себя материал основания в такой ситуации? Вариантов два. Он или выдержит нагрузку (при достаточном запасе прочности), или даст вертикальную (наклонную) трещину (сломается) по цоколю или по стене.
  2. Недостаточная прочность основания — неправильно выбранная конструкция, неподходящий материал, отсутствие соответствия конструкции и материала фундамента весу стен.

Вернуться к оглавлению

Как должен отстаиваться фундамент: технология

Первое выстаивание заложенного бетона длится 5-7 дней. В это время он высыхает и отвердевает. Для предотвращения растрескиваний материала в летнюю жару, когда верх уже высох, а внутренние слои еще сырые, бетон накрывают сверху соломой, опилками, тканью или полиэтиленом. Солому, опилки и ткань поливают водой сверху. Под полиэтилен воду льют заранее, перед его укладкой, и периодически, по мере высыхания (пару раз в сутки) воду подливают, приподнимая край полиэтилена. За 5-7 дней бетон полностью твердеет. Осенью процесс затвердевания бетона в фундаменте может длиться до 2 недель.

Процесс набирания первичной прочности занимает немного больше времени — месяц. Поэтому по истечении 7 дней затвердевший бетон перестают поливать, а полиэтилен, опилки, ткань оставляют на его поверхности еще на три недели. По прошествии месяца покрывной слой снимают. На основание, углубленное до непромерзающего слоя, можно укладывать кирпич и возводить стены.

Второе выстаивание касается мелкозаглубленных фундаментов, особенно если они возведены на глинистых грунтах, имеющих наибольшую склонность к вспучиванию. После отвердевания фундаментное основание оставляют в покое до следующей весны. Именно столько должен отстаиваться фундамент мелкозаглубленного типа. Произошедшие зимой подвижки при необходимости исправляются, проводятся дополнительные укрепляющие работы, в местах значительного проседания грунта подсыпается и трамбуется песок.

Вернуться к оглавлению

Что делать, если фундамент (грунт) просел?

Если мелокозаглубленный фундамент был сооружен неправильно, недооценены сроки, сколько нужно фундаменту выстояться, произошел разрыв бетона или стены, строение можно подправить. Как это сделать? Возможные варианты такого капитального ремонта будут зависеть от размеров и количества трещин.

Реконструкция просевшего фундамента.

  1. При небольших несквозных трещинах можно укрепить грунт, подсыпав в местах проседания рядом с трещинами щебень и сверху песок. Однако если разрушение стен или фундамента будет продолжаться, такая ремонтная мера является недостаточной.
  2. Ремонт фундамента: для этого раскапывается грунт и выполняется углубление фундамента в местах его проседания. Рядом с поверхностью распространения трещины роется яма шириной от 0,5 м длиной до 1,5 м. Глубина ямы соответствует глубине залегания ремонтируемого фундамента с учетом размера углубления фундамента. Поскольку бетон уже дал трещину, целесообразно выполнить максимальные глубокие подпорки под его основание, а еще лучше — углубить фундамент (хотя бы с промежутками) до непромерзающего слоя. Работы по углублению выполняются аналогично заливке: устанавливаются опалубные доски, укладывается бут, засыпается щебень, отливается бетон.
  3. Ремонт стен (если они уже были возведены) выполняется замазыванием цементным раствором и оштукатуриванием. При этом в стенах устанавливают показатели разрушения — по наружной поверхности заделанных трещин располагают цементные прямоугольные вставки, на которых указывают дату ремонта. Продолжающееся разрушение будет в первую очередь заметно на поверхности этих прямоугольных вставок — появятся микротрещины.
  4. При появлении нескольких трещин здание можно обернуть двумя полосами металлической стяжки, устанавливаемыми под крышей и над цоколем.
  5. При продолжающемся разрушении строение частично разбирается, укладывается заново фундамент и выполняется новая кладка стен.

Время отстаивания ленточного фундамента зависит от его заглубленности, использованных при заливке материалов и сезонного времени строительства.

moifundament.ru

Сколько должен отстояться ленточный фундамент: особенности, возведение и советы

В основе каждого сооружения или здания лежит фундамент. На него ложится вся нагрузка объекта, а затем передаётся грунту. Степень прочности основания определяет прочность всего сооружения. Наиболее часто используют ленточный фундамент. Однако после его сооружения перед многими неискушенными в строительстве людьми встаёт закономерный вопрос: «Сколько должен отстояться ленточный фундамент, прежде чем станет возможно на его основе выкладывать стены?» С этим вопросом следует разобраться досконально, ибо здесь нельзя ошибиться.

Особенности ленточного фундамента

Закладка основания — весьма трудоёмкий этап строительных работ. Ленточный фундамент прокладывается под каждой наружной стеной здания в виде сплошной ленты, а также под несущими межкомнатными стенами и представляет собой в соответствии с глубиной закладки высокий или не очень высокий полустенок. Ленточный вариант является наиболее популярным среди прочих разновидностей фундамента.В зависимости от способа возведения и используемых при этом материалов ленточный фундамент бывает сборным и монолитным:

  • Монолитный фундамент возводят непосредственно на площадке строительства здания, и бывает он двух видов в зависимости от предполагаемой тяжести строения — мелкозаглублённый и заглублённый. Мелкозаглублённый ленточный монолитный фундамент используется при строительстве легковесных зданий на глинистых грунтах. Заглублённый же монолитный фундамент сооружают в случае возведения тяжёлых строений и зданий, в которых предусмотрен цокольный этаж, подземный гараж либо другие подвальные помещения на нестабильных почвах.
  • Сборный ленточный фундамент составляется из блоков на основе железобетона, которые изготавливаются на заводе, подвозятся на специальной технике к месту строительства и с помощью крана устанавливаются на стройплощадке в траншеи. По прочности сборный фундамент этого вида уступает монолитному.

Фундамент сооружён. Возводим стены?

Скорее всего, те, кто взялся за строительство дома, знают либо слышали, что сразу после закладки основания следует выдержать паузу, прежде чем продолжать строительство. Но не всем понятно, для чего нужно отстаивать ленточный фундамент.

Согласно строительным нормативам, любой вид фундамента, прежде чем на его основе продолжат возведение здания, должен отстояться (за исключением свайно-винтового). Это необходимо, для того чтобы бетон полностью просох, чтобы конструкция в дальнейшем не просела, не дала трещину, например, в стене. Одним словом, не деформировалась.

Отчего это может произойти? Причины у разного рода дефектов весьма разнообразные:

  • неверная глубина траншеи для закладки фундамента;
  • низкое качество приготовляемой смеси бетона; 
  • высокая влажность грунта, где закладывали основание;
  • сезон года и температурный режим воздуха при закладке фундамента и другие причины.

Решено: фундаменту необходимо отстояться

Итак, возведённый фундамент решено отстоять, дабы избежать неприятностей, при возможной последующей деформации здания. Но вновь во весь рост встаёт вопрос о сроках, строительный сезон у нас в России недолог. Так сколько нужно отстаиваться ленточному фундаменту?

И здесь обнаруживается множество мнений, причём самых разнообразных, иногда противоречащих друг другу. Давайте разберёмся.

  1. Традиционно считается, что сооруженному основанию необходимо стоять не менее года, дабы бетон приобрёл необходимую прочность. Хотя известно, что процесс упрочения бетона длится десятилетия.
  2. Есть мнение, что вполне допустимо продолжать строительство через неделю после сооружения основания, что этого времени достаточно для полного отвердения бетона. Однако хочется остеречь сторонников данной концепции в строительстве, так как в условиях нашего непростого климата нельзя не учитывать сезонных колебаний почвы, что может привести к проседанию конструкции после зимы и множественным трещинам, как на самом фундаменте, так и на стенах. Разумеется, при таком развитии событий работу весной придётся начинать с нулевого цикла.
  3. Существует у некоторых строителей и такое мнение, что на «хорошем грунте» для отстойки конструкции основания достаточно и 3-5 месяцев. Думается, что во избежание риска всё-таки имеет смысл сделать предварительные геологические исследования. 
  4. Другие строительные специалисты предлагают делать закладку основания накануне зимы, которая, по их предположениям, обеспечит бетону полную проверку на прочность при помощи мороза, снежных осадков и сезонного движения почвы. Возможно, это неплохая идея, но тогда весной фундамент следует армировать, а затем возводить стены.

Мнений множество, но только вам самим решать, какое из них оптимально и предпочтительно в вашем случае.

Несколько общих советов

Чтобы определиться, сколько должен отстаиваться ленточный фундамент в вашем конкретном случае нелишне ознакомиться с некоторыми рекомендациями, которые помогут лучше ориентироваться в этом вопросе. Уже на этапе подготовительных работ и закладки основания будущего здания следует точно следовать нормативным рекомендациям. Например, прежде чем делать заливку, проследите, чтобы тщательно была утрамбована песчаная подушка, а сама работа по возведению конструкции осуществлять в несколько этапов, это повысит качество фундамента и снизит вероятность его деформации.

Если возводится здание в 2—3 этажа, то по нормативу время полного отвердения бетона составляет 46 суток. Для полной уверенности, при проведении работ в осенне-зимний период или в связи с не вполне удовлетворительным качеством бетона или марки цемента, длительность отвердения можно продлить до 60 суток.

Когда возведён первый этаж, работы приостанавливают на 7—10 дней, дав возможность фундаменту адаптироваться к нагрузке. При внезапном появлении трещин ситуацию на данном этапе гораздо проще исправить, предотвратив и её последствия, нежели после полного окончания работ.

Часто можно видеть, как фундамент закладывают ещё по осени, руководствуясь мыслью, что по окончании зимних морозов, таяния снега и схода талых вод точно будет установлено, насколько качественно он был заложен. Конечно, это резонно. Но есть здесь и свои возражения: во-первых, эта методика требует значительного временного промежутка; во-вторых, осенние непогоды и весеннее таяние снега могут излишне пропитать водой ленточный фундамент, а это нежелательно.

Поэтому при использовании данной строительной методики осенью вдоль фундамента по кругу, как с внешней стороны, так и с внутренней прокапывают водоотводную траншею для дождевой и талой воды. Причём копать надо на некотором отдалении от основания фундамента, дабы защитить не только его, но и прилегающий грунт. Это позволит не допустить движение почвы под фундаментом и его деформацию.

Какие просчёты допускают чаще всего при закладке ленточного фундамента

Просчёты, допущенные при строительстве ленточного фундамента, приводят к плохому качеству строения. А поэтому стараемся не допустить следующего:

  1. неполного учёта качеств грунта: степени его пучности и просадки, близости грунтовых вод к поверхности и глубины промерзания почвы зимой, это приведёт к растрескиванию фундамента;
  2. использования материалов невысокого качества в целях экономии;
  3. нарушения технологии изготовления бетонной смеси;
  4. применения в работе не качественных фундаментных блоков;
  5. использования арматуры недостаточной толщины при изготовлении фундаментного каркаса;
  6. некачественного проведения работ, к примеру:

  • вследствие неверного выноса оси углы не соответствуют величине 90 градусов, это часто приводит к перекашиванию всей конструкции;
  • траншеи вырыты не на должную глубину;
  • не выдержана толщина подушки в траншее;
  • не соблюдена целостность гидроизоляционного материала под бетоном, а это ведёт к промоканию грунта и ухудшению его устойчивости;
  • несоблюдение технологических моментов при проведении работ в осенне-зимний период: во время застывания бетона не соблюдался оптимальный температурный режим, это снизило его прочность;
  • не выдержана продолжительность набора проектируемой мощности бетона, рано снята опалубковая конструкция;
  • в ходе обратной засыпки нарушена целостность гидроизоляционного материала, эти работы следует выполнять особенно аккуратно, сохраняя ненарушенным гидроизоляционный материал.

Все вышеперечисленные ошибки снижают качество и прочность возведённого фундамента, а, следовательно, снижают и долговечность строения.

nafundamente.ru

Сколько времени фундамент набирает прочность после заливки

Устройство железобетонного монолитного фундамента требует знания и понимания многих важных моментов.

Прежде чем залить смесь в опалубку, непрофессионалу в строительной теме следует подготовиться теоретически.

Имеет немалое значение время разборки опалубки. Как контролировать прочность и когда можно фундамент нагружать?

Сколько ждать набора прочности

Как указано в п. 2.5 СНиП 2.03.01-84, для возведения фундаментов следует применять бетон не ниже М-200. Так как БМ-100 используют для устройства подготовки, само тело фундамента чаще всего выполняют из бетона М-200.

На твердость уложенного в опалубку раствора влияют разные факторы, в том числе такие:

  • Правильное соотношение ингредиентов;
  • Температура воздуха;
  • Влажность воздуха;
  • Период времени от приготовления смеси до укладки;
  • Толщина слоя;
  • Соблюдение технологии и пр.

Набор прочности представляет собой химический процесс, требующий оптимальных условий, наиболее важны тепло и влажность. В зависимости от соотношения этих показателей, процесс достижения нормативных прочностных характеристик длится до 28 суток.

Если чрезмерно жарко, то есть температура воздуха выше 25 градусов, то смесь будет растрескиваться, из нее быстро испарится влага, необходимая для нормального течения реакции твердения, а при температурах ниже +5 градусов процессы замедляются, что отрицательно сказывается на времени застывания.

Оптимальная температура +20 градусов по Цельсию. Уже с первых часов прочность смеси начинает увеличиваться: через 2,5 часа смесь схватится, но твердость еще слишком мала, чтобы бетон держал форму. Интенсивнее всего фундамент набирает прочность в первую неделю, достигая 70% от проектной. Застывание, твердение продолжается до 28 суток.

Контроль схватывания бетона

В условиях выполнения бетонных работ строительными предприятиями контроль качества проводится путем испытания образцов бетона следующими методами:

  • Сжатием специальным оборудованием;
  • Простукиванием массива молотком Кашкарова;
  • Ультразвуковыми приборами (неразрушающий метод).

Для испытания на стационарном станке готовят кубики: из одной порции смеси заливают образцы размером 10×10 см в количестве не менее 3-х, маркируя сами образцы, а также фиксируя на них дату и время.

Кубики передают в специальную строительную лабораторию проводить испытания, где на основании нагрузки, при котором кубики разрушились, выполняют расчеты и выводят прочность бетона, учитывая возраст кубиков. Этот метод считается точным.

Простукивание молотком дает приблизительные результаты и относится к неточным методам. Молотки есть разных видов, а прибор конструкции Кашкарова примечателен тем, что сила удара не отражается на итоговых показаниях прочности. Сам молоток весит 400-800 г.

Прочностные показатели определяют по следам, остающемся на бетоне, в соответствии с таблицей, приведенной в нормативной литературе.

Ультразвуковые приборы основаны на определении скорости прохождения ультразвука через толщу бетона: чем плотнее бетон, тем меньше скорость. Кроме величины прочности, ультразвуковой метод позволяет установить наличие пустот, раковин в массиве фундамента или иного конструктивного элемента.

Специальные методы должны применяться профессионалами с опытом работы в строй. лаборатории, дилетанты не смогут определить точной величины сопротивления материала сжатию, то есть прочности.

В кустарных условиях проверка схватывания производят так: одновременно с укладкой смеси в опалубку заливают отдельно форму произвольного размера ( размером в плане 10×10 см), но желательно одинаковой с основным конструктивом высоты.

На 2 день с одной стороны опалубку нужно снять и посмотреть, держит ли бетон форму, насколько он схватился. При необходимости следует спустя сутки убрать опалубку с другой грани образца и проанализировать динамику схватывания. Один из образцов можно попытаться разбить, чтобы убедиться в его твердости.

Важно понимать, что образец меньших размеры, чем массив фундамента, а в небольшом объеме бетон застывает быстрее. Убедившись, что образец схватился, следует дать массиву дополнительное время 2-5 суток, чтобы получить желаемый результат — крепко затвердевший, схватившийся фундамент.

Когда снимать опалубку

Снятие опалубки можно осуществлять при острой необходимости на 3-5 день, но лучше выдержать 7-14 дней.

Хорошо схватившийся, набравший 30-70% прочности бетон сохраняет форму, не дает сколов разбирая опалубку. Распалубка допустима в ранние сроки, если щиты, доски нужны для выполнения работ на другой захватке или на следующем объекте.

В приватном строительстве резонно не спешить и дать смеси набрать нужные показатели прочности, для чего потребуется 2 недели.

Через сколько можно нагружать фундамент

Давать нагрузку на фундамент — значит, выполнять следующий этап возведения здания, в случае с фундаментом это устройство стен:

Нагрузка приемлема тогда, когда бетон приобретет 100% проектных прочностных показателей. В этом случае можно не опасаться деформаций, разрушения фундамента, так как конструктив уже в состоянии воспринимать нагрузки от стен, перекрытий, кровли.

Такой срок наступает по прошествии 28-30 дней с момента заливки бетона в опалубку.

Этот срок можно сократить, если применить специальные средства — химические добавки, или же технологические приемы, как прогревание в холодное время года, полив водой или укрытие мокрыми матами летом, когда жара.

Если бетон схватывается в естественных условиях лучше не торопиться и снимать опалубку не раньше, чем через одну-две недели, а возводить стены в возрасте не менее 4 недель.

Рекомендуем посмотреть видео:

В конструкции фундамента ничего сложного нет, но лучше, когда этим занимаются профессионалы, у которых есть и опыт, и технические средства контроля застывания бетона.

Если все-таки заливка опалубки выполняется своими силами, то распалубку лучше сделать спустя 7-14 дней, а подвергать нагрузке — не раньше, чем через 28 дней с даты заливки.

sdelai-fundament.ru

Бетонирование: ошибки | Mensh.ru

Высококачественное бетонирование требует соблюдения следующих условий: добросовестное перемешивание, быстрая транспортировка, тщательная укладка бетонной смеси и внимательный присмотр за твердеющим бетоном. Несмотря на всё изложенное могут возникнуть дефекты в конструкции при некачественном выполнении рабочих швов, возникших при перерывах в бетонировании.

Допустимые места возможных швов указывают в проекте. Бетонирование следует начинать лишь после уточнения их местоположения и прекращать лишь в этих местах. Устроив рабочий шов в произвольном месте можно нарушить работу всей конструкции, т.к. на этих участках возможны значительные растягивающие или сжимающие усилия.

Серьёзной ошибкой является и прерывание бетонирования в середине конструкции или выполнение шва в железобетонной плите не параллельно её несущей плоскости. Недопустимо и разжижение бетона, т.к. при этом невозможно устроить шов с вертикальным обрезом, что делает конструкцию не способной выдерживать проектную нагрузку.

Некоторые ошибочно считают, что нанесение жидкого цементного раствора на место стыка старого и нового бетона позволит образовать качественный шов, но цементное молоко не обладая клеющими свойствами отслоится от поверхности, особенно сухой.

Бетонирование фундамента

Строя частные дома нередко устраивают фундаменты из бетона. При устройстве такого фундамента чаще всего роется траншея нужной ширины. Её стенки являются опалубкой. Грунт при выполнении работы по укладке бетона зачастую попадает в свежий бетон, что снижает прочность. При применении вибратора грунт, ссыпаясь со стенок траншеи также загрязняет бетон. С целью недопущения загрязнений необходимо грамотно разместить вынутый грунт и укрепить стенки траншеи, расперев их.

Фундаменты частных домов возводят и из бутобетона, который более экономичен, т.к. не менее трети его объёма составляют: камни, битый кирпич, куски бетона.

Частой ошибкой при этом является использование непрочного и гигроскопичного камня. Результат — дефекты.

Довольно часто допускают ошибку, используя при устройстве бутобетонного фундамента технологию, применяемую при возведении фундаментных стен. В подобном фундаменте неизбежно появятся трещины, камни выдавятся. Ремонтировать его будет весьма затратно и трудновыполнимо.

При выполнении бутобетонной кладки камни следует укладывать в один слой с произвольным зазором, после чего уложенный ряд бута залить бетонной смесью. Следующие слои укладываются аналогично.

В таком фундаменте камни не должны касаться друг друга. При этом толщина нижнего слоя бетона должна составлять не менее 15 см, иначе основание будет продавлено.

При неграмотном уходе за бутобетонным фундаментом во время твердения между бетоном и камнем образуются трещины. В холодную погоду при устройстве такого фундамента существует вероятность промерзания, т.к. тепло из слоя бетона «оттягивается» камнями, обладающими значительной теплоёмкостью.

При установке арматурного каркаса во время сооружения железобетонных фундаментов зачастую не укладывают под арматуру бетон, обеспечивающий твёрдую поверхность и слой антикоррозийной защиты. В результате этого арматура, увлажняемая снизу, начинает корродировать и ошибка обнаруживается слишком поздно.

Бетонирование монолитных железобетонных конструкций

Арматурный каркас монтируется в соответствии с проектом. Следует учитывать то, что технический контроль при частном строительстве отсутствует, а это может привести к серьёзному снижению качества выполняемых работ.

Довольно часто бетонщики затапливают арматурный каркас, бетонируя монолитные железобетонные плиты, что является серьёзной ошибкой. Количество место расположения арматурных стержней в плитах и балках определяет конструктор.

При непрерывном бетонировании бетонную смесь часто доставляют по накату из досок, устроенному поверх каркаса. При этом необходима осторожность, т.к. при этом можно повредить арматуру верхнего пояса.

В балке около опор возникают значительные скалывающие напряжения. При неверном расположении арматуры происходит «срез» железобетонной балки, т.к. уравновесить усилия одними хомутами и бетоном невозможно.

Иногда вдоль линии перелома укладывают арматуру лестниц вместо нормальной укладки с выводом растянутых нижних стержней в сжатый пояс с закреплением там также совершают ошибку, приводящую к разрушению.

Армируя углы рамных конструкций нередко неверно располагают арматуру, что приводит к трудностям бетонирования, т.к. затрудняется укладка бетона между стержнями. Это приводит к образованию пустот и коррозии арматуры. Обнаруженные дефекты следует устранить, удалив слабые участки бетона, разделав и выполнив бетонирование заново. При этом после очистки поверхности надлежит обязательно обильно увлажнить поверхность, в противном случае произойдет впитывание воды из свежего бетона твердеющим.

Устройство опалубки

Под давлением бетона, уплотняющегося при работе вибратора, опалубка не должна изменять свою форму. При устройстве опалубки следует обязательно учитывать то, что наибольшее давление будет приходиться на нижние и боковые поверхности опалубки.

Во избежании прогиба крупных балок под массой бетона при бетонировании следует перед бетонированием в месте наибольшего предполагаемого прогиба немного приподнять опалубку. Тогда после бетонирования прогиба не будет.

Перед бетонирование опалубку очищают от пыли и грязи и обязательно увлажняют во избежание впитывания части воды из бетона сухой древесиной.

Для колонн и стен часто устраивают опалубку на высоту этажа. При этом в опалубке целесообразно для загрузки бетонной смеси предусмотреть отверстия, т.к. при заливке бетона сверху он нередко расслаивается, что приводит к снижению качества конструкции.

В нижней части опалубки колонн надлежит предусматривать окна, через которые можно будет вычистить из опалубки пыль и грязь. В противном случае они попадут в бетон.

СНиП 52 — 01 — 2003 «Бетонные и железобетонные конструкции». Разделы 3

Страница 5 из 6

 

8.1 Бетон

8.1.1 Подбор состава бетонной смеси производят с целью получения в конструкциях бетона, отвечающего техническим показателям, установленным в разделе 5 и принятым в проекте.

За основу при подборе состава бетона следует принимать определяющий для данного вида бетона и назначения конструкции показатель бетона. При этом должны быть обеспечены и другие установленные проектом показатели качества бетона.

Проектирование и подбор состава бетонной смеси по требуемой прочности бетона следует производить, руководствуясь соответствующими нормативными документами (ГОСТ 27006, ГОСТ 26633 и др.).

При подборе состава бетонной смеси должны быть обеспечены требуемые показатели качества (удобоукладываемость, сохраняемость, нерасслаиваемость, воздухосодержание и другие показатели).

Свойства подобранной бетонной смеси должны соответствовать технологии производства бетонных работ, включающей сроки и условия твердения бетона, способы, режимы приготовления и транспортирования бетонной смеси и другие особенности технологического процесса (ГОСТ 7473, ГОСТ 10181).

Подбор состава бетонной смеси следует производить на основе характеристик материалов, используемых для ее приготовления, включающих вяжущие, заполнители, воду и эффективные добавки (модификаторы) (ГОСТ 30515, ГОСТ 23732, ГОСТ 8267, ГОСТ 8736, ГОСТ 24211).

При подборе состава бетонной смеси следует применять материалы с учетом их экологической чистоты (ограничение по содержанию радионуклидов, радона, токсичности и т.п.).

Расчет основных параметров состава бетонной смеси производят с помощью зависимостей, установленных экспериментально.

Подбор состава фибробетона следует производить согласно приведенным выше требованиям с учетом вида и свойств армирующих фибр.

8.1.2 При приготовлении бетонной смеси должна быть обеспечена необходимая точность дозировки входящих в бетонную смесь материалов и последовательность их загружения (СНиП 3.03.01).

Перемешивание бетонной смеси следует выполнять так, чтобы обеспечить равномерное распределение компонентов по всему объему смеси. Продолжительность перемешивания принимают в соответствии с инструкциями предприятий — изготовителей бетоносмесительных установок (заводов) или устанавливают опытным путем.

8.1.3 Транспортирование бетонной смеси следует осуществлять способами и средствами, обеспечивающими сохранность ее свойств и исключающими ее расслоение, а также загрязнение посторонними материалами. Допускается восстановление отдельных показателей качества бетонной смеси на месте укладки за счет введения химических добавок или использования технологических приемов при условии обеспечения всех других требуемых показателей качества.

8.1.4 Укладку и уплотнение бетона следует выполнять таким образом, чтобы можно было гарантировать в конструкциях достаточную однородность и плотность бетона, отвечающих требованиям, предусмотренным для рассматриваемой строительной конструкции (СНиП 3.03.01).

Применяемые способы и режимы формования должны обеспечивать заданную плотность и однородность и устанавливаются с учетом показателей качества бетонной смеси, вида конструкции и изделия и конкретных инженерно-геологических и производственных условий.

Порядок бетонирования следует устанавливать, предусматривая расположение швов бетонирования с учетом технологии возведения сооружения и его конструктивных особенностей. При этом должна быть обеспечена необходимая прочность контакта поверхностей бетона в шве бетонирования, а также прочность конструкции с учетом наличия швов бетонирования.

При укладке бетонной смеси при пониженных положительных и отрицательных или повышенных положительных температурах должны быть предусмотрены специальные мероприятия, обеспечивающие требуемое качество бетона.

8.1.5 Твердение бетона следует обеспечивать без применения или с применением ускоряющих технологических воздействий (с помощью тепловлажностной обработки при нормальном или повышенном давлении).

В бетоне в процессе твердения следует поддерживать расчетный температурно-влажностный режим. При необходимости для создания условий, обеспечивающих нарастание прочности бетона и снижение усадочных явлений, следует применять специальные защитные мероприятия. В технологическом процессе тепловой обработки изделий должны быть приняты меры по снижению температурных перепадов и взаимных перемещений между опалубочной формой и бетоном.

В массивных монолитных конструкциях следует предусматривать мероприятия по уменьшению влияния температурно-влажностных полей напряжений, связанных с экзотермией при твердении бетона, на работу конструкций.

8.2 Арматура

8.2.1 Арматура, используемая для армирования конструкций, должна соответствовать проекту и требованиям соответствующих стандартов. Арматура должна иметь маркировку и соответствующие сертификаты, удостоверяющие ее качество.

Условия хранения арматуры и ее перевозки должны исключать механические повреждения или пластические деформации, ухудшающее сцепление с бетоном загрязнение, коррозионные поражения.

8.2.2 Установку вязаной арматуры в опалубочные формы следует производить в соответствии с проектом. При этом должна быть предусмотрена надежная фиксация положения арматурных стержней с помощью специальных мероприятий, обеспечивающая невозможность смещения арматуры в процессе ее установки и бетонирования конструкции.

Отклонения от проектного положения арматуры при ее установке не должны превышать допустимых значений, установленных СНиП 3.03.01.

8.2.3. Сварные арматурные изделия (сетки, каркасы) следует изготавливать с помощью контактно-точечной сварки или иными способами, обеспечивающими требуемую прочность сварного соединения и не допускающими снижения прочности соединяемых арматурных элементов (ГОСТ 14098, ГОСТ 10922).

Установку сварных арматурных изделий в опалубочные формы следует производить в соответствии с проектом. При этом должна быть предусмотрена надежная фиксация положения арматурных изделий с помощью специальных мероприятий, обеспечивающих невозможность смещения арматурных изделий в процессе установки и бетонирования.

Отклонения от проектного положения арматурных изделий при их установке не должны превышать допустимых значений, установленных СНиП 3.03.01.

8.2.4 Загиб арматурных стержней следует осуществлять с помощью специальных оправок, обеспечивающих необходимые значения радиуса кривизны.

8.2.5 Сварные стыки арматуры выполняют с помощью контактной, дуговой или ванной сварки. Применяемый способ сварки должен обеспечивать необходимую прочность сварного соединения, а также прочность и деформативность примыкающих к сварному соединению участков арматурных стержней.

8.2.6 Механические соединения (стыки) арматуры следует выполнять с помощью спрессованных и резьбовых муфт. Прочность механического соединения растянутой арматуры должна быть такой же, что и стыкуемых стержней.

8.2.7 При натяжении арматуры на упоры или затвердевший бетон должны быть обеспечены установленные в проекте контролируемые значения предварительного напряжения в пределах допускаемых значений отклонений, установленных нормативными документами или специальными требованиями.

При отпуске натяжения арматуры следует обеспечивать плавную передачу предварительного напряжения на бетон.

8.3 Опалубка

8.3.1 Опалубка (опалубочные формы) должна выполнять следующие основные функции: придать бетону проектную форму конструкции, обеспечить требуемый вид внешней поверхности бетона, поддерживать конструкцию пока она не наберет распалубочную прочность и, при необходимости, служить упором при натяжении арматуры.

При изготовлении конструкций применяют инвентарную и специальную, переставную и передвижную опалубку (ГОСТ 23478, ГОСТ 25781).

Опалубку и ее крепления следует проектировать и изготавливать таким образом, чтобы они могли воспринять нагрузки, возникающие в процессе производства работ, позволяли конструкциям свободно деформироваться и обеспечивали соблюдение допусков в пределах, установленных для данной конструкции или сооружения.

Опалубка и крепления должны соответствовать принятым способам укладки и уплотнения бетонной смеси, условиям преднапряжения, твердения бетона и тепловой обработки.

Съемную опалубку следует проектировать и изготавливать таким образом, чтобы была обеспечена распалубка конструкции без повреждения бетона.

Распалубку конструкций следует производить после набора бетоном распалубочной прочности.

Несъемную опалубку следует проектировать как составную часть конструкции.

8.4 Бетонные и железобетонные конструкции

8.4.1 Изготовление бетонных и железобетонных конструкций включает опалубочные, арматурные и бетонные работы, проводимые в соответствии с указаниями подразделов 8.1, 8.2 и 8.3.

Готовые конструкции должны отвечать требованиям проекта и нормативных документов (ГОСТ 13015.0, ГОСТ 4.250). Отклонения геометрических размеров должны укладываться в пределах допусков, установленных для данной конструкции.

8.4.2 В бетонных и железобетонных конструкциях к началу их эксплуатации фактическая прочность бетона должна быть не ниже требуемой прочности бетона, установленной в проекте.

В сборных бетонных и железобетонных конструкциях должна быть обеспечена установленная проектом отпускная прочность бетона (прочность бетона при отправке конструкции потребителю), а для преднапряженных конструкций — установленная проектом передаточная прочность (прочность бетона при отпуске натяжения арматуры).

В монолитных конструкциях должна быть обеспечена распалубочная прочность бетона в установленном проектом возрасте (при снятии несущей опалубки).

8.4.3 Подъем конструкций следует осуществлять с помощью специальных устройств (монтажных петель и других приспособлений), предусмотренных проектом. При этом должны быть обеспечены условия подъема, исключающие разрушение, потерю устойчивости, опрокидывание, раскачивание и вращение конструкции.

8.4.4 Условия транспортировки, складирования и хранения конструкций должны отвечать указаниям, приведенным в проекте. При этом должна быть обеспечена сохранность конструкции, поверхностей бетона, выпусков арматуры и монтажных петель от повреждений.

8.4.5 Возведение зданий и сооружений из сборных элементов следует производить в соответствии с проектом производства работ, в котором должны быть предусмотрены последовательность установки конструкций и мероприятия, обеспечивающие требуемую точность установки, пространственную неизменяемость конструкций в процессе их укрупнительной сборки и установки в проектное положение, устойчивость конструкций и частей здания или сооружения в процессе возведения, безопасные условия труда.

При возведении зданий и сооружений из монолитного бетона следует предусматривать последовательность бетонирования конструкций, снятия и перестановки опалубки, обеспечивающие прочность, трещиностойкость и жесткость конструкций в процессе возведения. Кроме этого, следует предусматривать мероприятия (конструктивные и технологические, а при необходимости — выполнение расчета), ограничивающие образование и развитие технологических трещин.

Отклонения конструкций от проектного положения не должны превышать допустимых значений, установленных для соответствующих конструкций (колонн, балок, плит) зданий и сооружений (СНиП 3.03.01).

8.4.6 Конструкции следует содержать таким образом, чтобы они выполняли свое назначение, предусмотренное в проекте, за весь установленный срок службы здания или сооружения. Необходимо соблюдать режим эксплуатации бетонных и железобетонных конструкций зданий и сооружений, исключающий снижение их несущей способности, эксплуатационной пригодности и долговечности вследствие грубых нарушений нормируемых условий эксплуатации (перегрузка конструкций, несоблюдение сроков проведения планово-предупредительных ремонтов, повышение агрессивности среды и т.п.). Если в процессе эксплуатации обнаружены повреждения конструкции, которые могут вызвать снижение ее безопасности и препятствовать ее нормальному функционированию, следует выполнить мероприятия, предусмотренные в разделе 9.

8.5 Контроль качества

8.5.1 Контроль качества конструкций должен устанавливать соответствие технических показателей конструкций (геометрических размеров, прочностных показателей бетона и арматуры, прочности, трещиностойкости и деформативности конструкции) при их изготовлении, возведении и эксплуатации, а также параметров технологических режимов производства показателям, указанным в проекте, нормативных документах и в технологической документации (СНиП 12-01, ГОСТ 4.250).

Способы контроля качества (правила контроля, методы испытаний) регламентируются соответствующими стандартами и техническими условиями (СНиП 3.03.01, ГОСТ 13015.1, ГОСТ 8829, ГОСТ 17625, ГОСТ 22904, ГОСТ 23858).

8.5.2 Для обеспечения требований, предъявляемых к бетонным и железобетонным конструкциям, следует производить контроль качества продукции, включающий в себя входной, операционный, приемочный и эксплуатационный контроль.

8.5.3 Контроль прочности бетона следует производить, как правило, по результатам испытания специально изготовленных или отобранных из конструкции контрольных образцов (ГОСТ 10180, ГОСТ 28570).

Для монолитных конструкций, кроме того, контроль прочности бетона следует производить по результатам испытаний контрольных образцов, изготавливаемых на месте укладки бетонной смеси и хранящихся в условиях, идентичных твердению бетона в конструкции, или неразрушающими методами (ГОСТ 18105, ГОСТ 22690, ГОСТ 17624).

Контроль прочности следует производить статистическим методом с учетом фактической неоднородности прочности бетона, характеризуемой величиной коэффициента вариации прочности бетона на предприятии — производителе бетона или на строительной площадке, а также при неразрушающих методах контроля прочности бетона в конструкциях.

Допускается применять нестатистические методы контроля по результатам испытаний контрольных образцов при ограниченном объеме контролируемых конструкций, на начальном этапе их контроля, при дополнительном выборочном контроле на площадке возведения монолитных конструкций, а также при контроле неразрушающими методами. При этом класс бетона устанавливают с учетом указаний 9.3.4.

8.5.4 Контроль морозостойкости, водонепроницаемости и плотности бетона следует производить, руководствуясь требованиями ГОСТ 10060.0, ГОСТ 12730.5, ГОСТ 12730.1, ГОСТ 12730.0, ГОСТ 27005.

8.5.5 Контроль показателей качества арматуры (входной контроль) следует производить в соответствии с требованиями стандартов на арматуру и норм оформления актов оценки качества железобетонных изделий.

Контроль качества сварочных работ производят согласно СНиП 3.03.01, ГОСТ 10922, ГОСТ 23858.

8.5.6 Оценку пригодности конструкций по прочности, трещиностойкости и деформативности (эксплуатационной пригодности) следует производить по указаниям ГОСТ 8829 путем пробного нагружения конструкции контрольной нагрузкой или путем выборочного испытания нагружением до разрушения отдельных сборных изделий, взятых из партии однотипных конструкций. Оценку пригодности конструкции можно также производить на основе результатов контроля комплекса единичных показателей (для сборных и монолитных конструкций), характеризующих прочность бетона, толщину защитного слоя, геометрические размеры сечений и конструкций, расположение арматуры и прочность сварных соединений, диаметр и механические свойства арматуры, основные размеры арматурных изделий и величину натяжения арматуры, получаемых в процессе входного, операционного и приемочного контроля.

8.5.7 Приемку бетонных и железобетонных конструкций после их возведения следует осуществлять путем установления соответствия выполненной конструкции проекту (СНиП 3.03.01).

Через какое время бетон набирает прочность. Причины почему бетон не набирает прочность

Подавляющее большинство самодеятельных строителей считают по не совсем понятным причинам, что за окончанием укладки в опалубку либо завершением работ по выравниванию стяжки процесс бетонирования законченным. Между тем, время схватывания бетона значительно больше, чем время на его укладку. Бетонная смесь – живой организм, в котором по окончании укладочных работ происходят сложные и протяженные по времени физико-химические процессы, связанные с превращением раствора в надежную основу строительных конструкций.

Прежде чем производить распалубку и наслаждаться результатами приложенных усилий, нужно создать максимально комфортные условия для созревания и оптимальной гидратации бетона, без которой невозможно достижение требуемой марочной прочности монолита. Строительные нормы и правила содержат выверенные данные, которые приведены в таблицах времени схватывания бетона.

Температура бетона, С Срок твердения бетона, сутки
1 2 3 4 5 6 7 14 28
Прочность бетона, %
0 20 26 31 35 39 43 46 61 77
10 27 35 42 48 51 55 59 75 91
15 30 39 45 52 55 60 64 81 100
20 34 43 50 56 60 65 69 87
30 39 51 57 64 68 73 76 95
40 48 57 64 70 75 80 85
50 49 62 70 78 84 90 95
60 54 68 78 86 92 98
70 60 73 84 96
80 65 80 92

Уход за бетоном после заливки: основные цели и методы

Процессы, связанные с проведением мероприятий, которые предшествуют распалубке, содержат несколько технологических приемов. Цель выполнения таких мероприятий одна – создание железобетонной конструкции, максимально соответствующей по своим физико-техническим свойствам параметрам, которые заложены в проект. Основополагающим мероприятием, безусловно, является уход за уложенной бетонной смесью.

Уход заключается в выполнении комплекса мероприятий, которые призваны создать условия, оптимально соответствующие происходящим в смеси физико-химическим преобразованиям, во время набора прочности бетона. Неукоснительное следование предписанным технологией ухода требованиям позволяет:

  • свести к минимальным значениям усадочные явления в бетонном составе пластического происхождения;
  • обеспечить прочностные и временные значения бетонного сооружения в параметрах, предусмотренных проектом;
  • предохранить бетонную смесь от температурных дисфункций;
  • препятствовать прелиминарному отвердению уложенной бетонной смеси;
  • предохранить сооружение от различного происхождения воздействий механического или химического генеза.

Процедуры ухода за свежеобустроенной железобетонной конструкцией следует начинать непосредственно по окончании укладки смеси и продолжаться до тех пор, пока ей не будет достигнуто 70 % прочности, предусмотренной проектом. Это предусматривается требованиями, изложенными в пункте 2.66 СНиПа 3.03.01. Распалубку можно провести и в более ранние сроки, если это обосновано сложившимися параметрическими обстоятельствами.

После окончания укладки бетонной смеси следует провести осмотр опалубочной конструкции. Цель такого осмотра – выяснение сохранения геометрических параметров, выявление протечек жидкой составляющей смеси и механических повреждений элементов опалубки. С учетом того, сколько времени застывает бетон, точнее сказать – с учетом времени его схватывания, проявившиеся дефекты необходимо устранить. Среднее время, за которое может схватиться свежеуложенная бетонная смесь, составляет около 2-х часов, в зависимости от температурных параметров и марки портландцемента. Конструкцию необходимо предохранять от любого механического воздействия в виде ударов, сотрясений, вибрационных проявлений столько, сколько времени сохнет бетон.

Стадии набора прочности бетонной конструкцией

Бетонная смесь любого состава имеет свойство схватываться и получать необходимые прочностные характеристики при прохождении двух стадий. Соблюдение оптимального соотношения временных, температурных параметров и значений приведенной влажности имеет определяющее значение для получения монолитной конструкции с запланированными свойствами.

Стадийные характеристики процесса заключаются в:

  • схватывании бетонного состава. Время предварительного схватывания не велико и составляет ориентировочно 24 часа при средней температуре +20 Со. Начальные процессы схватывания происходят в течение первых двух часов по затворении смеси водой. Окончательное схватывание происходит, как правило, в течение 3–4 часов. Применение специализированных полимерных добавок позволяет, при определенных условиях, период начального схватывания смеси сократить до нескольких десятков минут, но целесообразность такого экстремального метода бывает оправданной по большей части при поточном производстве железобетонных элементов промышленных конструкций;
  • отвердевании бетона. Бетон набирает прочность, когда в его массе протекает процесс гидратации, иными словами – удаление воды из бетонной смеси. Часть воды при прохождении этого процесса удаляется при ее испарении, другая часть связывается на молекулярном уровне с составляющими смесь химическими соединениями. Гидратация может происходить при неукоснительном соблюдении температурно-влажностного режима отвердевания. Нарушение условий приводит к сбоям в прохождении физико-химических процессов гидратации и, соответственно, к ухудшению качества железобетонной конструкции.

Зависимость времени набора прочности от марки бетонной смеси

Логически понятно, что применение для приготовления бетонных составов разных марок портландцемента приводит к изменению времени твердения бетона. Чем выше марка портландцемента, тем меньше время для набора прочности требуется смеси. Но при использовании любой марки, будь это марка 300 либо 400, не следует прикладывать к железобетонной конструкции значительные механического характера нагрузки раньше, чем по истечении 28 дней. Хотя время схватывания бетона по таблицам, приведенным в строительных правилах, может быть и меньше. Особенно это касается бетонов, приготовленных с применением портландцемента марки 400.

Марка цемента Время твердения различных марок бетона
за 14 суток за 28 суток
100 150 100 150 200 250 300 400
300 0.65 0.6 0.75 0.65 0.55 0.5 0.4
400 0.75 0.65 0.85 0.75 0.63 0.56 0.5 0.4
500 0.85 0.75 0.85 0.71 0.64 0.6 0.46
600 0.9 0.8 0.95 0.75 0.68 0.63 0.5

Проектирование, строительство и окончательное обустройство любых построек с применением железобетонных компонентов требует внимательного отношения ко всем стадиям возведения. Но от тщательности изготовления бетонных составляющих, в особенности фундаментов, в значительной степени зависит долговечность и надежность всего сооружения. Соблюдение сроков, за какое время схватываются бетонные смеси и составы, можно с уверенностью назвать основой успеха в любом строительном процессе.

Возведение конструкций различной конфигурации и назначения предполагает заливку фундамента. Поэтому многие строители, преимущественно начинающие, интересуются тем, каково же время набора прочности бетона. Сразу стоит отметить, что этот процесс зависит от многочисленных моментов, среди которых не только условия окружающей среды, но и составляющие самого раствора, используемого для заливки фундамента.

В этой статье мы попробуем разобраться, как набирает прочность бетон и есть ли методы ускорения этого процесса.

В чем суть процесса?

Условно, он делится на 2 этапа:

  1. Схватывание. Этот этап происходит в течение первых 24 часов после замешивания основы. Время схватываемости раствора зависит от показателей температуры в помещении или на улице. И если обеспечить должные условия, то можно ускорить схватывание бетонной массы.
  2. Твердение. Как только основа схватится, то наступает затвердение. Как ни странно, но затвердевание фундамента продолжается в течении 12-24 месяцев. При этом заявленные производителем значения, при обеспечении благоприятных условий, определяется на 28 день после заливки.

Интересно, что во многих источниках можно найти, от чего зависит кинетика набора прочности — температур, время. влажность, качество ингредиентов. Но мало где найдешь ответ на вопрос, за счет чего бетон набирает прочность? Это происходит в процессе гидратации цемента.

В сухом материале присутствуют 4 основных элемента:

  • аллит;
  • белит;
  • трехкальциевый алюминат;
  • четырехкальциевый аллюмоферрит.

Первым при замесе в реакцию вступает аллит, но это самый хрупкий минерал. Далее идут алюминаты и алюмоферриты. Последним в реакцию вступает белит, он же и дает необходимую прочность. При этом он гидратируется постепенно, ежегодно набирая нужные параметры. Даже спустя 50 лет процесс гидратации идет, соответственно, все это время бетон продолжает набирать прочность.

Процесс гидратации цемента начинается с момента смешения с водой и продолжается в течение долгого времени

Что же касается именно бетона, то его параметры зависят от степени гидратации цемента. Если речь идет о низкой степени, то спустя 4 недели она достигнет искомых 90%. В высокопрочном составе через это же время будет только половина (до 49%), и в дальнейшем с течением времени она будет только нарастать. В среднем за 3-5 лет прирост составляет порядка 60%.

Что влияет на вызревание фундамента

Как было сказано ранее, на то, сколько бетон набирает прочность, влияет целый ряд нюансов, к основным из которых относится:

  • температурные условия окружающей среды;
  • уровень влажности в месте, где производится заливка основы;
  • марка цемента;
  • время.
Температурные условия

Набор прочности бетона в зависимости от температуры окружающей среды, это актуальный вопрос для большинства людей, которые собственными силами занимаются заливкой фундамента. Тут стоит запомнить одно главное правило: чем холоднее на улице или в помещении, где проводится бетонирование поверхности, тем больше время твердения.

При температуре ниже 0°С укрепление основы приостанавливается и, как следствие, срок набора прочности увеличивается на неопределенное время. Порой достижение заявленных производителем прочностных характеристик происходит спустя несколько лет. Это когда процесс происходит в северных регионах. Такое явление обусловлено тем, что вода, имеющаяся в цементной массе, замерзает. А поскольку за счет влаги обеспечивается необходимая для процесса гидратация, то и затвердевание, так сказать, «замораживается».

Но как только на улице начнет теплеть и станет выше нулевой отметки, твердение продолжится. И так далее. Так выглядит набор прочности бетона в зависимости от температуры.

Теплые погодные условия «активизируют» и ускоряют твердение цементной основы. Скорость твердения бетона в зависимости от температуры прямо пропорциональна увеличению показателей окружающей среды. Так, при 40°С заявленные производителем показатели достигаются через 7-8 дней. Именно по этой причине многие опытные специалисты рекомендуют проводить заливку бетонного фундамента на приусадебном участке в жаркую погоду, за счет чего требуется гораздо меньше времени на организацию всего строительного процесса в целом, нежели в случае с заливкой фундамента в более холодную погоду.

Зимой, как только температура опускается до отметки 0 градусов, процесс гидратации полностью прекращается

Но даже в этом случае не стоит «пережаривать» бетон — пока нижние слои схватятся, верхние начнут трескаться. Это не добавляет ни эстетики, ни твердости. При проведении работ в жаркое время поверхность 2-3 раза в день обильно поливают водой и накрывают целлофаном.

За сколько бетон набирает прочность в зимнее время года? По сути, возведение фундамента зимой — это трудоемкий процесс, который требует использования специального оборудования для регулярного прогрева цементной массы с целью ускорения процесса его затвердевания.

При работе с бетонной массой с целью ускорения ее затвердевания нагрев свыше 90°С недопустим. Это может привести к растрескиванию будущей поверхности.

Для того, чтобы понять каким образом температура влияет на процесс затвердевания, можно изучить график набора прочности бетона. Это позволит визуально разобраться в данном явлении. График набора состоит из линий, которые выстроены на основании данных, собранных для цемента М400 при разном режиме.

График твердения бетона позволяет определить, какое процентное соотношение от марочных показателей будет достигнуто через некоторый временной промежуток. Проще говоря, по этим линиям можно узнать, сколько дней масса набирает марочное значение твердости при той или иной температуре.

Время

С целью определения оптимального, можно даже сказать, безопасного срока начала проведения строительных работ зачастую берется во внимание таблица набора прочности. По ней можно с легкостью определить за какое время застынет фундамент, приготовленной из той или иной марки цемента. Поэтому опытные специалисты всегда и пользуются подобными информационными таблицами.

Марка цемента

Среднесуточная t цементной основы, °С

Срок затвердевания по суткам

Показатели твердости бетонной массы на сжатие (% от заявленной)

М200-300, замешанный на портландцементе марки 400-500

В том случае, если нормативно-безопасный срок установлен на отметке в 50%, то самым оптимальным сроком старта строительных работ будет 72-80% от заявленных марочных показателей.

Показатели влажности

Сниженные показатели влажности окружающей среды негативно отражаются на процессе твердения фундаментной базы. При полнейшем отсутствии влаги процесс гидратации практически не происходит, и набор твердости неизбежно останавливается. Именно поэтому очень важно следить за влажностью заливаемого фундамента.

Если в помещении или на улице, где осуществляется заливка или кладка фундамент, повышенная влажность (70-90°), то скорость нарастания прочностных показателей возрастает.

Прогрев до такого высокого температурного режима при минимальных значениях влажности обязательно приведет к засыханию залитой поверхности и снизит скорость твердения. Чтоб избежать таких последствий, необходимо регулярно производить увлажнение. При таких обстоятельствах в жаркую погоду твердение будет происходить очень быстро.

ВИДЕО: Сколько твердеет бетон

Состав и эксплуатационные данные цемента

Если цемент обладает способностью тепловыделения и сразу после заливки он быстро твердеет, то после замерзания в цементной массе воды процесс твердения неизменно остановится. По этой причине во время строительных работ холодное время года лучше отдавать предпочтение смесям, приготовленным на основе противоморозных добавок.

Так, к примеру, глиноземистая масса после заливки выделяет в 7 раз больше теплоэнергии, нежели обычный портландцемент. Благодаря этому замешанная на основе такого цемента строительная смесь способна быстро набирать прочность даже при температуре ниже 0°С. что, собственно, и обусловлено его популярностью использования в холодное время года.

Стоит отметить и то, что марка цемента также влияет на скорость твердения заливки или кладки. Представленная дальше таблица наглядно демонстрирует эти данные.

Вот, собственно, и все, что нужно знать о затвердевании фундамента. Надеемся, эта информация будет использована вами на практике и поможет достичь поставленной задачи наилучшим образом!

ВИДЕО: Как ускорить затвердевание бетона

Уход за бетоном

Стоп-халтура! Очень и очень многие дачные строители думают, что следующая важная операция после окончания укладки бетона в опалубку — это распалубка и наслаждение результатами своего труда. На самом деле это не так. После окончания укладки бетона в опалубку начинается следующий серьезный строительный технологический процесс — уход за бетоном. С помощью создания оптимальных условий для гидратации в процессе ухода за бетоном достигается планируемая марочная прочность бетонного камня. Отсутствие этапа ухода за бетоном может привести к деформациям, возникновению трещин и уменьшению скорости набора прочности бетоном.
Уход за бетоном — это комплекс мероприятий по созданию оптимальных условий для выдерживания бетона до набора установленной марочной прочности. Основные цели ухода за бетоном:

  • Минимизировать пластическую усадку бетонной смеси;
  • Обеспечить достаточную прочность и долговечность бетона;
  • Предохранить бетон от перепадов температур;
  • Предохранить бетон от преждевременного высыхания;
  • Предохранить бетон от механического или химического повреждения.

Уход за свежеуложенным бетоном начинается сразу же после окончания укладки бетонной смеси и продолжается до достижения 70 % проектной прочности [пункт 2.66 СНиП 3.03.01-87] или иного обоснованного срока распалубки .
По окончании бетонирования необходимо осмотреть опалубку на предмет сохранения заданных геометрических размеров, течей и поломок. Все выявленные дефекты следует устранить до начала схватывания бетона (1-2 часа от укладки бетонной смеси). Твердеющий бетон необходимо предохранять от ударов, сотрясений и любых других механических воздействий.
В начальный период ухода за бетоном, сразу же после окончания его укладки во избежание размыва и порчи его поверхности, бетон следует укрыть полиэтиленовой пленкой, брезентом или мешковиной.
Особенно тщательно следует сохранять температурный и влажностный режим твердения бетона. Нормальная влажность для твердения это 90-100% в условии избытка воды. Как показано выше в таблице № 52 набор прочности в условиях влажности существенно увеличивает итоговую прочность цементного камня.

При преждевременном обезвоживании (которое также может произойти при утечке цементного молока из негидроизолированной опалубки) бетон получает недостаточную прочность поверхностей, склонность к отслаиванию песка от бетона, увеличенное водопоглощение, сниженную устойчивость против атмосферных и химических воздействий. Также при преждевременном обезвоживании возникают ранние усадочные трещины, и возникает опасность последующего образования поздних усадочных трещин. Преждевременные усадочные трещины образуются в первую очередь вследствие быстрого уменьшения объема свежеуложенного бетона на открытых участках поверхности за счет испарения и выветривания воды. При высыхании бетона он уменьшается в объеме и дает усадку. В результате этой деформации возникают структурные и внутренние напряжения, которые могут привести к трещинам. Усадочные трещины появляются сначала на поверхности бетона, а затем могут проникать вглубь. Поэтому необходимо позаботиться об отсроченном высыхании бетона. Оно должно начаться только тогда, когда бетон наберет достаточную прочность, чтобы выдерживать усадочное напряжение без образования трещин. При образовании ранних трещин, когда бетон еще остается пластичным, образующиеся усадочные трещины можно закрыть с помощью поверхностной вибрации.
Высыхание бетона ускоряется на ветру, при пониженной влажности и при температуре воздуха ниже, чем температура твердеющего бетона. Поэтому поверхность бетона надо предохранять от высыхания в период ухода за бетоном. После того как бетон наберет прочность 1,5 МПа (примерно 8 часов твердения) нужно регулярно увлажнять поверхность бетона водой путем рассеянного полива (не струей!). Можно укрыть поверхность мешковиной, брезентом или опилками и смачивать их водой, укрывая сверху полиэтиленовой пленкой, создавая условия по типу влажно-высыхающего компресса. Увлажнение бетона не проводится при среднесуточных температурах ниже +5°С. При угрозе промерзания бетон можно укрыть дополнительно теплоизолирующими материалами (пенопластом, минеральной ватой, ветошью, сеном, опилками и т.п.).
Даже если постоянное увлажнение бетона водой невозможно, бетон следует укрыть полимерной пленкой толщиной не менее 0,2 мм (200 микрон). Полотнища пленки должны быть уложены максимально возможными цельными кусками с минимум швов. Соединяют полотнища пленки внахлест с перекрытием в 30 см с проклейкой клейкой лентой. Кромки пленки должны плотно прилегать к бетону, чтобы минимизировать испарение воды из-под пленки.
Во избежание повреждения свежеуложенного бетона движущими грунтовыми водами необходимо оградить его от размывания до достижения прочности не ниже 25% (1-5 суток в зависимости от условий при положительной температуре).
Срок окончания ухода за бетоном совпадает со сроком его безопасной распалубки.

Таблица №69. Относительная прочность бетона на сжатие при различных температурах твердения


Бетон

Срок
твердения,
суток

Среднесуточная температура бетона, °С

прочность бетона на сжатие % от 28-суточной

М200 — М300 на
портландцементе
М-400, М-500

*Условно безопасный строк начала работ на фундаменте.

Уход за бетоном и температурный режим

Температура свежеприготовленной бетонной смеси не должна превышать 30 °C. При бетонировании при среднесуточной температуре воздуха от + 5°C до — 3°C, температура бетонной смеси при массе цемента более 240 кг /м3 (марка бетона М200 и выше) должна быть не менее +5°C, а при меньшем количестве цемента не менее +10°C.
Безопасное бетонирование при температуре воздуха менее — 3°C и однократное замораживание бетона и его оттаивание возможно только тогда, когда температуру бетонной смеси как минимум в течение 3 дней поддерживалась на уровне не ниже + 10 °C.

Бетонирование при холодной погоде

При холодной погоде наблюдается замедление схватывания и нарастания прочности бетона. При среднесуточной температуре + 5 °C требуется в два раза больше времени, чтобы бетон достиг такой же прочности, как при температуре +20 °C. При температуре, близкой к температуре замерзания, набор прочности бетона практически прекращается. Если свежий бетон замерзает, то его структура может разрушиться. Неиспользованная при гидратации цемента избыточная вода образует в твердеющем бетоне систему капиллярных пор.
При воздействии мороза вода, находящаяся в порах, полностью или частично замерзает, а образуемый в результате замерзания лед оказывает давление на стенки пор, которые могут привести к разрушению их структуры. Замерзание бетона в раннем возрасте влечет за собой значительное понижение его прочности после оттаивания и в процессе дальнейшего твердения по сравнению с нормально твердевшим бетоном. Это происходит из-за разрыва кристаллами льда связей между поверхностью зернистого заполнителя и цементным клеем (цементным камнем).
Устойчивости свежеуложенного бетона к замерзанию можно добиться специальным составом бетонной смеси и требуемыми сроками твердения бетона при положительной температуре.

Таблица №70. Время твердения бетона, необходимое для достижения достаточной стойкости к замерзанию (директива RILEM*)

Температура бетона (среднесуточная температура)

Класс прочности цемента

5 °C

12 °C

20 °C

Необходимое время твердения (дни) для достижения устойчивости к замерзанию бетона с водоцементным отношением 0,60

М400 Д20 32,5 Н (32,5N)

32,5R (быстротвердеющий)

4 2,5N

45 ,5R (быстротвердеющий)

*Международный союз лабораторий и экспертов в области строительных материалов, систем и конструкций.

Таблица № 71 Время твердения бетона, необходимое для достижения достаточной стойкости к замерзанию *


Класс (марка) бетона

Прочность бетона монолитных конструкций к моменту замерзания, %

Количество суток выдержки бетона при температуре бетона

В7,5-В10 (М100)

В12,5-В25 (M150 — М 350)

В30 (М400) и выше

Бетон в водонасыщенным состоянии с попеременными циклами замораживания

Бетон с противоморозными добавками, рассчитанными на определенную температуру

*Адаптировано с упрощением из таблицы №6 СНиП 3.03.01-87
К эффективным мерам для производства работ по бетонированию в зимнее время относятся:

  • использование цемента с быстрым набором прочности (литера “R” в классе прочности),
  • повышение содержания цемента в бетонной смеси,
  • снижение водоцементного отношения,
  • предварительный подогрев заполнителей (до + 35°C) и воды (до + 70°C) для бетонной смеси [таблица 6 СНиП 3.03.01-87] ,
  • использование противоморозных и воздухововлекающих добавок.

При применении подогрева бетона нельзя нагревать его до температур выше +30°C. При применении горячей воды с температурой до + 70°C ее предварительно следует смешать с зернистым заполнителем (до введения цемента в бетонную смесь), чтобы не «запарить» цемент. Для этого соблюдают следующую очередность загрузки материалов в бетоносмеситель:

  • одновременно с заполнителем подают основную часть нагретой воды,
  • после нескольких оборотов подают цемент и заливают остальную часть воды,
  • продолжительность перемешивания увеличивают в 1,25 -1,5 раза по сравнению с летними нормами для получения более однородной смеси (минимум 1,5 — 2 минуты),
  • продолжительность вибрирования бетонной смеси увеличивают в 1,25 раза.

При предварительном разогреве бетонной смеси, а также при применении бетона с противоморозными добавками допускается укладывать смесь на неотогретое непучинистое основание (песчаную подушку) или старый бетон, если по расчету в зоне контакта на протяжении расчетного периода выдерживания бетона не произойдет его замерзания [пункт 2.56 СНиП 3.03.01-87]. После укладки бетона и вибрирования, его необходимо укрыть полимерной пленкой и теплоизолирующими материалами (в том числе возможно использование снега), чтобы сохранить выделяющееся тепло при гидратации цемента (на протяжении 3-7 суток в нормальных условиях). При морозах следует построить над фундаментом парник и подогревать его.

Для самодеятельных дачных строителей без опыта можно рекомендовать придерживаться следующего правила: производить бетонные работы при ожидаемых среднесуточных температурах в пределах 28 суток от момента заливки фундамента ниже +5 °C не рекомендуется.
Также следует помнить, что не допускается оставлять малозаглубленные (незаглубленные) фундаменты незагруженными на зимний период . Если это условие по каким-либо обстоятельствам оказывается невыполнимым, вокруг фунда-ментов следует устраивать временно теплоизоляционные покрытия из опилок, шлака, керамзита, шлаковаты, соломы и других материалов, предохраняющих грунт от промерзания [пункт 6.6 ВСН 29-85]. Выпуски арматуры забетонированных конструкций должны быть укрыты или утеплены на высоту (длину) не менее чем 0,5 м.

Бетонирование при жаркой погоде

Повышение температуры бетона активизирует взаимодействие воды и цемента и ускоряет твердение бетона. С другой стороны, избыточный нагрев бетонной смеси приводит к расширению, которое фиксируется при схватывании бетона и твердении цементного камня. В дальнейшем, при охлаждении бетон сжимается, однако возникшая структура препятствует этому, и в бетоне возникают остаточные напряжения и деформации. Обычно бетон сильнее нагревается с поверхности, поэтому и избыточное напряжение в первую очередь возникает у его поверхности, где могут образовываться трещины. Критический период времени, когда образуются усадочные трещины, часто начинается через час после приготовления бетонной смеси и может продолжаться от 4 до 16 часов.
При прогнозируемой среднесуточной температуре воздуха выше + 25°C и относительной влажности воздуха менее 50% для бетонирования рекомендуется использовать быстротвердеющие портландцементы, марка которых должна превышать марочную прочность бетона не менее чем в 1,5 раза. Для бетонов класса В22,5 и выше допускается применять цементы, марка которых превышает марочную прочность бетона менее чем в 1,5 раза при условии применения пластифицированных портландцементов или введения пластифицирующих добавок [пункт 2.63 СНиП 3.03.01-87]. Либо использовать добавки, замедляющие сроки твердения бетона.
Также разумным может быть укладка бетона в утреннее, вечернее или ночное время при падении температуры воздуха и исключения воздействия на бетонную смесь солнечных лучей.
При бетонировании температура поверхности бетона не должна превышать + 30 +35°C. При появлении на поверхности уложенного бетона трещин вследствие пластической усадки допускается его повторное поверхностное вибрирование не позднее чем через 0,5-1 ч после окончания укладки. В особых случаях для охлаждения бетона можно использовать чешуйчатый лед.
Свежеуложенную бетонную смесь надо защищать от обезвоживания из-за воздействия температуры воздуха, солнечных лучей и ветра. После набора бетоном прочности 0,5 МПа, уход за бетоном должен заключаться в обеспечении постоянного влажного состояния поверхности путем устройства влагоемкого покрытия и его постоянного увлажнения, выдерживания открытых поверхностей бетона под слоем воды или непрерывного распыления влаги над поверхностью конструкций с помощью распылителя для газонов или перфорированного шланга. При этом только периодический полив водой открытых поверхностей твердеющих бетонных и железобетонных конструкций не допускается.
Во избежание возможного возникновения термонапряженного состояния в монолитных конструкциях при прямом воздействии солнечных лучей свежеуложенный бетон следует защищать отражающей (фольгированной) полимерной пленкой или бумагой в комбинации с теплоизолирующими материалами. При использовании деревянной опалубки, ее также нужно постоянно поливать водой.
Особенно актуальны меры по охлаждению твердеющего бетона при минимальном размере сечения фундаментной ленты 80 см и более. В этом случае при гидратации выделяется слишком много тепла и перегрев бетона и последующее образование трещин возможно даже при обычных температурных условиях.

Таблица №72. Мероприятия по уходу за бетоном в зависимости от температуры воздуха.


Мероприятия по уходу за бетоном

Температура воздуха °C

от -3°C до +5°C

от +5°C до +10°C

от +10°C до +15°C

от +15°C до +25°C

> + 2 5°C

Накрыть пленкой, увлажнять поверхность, увлажнять опалубку, покрыть бетон влагосохраняющим материалом

Да при сильном ветре

Накрыть пленкой, увлажнять поверхность.

Накрыть пленкой, положить теплоизоляцию

Накрыть пленкой, положить теплоизоляцию, устроить парник, подогревать 3 дня до T +10°C

Постоянно поддерживать тонкий слой воды на поверхности бетона

Вопрос: сколько нужно ждать, пока произойдет затвердения бетона? Как и за какое время бетон набирает прочность? Действительно ли нужно ждать 28 суток после того, как залит бетон? Когда можно нагружать бетонные конструкции?

Каждому застройщику или строителю выгоднее построить конструкцию, здание или сооружение за кратчайшие сроки. Но бытует целый ряд мнений о том, что необходимо после выполнения работ по бетонированию конструкций ждать пока конструкция «затвердеет» , чтоб потом приступить к следующему этапу строительства.

Нужно ли после заливки бетона ожидать 28 суток?

Для правильного вывода необходимо проанализировать нормативные документы и определить режим, этапы и сроки строительства.

При выполнении бетонных работ сталкиваются с двумя актуальными вопросами:

  1. Через какое время можно снимать опалубку?
  2. Через какое время можно нагружать железобетонный элемент или конструкцию?

Рассмотрим последовательно эти вопросы.

Для сборных железобетонных изделий очень важно определить отпускную прочность .

Отпускная прочность – это набранная прочность бетона, устанавливаемая нормативами, при которой железобетонное изделие возможно поставлять с завода на строительную площадку.

Величина отпускной прочности устанавливается согласно ГОСТов или других нормативных документов в зависимости от:

  • вида и размера конструкции;
  • состава бетона;
  • условий твердения;
  • температуры окружающей среды и климатических условий региона;
  • сроком и величины загрузки;
  • условия транспортировки.

Ниже, в таблице 1 приводятся в зависимости от вида и класса бетона, усредненные значения отпускной прочности в процентах от проектной.

Таблица 1

Итак, отпускная прочность сборных железобетонных изделий в зависимости от целого ряда факторов составляет 50÷100% от проектной. Вывод №1: при достижении отпускной прочности можно уже производить монтаж и затем нагружать железобетонные конструкции, с расчетом на то, что полное нагружение (100%) наступит не позже 28 суток от момента изготовления изделий. Более конкретный порядок и сроки нагружения сборных конструкций оговаривается в ППР (проект производства работ).

Также в строительстве существует такое понятие, как распалубочная прочность .

Распалубочная прочность – это минимальная набранная прочность бетона, при которой возможно извлечь опалубку, не повреждая бетон. Для сборных железобетонных изделий опалубочная прочность должна быть достаточная для безопасной транспортировки. Условия и скорость набора прочности для каждого изделия или конструкции определяются предприятием-изготовителем.

В условиях стройплощадки, при изготовлении монолитных конструкций распалубку, как правило выполняют непосредственно перед началом загружения конструкции.

СНиП 3.03.01-87 устанавливает следующие условия распалубки железобетонных конструкций (смотри таблицу 2 ).

Таблица 2

Параметр Распалубочная прочность (% от нормативной, на 28 сут)
Прочность бетона (в момент распалубки конструкций), не ниже:
— теплоизоляционного 0,5 МПа
— конструкционно-теплоизоляционного 1,5 МПа
— армированного 3,5 МПа, но не менее 50 % проектной прочности
— предварительно напряженного 14,0 МПа, но не менее 70 % проектной прочности
Распалубка железобетонных конструкций с последующей обработкой бетона (п. 2.34) 70 % от проектной прочности

Российский нормативный документ ТР 80-98 «Технические рекомендации по технологии бетонирования безобогревным способом монолитных конструкций с применением термоса и ускоренного термоса» приводит следующие разрешения по распалубки и нагрузки конструкций, таблица 3.

Необходимая прочность бетона для распалубки и нагрузки конструкции:

Таблица 3

Строительные конструкции
свыше 70% 70% и менее
прочность бетона, % от проектной
Боковые щиты опалубки на фундаменте и колоннах, стенах, ригелей и балок допускается при нормальных условиях твердения Снимать через 6 — 72 ч
Несущие щиты опалубки 100 См. ниже
Длина пролета несущих железобетонных плит до 3 м 100 70
Длина пролета несущих железобетонных плит (кроме плит) до 6 м 100 70
Колонны, несущие конструкции (балки, ригели, плиты) пролетом 6 м и более 100 80
Конструкции с напрягаемой арматурой 100 80

Примечания:

  1. Следует твердо помнить, что полностью на 100 % загружать конструкцию можно только, когда бетон наберет свою полную проектную прочность.
  2. Снимать боковые щиты ненесущей части опалубки можно при условии, когда разность температур между бетоном и наружным воздухом соответствует следующему условию:
  • Dt = 20 °С для конструкций с М п = 2 – 5;
  • Dt = 30 °С для конструкций с М п больше 5, где М п — модуль поверхности конструкции (отношение суммы площадей охлаждаемых поверхностей конструкций в м 2 к ее объему в м 3), м -1 .

Дальнейшие мероприятия по выполнению опалубочных работ и движение работников по железобетонным конструкциям допускается, когда прочность бетона составляет 1,5 МПа и более. (СНиП 3.03.01-87 , п. 2.17). Также, в этом нормативном документе есть указание (п.2.110), что при использовании промежуточных опор (подпорок) для перекрытия пролетов, при частичной или последовательной снятии опалубки, допустимая распалубочная прочность может быть понижена, а это означает большую оборачиваемость опалубки и уменьшения сроков строительства. Более конкретные мероприятия по раннем снятие опалубки должно определятся исходя из конкретных условий строительства и освещаться в ППР.

Некоторые литературные источники указывают следующие значения для распалубки железобетонных конструкций, табл. 4 :

Таблица 4

Вывод №2: исходя из всего выше приведенного и анализируя все таблицы по распалубочной прочности бетона и его нагружении, распалубочная прочность находится в пределах 50…80% от проектной. Тогда:

  1. распалубку конструкции допускается проводить, когда фактическая прочность бетона достигнет 70% от проектной, и в этом случае можно постепенно загружать дальше;
  2. распалубку конструкции допускается проводить, при фактической прочности 50% от проектной, только необходимо установить дополнительные опоры для страховки и исключения прогибов. В этом случае также можно постепенно нагружать конструкцию (ставить опалубку, кладку, и т.д.).
Через сколько времени бетон может набрать распалубочную прочность, при которой можно еще и нагружать конструкцию?

Как уже выше вспоминалось, при разных условиях (температура, влажность, атмосферные осадки и т.д.) разный бетон набирают прочность по разному. На рис. 2 приведен график скорости набора прочности в зависимости от температуры ТВО (тепло влажностной обработки).

Из графика видно, что в лабораторных условиях при постоянной температуре 60°С среднюю распалубочную прочность бетон (70%) приобретает через 32 часа (1,3 сут), а при температуре 30°С – приобретает примерно за 4 сут.

Так как на строительных объектах, в течении суток температура окружающего воздуха колеблется, то берут во внимание среднесуточную температуру, которая летом составляет 18…28°С, а осенью достигает и 5…10°С. При таких температурах бетон будет набирать прочность намного медленнее.

Рис. 1. График скорости набора прочности бетона в зависимости от температуры ТВО (тепло влажностной обработки)

На предприятиях по изготовлению бетона и конструкций из него, должны быть графики набора прочности бетона определенного состава. Для примерного определения прочности конкретного бетона, можно воспользоваться графиками набора прочности в зависимости от вида цемента, температуры и класса бетона (рис. 2 ) из нормативных документов .

Ниже приведен рост прочности бетона в зависимости от температуры окружающего воздуха или ТВО, (в % от R 28):

Графики набора прочности (табл. 5-9)

Набор прочности бетона класса С15 – С25 на портландцементе марки М400 (% от R 28):

Таблица 5

Возраст бетона, сут. Температура бетона, °С
-3 0 5 10 20 30 40 50 60
1/2 1 4 5 12 17 28 38 50
1 3 5 9 12 23 35 45 55 63
2 6 12 19 25 40 55 65 75 80
3 8 18 27 37 50 65 77 85
5 12 28 38 50 65 78 90
7 15 35 48 58 75 87 98
14 20 50 62 72 87 100
28 25 65 77 85 100

Набор прочности бетона класса С30 на портландцементе марки М500 (% от R 28):

Таблица 6

Возраст бетона, сут. Температура бетона, °С
-3 0 5 10 20 30 40 50 60
1 8 12 18 28 40 55 65 70
2 16 22 32 50 63 75 85 90
3 10 22 32 45 60 74 85 92 98
5 16 32 45 58 74 85 96
7 19 40 55 66 82 92 100
14 25 57 70 80 92 100
28 30 70 90 90 100

Набор прочности бетона класса С15 – С25 на шлакопортландцементе марки М400 (% от R 28):

Таблица 7

Возраст бетона, сут. Температура бетона, °С
-3 0 5 10 20 30 40 50 60
1/2 2 4 7 20 25 32 42
1 3 6 10 16 30 40 50 65
2 3 8 12 18 30 40 60 75 90
3 5 13 18 25 40 55 70 90
5 8 20 27 35 55 65 85
7 10 25 34 43 65 70 92
14 12 35 50 60 80 96 100
28 15 15 65 80 100

Набор прочности бетона класса С40 на портландцементе марки М600 (% от R 28):

Таблица 8

Возраст бетона, сут Температура бетона, °С
0 5 10 20 30 40
1 8 13 21 32 45 59
2 17 25 36 52 65 75
3 23 35 46 62 74 83
7 42 57 68 83 90 98
14 58 73 82 94 100
28 71 83 92 100

Набор прочности бетона с применением противоморозных добавок:

Таблица 9

Противоморозная добавка Вид вяжущего Температура твердения бетона, °С Прочность бетона, % от R 28 при твердении на морозе через число суток
7 14 28 90
1) Нитрит натрия (в водном растворе), Na N O 2 портландцемент -5 25 40 60 100
-10 15 25 35 70
-15 5 10 20 50
2) Нитрит натрия кристаллический, Na N O 2 портландцемент -5 25 40 60 100
-10 15 25 35 70
-15 5 10 20 50
3) Нитродап шлакопортландцемент -5 15 25 45 90
-10 10 15 25 60
-15 5 15 40

Вывод №3: из графиков и таблиц видно, что бетон на основе портландцемента при среднесуточной температуре 10 и выше набирает 50% прочности от проектной за 5…7 суток, а бетон на шлакопортландцементе набирает при тех же самых условиях – за 14 и более суток. Зимой при отрицательных температурах с применением даже противоморозных добавок (табл.9) бетон набирает проектную прочность за 90 суток и больше. Для ускорения времени набора требуемой прочности при зимнем бетонировании необходимо использовать электропрогрев.

Для быстрого набора прочности, согласно СНиП 3.03.01-87 «Несущие и ограждающие конструкции. 2. Бетонные работы» (п. 2.15) за бетоном нужен соответствующий уход. Уход за бетоном начинается сразу после укладки его в опалубку и продолжают до момента распалубки. Бетон следует хранить от прямого попадания солнечных лучей и атмосферных осадков, ветра, а также создать тепловлажностные условия для его твердения (накрыть пленкой). Рекомендуется бетон изготовленный на портландцементе в течении 7 суток поливать водой, а на основе малоактивных и шлакопортландцементах поливать не менее 14 суток. При температуре воздуха 15°С рекомендуется поливать бетон через 3 часа в течении первых 3 суток. При средней температуре воздуха от +5 до 0°С полив и смачивания бетона не осуществляется. Полная нагрузка (расчетная) железобетонных конструкций допускается только после того, как бетон будет иметь проектную прочность.

Отдельно хотелось заострить внимание на фундаменте, так как есть некоторые особенности его работы:

  1. Наилучшее время для строительства фундамента является лето (хороший температурный режим).
  2. Нежелательно, подвергать фундамент длительному простою, т.к. замокание котлована, морозное пучение, попеременное замораживание и оттаивание грунтов основания приводит к его разрушению.
  3. Выше перечисленные факторы приводят к неравномерной усадке фундамента.
  4. Если все-таки есть необходимость оставить фундамент зимовать, необходимо его «законсервировать» — закрыть и защитить от атмосферных осадков, исключить замокания и затопление грунта вблизи фундамента (примерно 0,4…0,5 м).
  5. Так как бетон при благоприятных условиях набирает 50…80% от проектной прочности за 7…14 дней, тогда допускается нагружать фундамент через 7…14 суток, с учетом, что полное нагружение (100%) наступит только после 28 суток с момента заливки фундамента.
  6. При использовании ускорителей твердения при нормальной температуре возможно уже нагружать фундамент и через 5 дней.
  7. Фундамент следует нагружать равномерно, чтобы избежать неравномерной осадки основания.

Для более точной подстраховки для контроля прочности фундаментов или других железобетонных конструкций изготавливают серию стандартных образцов-кубов 150х150х150 или 100х100х100 мм, которые потом испытывают на сжатие.

Литература:

  1. Как построить дом. Как бетон набирает крепость? Время затвердевания бетона, график набора крепости. Режим доступа:
  2. ТР 80-98 Технические рекомендации по технологии бетонирования безобогревным способом монолитных конструкций с применением термоса и ускоренного термоса. МОСКВА – 1998.
  3. ВСН 20-68 Указания на бетонирование в зимнее время дорожных оснований под асфальтобетонные покрытия в г. Москве.

Конев Александр Анатольевич

Влияние нагрузки и размеров балки на конструктивное поведение железобетонных балок при пожаре и после пожара | Международный журнал бетонных конструкций и материалов

Результаты испытаний на огнестойкость

Результаты экспериментов показывают, что температуры, полученные с помощью термопар, находятся в диапазоне от 100 до 600 ° C в зависимости от местоположения внутри секции балки. График зависимости температуры от времени для P1-120 на рис. 10 показывает, что температура быстро увеличивается до 20 мин испытания на огнестойкость.Однако через 20 мин повышение температуры замедляется. Кривые время-температура у других образцов имеют тенденцию быть похожими. Самые высокие температуры достигаются термопарами среди балок CON1, 3 и 4 серии S и CON1, 4 и 5 балок серии M и серии L. Все эти температуры находятся на расстоянии 40 мм от поверхности, подверженной воздействию огня. Самая высокая температура увеличивается с увеличением нагрузки, как показано в Таблице 4, потому что балка, нагруженная с высоким коэффициентом номинального момента, вызывает больше трещин, и через трещины легче передается тепло.Однако различия в максимальной температуре между балками с разными размерами поперечного сечения незначительны.

Рис. 10

График «Время-температура» Р1-120, нагруженного 40% номинального момента, под огнем.

Таблица 4 Максимальные температуры и максимальный прогиб во время огневого испытания.

Максимальный прогиб балок во время испытания на огнестойкость увеличивается с увеличением уровня нагрузки. Однако максимальный прогиб во время испытания на огнестойкость уменьшается по мере увеличения размера поперечного сечения, и степень уменьшения не является линейно пропорциональной размерам поперечного сечения.Это связано с тем, что существует комбинированное влияние размеров поперечного сечения и распределения температуры на прогиб балок под огнем. Рисунок 11 показывает, что прогиб всех образцов быстро увеличивается до 20 мин. Через 60 мин разница в прогибе между образцами больше. Максимальный прогиб балок достигается примерно на 90 мм в центре P3-120, нагруженного 80% номинального момента, что в три раза больше, чем у P1-120, нагруженного 40% номинального момента.Максимальные отклонения для P1-60 и MP1-60 аналогичны. Причина наличия аналогичных прогибов между MP1-60 и P1-60 может быть из-за комбинированного влияния размеров поперечного сечения и распределения температуры. Несмотря на то, что MP1-60 имеет больший размер поперечного сечения, он также показывает более высокие распределения температуры, чем P1-60. Максимальный прогиб LP1-60 достигается примерно на 9,14 мм в центре балки, что вдвое меньше, чем у P1-60.

Рис. 11

Прогиб образцов при огневых испытаниях. a по сравнению с другим уровнем нагрузки и b по сравнению с другим размером поперечного сечения.

Результаты испытания на остаточную прочность

Несущая способность

Кривые нагрузки-прогиба всех образцов, полученные в результате испытания на остаточную прочность, показаны на рис. 12. Различия в максимальных нагрузках между всеми образцами невелики, поскольку температуры арматурные стержни не достигают температуры 500 ° C, в то время как прочность стали значительно снижается до 50% от исходной прочности.Для образцов, нагретых в течение 120 мин, максимальная нагрузка P1-120, P2-120 и P3-120 составляет 169,88, 172,96 и 161,58 кН соответственно. Разница между максимальными нагрузками на управляющую балку и другую балку находится в пределах 10%, так что разница между максимальными нагрузками на управляющую балку и P3-120 является наибольшей и составляет 6,6%. Разница между максимальной нагрузкой управляющих балок и балок, поврежденных огнем, уменьшается с увеличением размера поперечного сечения (рис. 12).

Рис. 12

Кривые нагрузки-прогиба для образцов. a Образцы серии S, нагруженные 40% номинального момента, b образцы серии S, нагруженные 60% номинального момента, c образцы серии S, нагруженные 80% номинального момента, d образцов серии M , е экз. серии L.

Начальная жесткость

Как показано на кривых нагрузка-прогиб для образцов, не может быть обнаружено существенной разницы в остаточной прочности образцов. Однако уклоны для балок, поврежденных огнем, существенно различаются.Таким образом, начальная жесткость балок сравнивается с уровнем нагрузки, размером поперечного сечения и временем (Салливан и др. 2004). Жесткость уменьшается по мере увеличения уровня нагрузки или времени, как указано в таблице 5. Жесткость поврежденных огнем балок уменьшается из-за деградации материала бетона и стали с повышением температуры, например уменьшения модуля упругости. Степень уменьшения жесткости поврежденной огнем балки, нагретой в течение 1 часа, является наибольшей, а степень снижения жесткости со временем уменьшается.Жесткость P1-60, P1-90 и P1-120 на 31, 42 и 44% меньше, чем у контрольной балки соответственно.

Таблица 5 Температура и прогиб во время огневого испытания.

Как указано в Таблице 5, жесткость линейно уменьшается с увеличением уровня нагрузки. Жесткость балок P1-60, P2-60 и P3-60 соответственно на 31, 37 и 43% меньше, чем у управляющих балок.

Скорость уменьшения не пропорциональна размеру поперечного сечения. Жесткость P1-60, MP1-60 и LP1-60 на 31, 31 и 23% меньше, чем у контрольной балки соответственно.Жесткость серии S аналогична серии M, но отличается от серии L, поскольку отношение площади, подверженной воздействию высокой температуры, ко всей площади поперечного сечения невелико. Поскольку P1-60 и MP1-60 демонстрируют схожие отклонения друг от друга, жесткость P1-60 и MP1-60 схожа из-за комбинированного влияния размеров поперечного сечения и распределения температуры. Несмотря на то, что MP1-60 имеет больший размер поперечного сечения, он также показывает более высокие распределения температуры, чем P1-60.Результаты показывают, что на жесткость балок сильно влияет температура.

Пластичность

Поврежденные огнем балки демонстрируют хрупкое поведение по сравнению с контрольным пучком, как показано в Таблице 6. Пластичность уменьшается по мере увеличения нагрузки или времени воздействия огня, и скорость уменьшения не пропорциональна времени воздействия огня. период. Разница в пластичности между контрольной балкой и балкой, нагретой в течение 1 часа, больше, чем разница между балками, нагретыми в течение 1 и 2 часов.Для балки, нагруженной 40% номинального момента, показатели пластичности для P1-60, P1-90 и P1-120 на 34,11, 45,44 и 50,59% меньше, чем у контрольной балки, соответственно. Для балки, нагруженной 60% номинального момента, показатели пластичности P2-60 и P2-120 на 44,75 и 55,88% меньше, чем у управляющей балки, соответственно. Для балки, нагруженной 80% номинального момента, показатели пластичности P3-60 и P3-120 на 49,65 и 65,18% меньше, чем у управляющей балки, соответственно.Кроме того, пластичность уменьшается с увеличением уровня нагрузки, поскольку распределение температуры внутри балки увеличивается с увеличением уровня нагрузки. Для балок, нагретых в течение 2 ч, пластичность П1-120, П2-120 и П3-120 на 50,59, 55,88 и 65,18% меньше, чем у контрольной балки, соответственно.

Таблица 6 Показатель пластичности балок на прогиб.

Пластичность увеличивается с увеличением размера поперечного сечения. Как показано в Таблице 6, снижение пластичности управляющих балок происходит по мере увеличения размера поперечного сечения.Однако коэффициент уменьшения пластичности уменьшается с увеличением размера поперечного сечения. Показатели пластичности P1-60, MP1-60 и LP1-60 соответственно на 34,11, 33,28 и 16,33% меньше, чем у контрольной балки. Можно заметить, что балка с большим размером поперечного сечения более устойчива к возгоранию с точки зрения максимальной нагрузки, а также пластичности.

Результаты показывают, что пластичность балок сильно зависит от пламени, хотя балки имеют небольшие различия в максимальной нагрузке, потому что модуль упругости бетона и стали, уменьшающийся в зависимости от температуры, в большей степени влияет на пластичность, а предел прочности на растяжение уменьшение для арматурных стержней, связанное с максимальной нагрузкой, незначительно до 500 ° С.

На основе анализа КЭ можно предсказать пластичность балок, поврежденных огнем, и прогнозируемые индексы пластичности демонстрируют разумную тенденцию по сравнению с коэффициентами жесткости.

Как скоро укладывать бетон для стен и колонн на опоры и плиты? | Журнал Concrete Construction

Q .: Два аналогичных вопроса были подняты относительно укладки бетона поверх недавно завершенных плит и фундаментов. В одном случае подрядчик хотел сформировать и разместить стены подвала на следующий день после завершения строительства фундаментов, но архитектор потребовал от архитектора подождать 7 дней.В другом случае инженер отказал в разрешении на укладку бетонной колонны над полностью укрепленной и поддерживаемой плитой, которая была уложена 5–7 часами ранее в тот же день. Рассматриваемые столбцы располагались по центру над столбцами нижнего уровня. Какие правила ограничивают время заливки бетона в этих условиях?

A .: После долгих поисков и расследований мы пришли к выводу, что не существует никаких письменных правил, регулирующих эти случаи. Бетон в значительной степени имеет свои собственные правила в отношении времени схватывания и затвердевания, и у строителей, соблюдающих эти естественные ограничения, не было проблем.Например, подрядчик не будет использовать готовую плиту для установки опалубки для колонн до тех пор, пока бетон не станет достаточно твердым, чтобы не повредить его в результате работ. Опалубка и опоры, поддерживающие плиту, обычно также рассчитаны на то, чтобы выдерживать нагрузки от строительных работ на плите.

Стены подвала : Обычной практикой является заливка стен на следующий день после заливки фундаментов, но вряд ли вы найдете ссылку, в которой говорится, что вы можете или не можете это делать. Одна из причин, по которой это относительно безопасно, заключается в том, что размеры опор часто соответствуют минимальным требованиям местных норм, которые на самом деле превышают размер по сравнению с нагрузкой, которую стена будет оказывать на опору.Помните также, что на этом этапе строительства единственная нагрузка на опору будет исходить от веса стены, поскольку конструкция выше, для которой была спроектирована опора, еще не установлена.

Размещение колонн на новой плите : Проверив более десятка книг, технических отчетов и стандартов, касающихся опалубки и бетонных конструкций (из США и Европы), мы не нашли утверждения, ограничивающего время установки колонн на верх плиты.

Однако мы обнаружили ограничения на соответствующее условие размещения бетона в плитах и ​​балках поверх глубокого подъемника из свежего бетона в стенах или колоннах. Руководство Американского института бетона (ACI) по инспекции бетона, ACI «Технические требования к конструкционному бетону для зданий (ACI 301-84)» и Строительный кодекс ACI (ACI 318-89) содержат утверждения, аналогичные намерениям следующего раздела. 8.3.2 из ACI 301-84: «Укладка бетона в опорные элементы не должна начинаться до тех пор, пока бетон, ранее помещенный в колонны и стены, не перестанет быть пластичным и будет оставаться на месте не менее двух часов.«

Ни один из трех документов ACI не устанавливает каких-либо ограничений для связанных условий размещения бетона над поддерживаемым элементом (балкой или плитой).

Мы обсуждали этот вопрос с бывшим председателем комитета 301 ACI, Дэвидом Густафсоном, техническим директором Института железобетонной арматуры; и с нынешним председателем 301 Тимоти Мур из Gilbert / Commonwealth, Inc. Оба заявили, что не знают никаких правил или ограничений по времени укладки бетона колонн поверх недавно законченных плит.Мур далее заявил, что среди множества изменений, которые комитет рассматривает для будущих пересмотров ACI 301, такие положения не рассматриваются. Он сказал, что единственными другими положениями ACI 301, которые могут иметь какое-либо значение, будут те, которые касаются строительных швов. Раздел 6.1 ACI 301 (строительные швы) содержит положения о расположении строительных швов и склеивании в строительных швах, где это необходимо или разрешено, но ничего не касается сроков размещения.

Мы также опросили Рэнди Борднера, бывшего председателя комитета ACI 347, Опалубка для бетона.Борднер — профессиональный инженер и специалист в области проектирования и строительства многоэтажных зданий. Он заявил, что на его работах бетон колонн обычно укладывался поверх бетонной плиты, уложенной в тот же день, единственная проблема заключалась в удовлетворительной твердости плиты для крепления любых необходимых шаблонов и распорок.

Интересно, что П. Кумар Мета из Калифорнийского университета в Беркли говорит в своей книге Конструкция, свойства и материалы бетона относительно схватывания и твердения цементного теста в бетоне (стр. 191): «Время, затраченное на «solidify» полностью отмечает окончательный набор, который не должен быть слишком длинным, чтобы возобновить строительные работы в разумные сроки после укладки бетона.«

Это заявление подразумевает, что возобновление строительных работ может произойти во время окончательной установки.

Как укрепить бетонную плиту на земле для предотвращения образования трещин

Большинство плит на земле не армированы или номинально армированы для контроля ширины трещин. При размещении в верхней или верхней части толщины плиты стальная арматура ограничивает ширину случайных трещин, которые могут возникнуть из-за усадки бетона и температурных ограничений, осадки основания, приложенных нагрузок или других проблем.

Этот тип армирования обычно называют усадочным и температурным армированием.

Усадочная и температурная арматура отличается от структурной арматуры. Структурная арматура обычно размещается в нижней части толщины плиты для увеличения несущей способности плиты. Большинство строительных плит на земле имеют как верхний, так и нижний слои армирования для контроля ширины трещин и увеличения несущей способности. Из-за проблем с конструктивностью и затрат, связанных с двумя слоями армирования, конструкционные плиты на земле не так распространены, как неструктурные плиты.

Несмотря на то, что существует несколько вариантов армирования неструктурных плит на грунте, в этой статье основное внимание уделяется стальным арматурным стержням и арматуре из сварной проволоки для контроля ширины трещин.

Неограниченный рост ширины трещины приводит к выкрашиванию кромок вдоль несоединенных трещин при воздействии колесного транспорта, особенно жестких колесных погрузчиков.

Основы

Стальная арматура и арматура из сварной проволоки не препятствуют растрескиванию. Армирование в основном бездействует, пока бетон не потрескается.После растрескивания он становится активным и регулирует ширину трещины, ограничивая ее рост.

Если плиты размещены на высококачественных основаниях с однородной опорой и состоят из бетона с низкой усадкой и правильно установленными стыками с шагом 15 футов или меньше, в армировании, как правило, нет необходимости. Скорее всего, случайных или несвязных трещин будет немного. Если все же возникают случайные трещины, они должны оставаться достаточно плотными из-за ограниченного расстояния между стыками и низкой усадки бетона, что ограничивает будущую пригодность к эксплуатации или техническому обслуживанию.

Когда плиты размещаются на проблемных основаниях с риском неоднородной опоры или состоят из бетона со средней и высокой усадкой, или если расстояние между стыками превышает 15 футов, то необходимо армирование, чтобы ограничить ширину трещин в случае их возникновения. По мере того, как ширина трещины увеличивается и приближается к 35 мил (0,035 дюйма), эффективность передачи нагрузки через блокировку заполнителя уменьшается, и могут происходить дифференциальные вертикальные перемещения по трещинам или «раскачивание» плиты. Когда это происходит, края трещин становятся обнаженными, и, вероятно, произойдет скалывание кромок, особенно если плита подвергается воздействию колесного транспорта и особенно жестких колесных погрузчиков.Как только начинается скалывание, ширина трещин на поверхности становится шире, и износ плиты по трещинам значительно увеличивается.

Если усадочные швы недопустимы и не установлены, требуется усиление усадки и температурного усиления. Такой подход к проектированию иногда называют непрерывно армированными плитами или плитами без стыков, и он допускает многочисленные, близко расположенные (от 3 до 6 футов) мелкие трещины по всей плите.

Неограниченный рост ширины трещины приводит к выкрашиванию кромок вдоль несоединенных трещин при воздействии колесного транспорта, особенно жестких колесных погрузчиков.

Опции контроля трещин

В целом, существует два варианта контроля трещин в плитах на земле: 1) контроль местоположения трещин путем установки усадочных швов (не контролирует ширину трещин) или 2) контроль ширины трещин путем установки арматуры (не контролирует трещину. место нахождения).

В варианте 1 мы указываем плите, где происходит трещина, и ширина усадочных швов или трещин в швах в значительной степени определяется расстоянием между швами и усадкой бетона.По мере увеличения расстояний между швами и усадки бетона ширина швов увеличивается. Подобно трещинам, если ширина шва приближается к 35 мил, эффективность блокировки заполнителя для передачи нагрузок и предотвращения дифференциальных вертикальных перемещений по швам может быть значительно снижена. По этой причине многие проектировщики используют устройства для передачи нагрузки, включая стальные дюбели, пластины или непрерывную арматуру через усадочные соединения, чтобы обеспечить положительную передачу нагрузки и ограничить дифференциальные вертикальные перемещения в соединениях.

В варианте 2 мы допускаем случайное растрескивание плит, но контролируем ширину трещин с помощью стальных арматурных стержней или арматуры из сварной проволоки. Обычно с этой опцией не устанавливаются усадочные швы. Вместо этого растрескивание происходит беспорядочно, образуя многочисленные, плотно прилегающие друг к другу трещины. Из-за внешнего вида этот вариант борьбы с трещинами всегда следует обсуждать с владельцем.

Вырезка арматуры на стыках

Соблюдайте осторожность при использовании обоих вариантов контроля трещин в одной плите.Если через усадочные стыки проходит слишком много арматуры, стыки становятся слишком жесткими и могут не треснуть и раскрыться, как задумано. Когда усадочные соединения не активируются (т. Е. Трескаются и открываются) из-за армирования, обычно происходит расслоение или случайное растрескивание. Если используются оба варианта, необходимо ограничить количество арматуры, проходящей через стыки, чтобы обеспечить правильную активацию.

Некоторые проектировщики предписывают обрезать всю арматуру в усадочных соединениях, в то время как другие могут предписывать обрезать все остальные стержни или проволоки.Обрезая все остальные стержни или проволоки, оставшаяся арматура поможет обеспечить передачу нагрузки и минимизировать дифференциальные движения панели, но не ограничит срабатывание соединений. Если в спецификациях и строительных чертежах не указано, что делать с температурной и усадочной арматурой в стыках, подрядчикам следует подать запрос о предоставлении информации. Часто подрядчиков необоснованно обвиняют в несоответствующем растрескивании, связанном с этой проблемой проектирования.

Метод «тянуть и тянуть» для перемещения арматуры из сварной проволоки в указанное место является неэффективным методом, которого подрядчикам следует избегать.

Расположение арматуры

Стальную арматуру и арматуру из сварной проволоки следует располагать в верхней трети толщины плиты, поскольку усадочные и температурные трещины возникают на поверхности плиты. Трещины шире на поверхности и сужаются по глубине. Таким образом, арматура для предотвращения трещин никогда не должна располагаться ниже середины плиты. Арматуру также следует размещать достаточно низко, чтобы пропил не повредил арматуру. Для армирования сварной проволокой Институт армирования проволоки рекомендует размещать сталь на 2 дюйма ниже поверхности или в пределах верхней трети толщины плиты, в зависимости от того, что ближе к поверхности.Проектировщики обычно определяют положение армирования, указывая бетонное покрытие (от 1 1/2 до 2 дюймов) для арматуры.

Не рекомендуется размещать один слой арматуры в центре или на средней глубине плиты (за исключением плит толщиной 4 дюйма). Это универсальное место, где проектировщик надеется увеличить несущую способность плиты в дополнение к обеспечению контроля ширины трещин. Однако размещение арматуры в середине плиты не может эффективно решить ни одну из задач.

Стальная арматура и арматура из сварной проволоки должны поддерживаться и в достаточной степени связаны вместе, чтобы минимизировать смещения во время укладки бетона и отделочных работ. В противном случае арматура может неправильно расположиться в плите. Поддерживайте арматуру стульями или опорами из сборных железобетонных стержней. У стульев должны быть песочные или опорные плиты, а у брусьев должно быть как минимум 4-дюймовое квадратное основание, чтобы они не проваливались в основание. Используйте такие расстояния между опорами, которые гарантируют, что арматура не провисает между опорами и не сдавливается пешеходами или свежим бетоном.Гибкое армирование, включая арматуру из сварной проволоки, требует меньшего расстояния между опорами. Помимо указания типа и количества арматуры, проектировщики должны указать тип и расстояние между опорами, чтобы обеспечить правильное расположение арматуры.

Сварную проволочную арматуру нельзя класть на землю и тянуть на место после укладки бетона. Техника «зацепи-тяни» всегда приводит к неправильному расположению арматуры. Как рабочие могут равномерно «зацепить и потянуть» арматуру из сварной проволоки в указанном месте, стоя на арматуре?

Арматура, частично заглубленная в основание, не обеспечивает контроль ширины трещины.Без поддержки стульев или сборных бетонных блоков арматура обычно заканчивается в нижней части плиты или закапывается в основание.

Допуски размещения

Допуск вертикального размещения арматуры в плитах на земле составляет ± 3/4 дюйма от указанного места. Для плиты толщиной 12 дюймов или менее допуск бетонного покрытия составляет — 3/8 дюйма, измеренный перпендикулярно бетонной поверхности, и уменьшение покрытия не может превышать одну треть указанного покрытия.Во многих случаях допуск покрытия имеет приоритет над допуском вертикального размещения. Правильное размещение и поддержка арматуры поможет обеспечить соблюдение этих допусков по вертикальному размещению.

Эта статья была первоначально опубликована 25 февраля 2013 года.

Артикулы:

ACI 117-06. «Спецификация допусков для бетонных конструкций и материалов»

ACI 302.1R-04. «Руководство по устройству бетонных перекрытий и перекрытий»

ACI 360R-06.«Дизайн плит-на-земле»

Заявление о позиции ASCC №2. «Расположение катаной сварной проволочной сетки в бетоне»

WRI Tech Facts. «Опоры необходимы для долговременной работы арматуры сварной проволокой в ​​плите на одном слое» (TF 702-R-08)

WRI Tech Facts. «Как определить, заказать и использовать сварную проволочную арматуру» (TF 202-R-03)

Различия между структурной бетонной плитой и простой бетонной структурной плитой

A : Конструктивно армированная плита на земле состоит из смеси бетона и конструкционной стали, чтобы выдерживать расчетную нагрузку.Конструкционная сталь может быть арматурной или WWF. Площадь поперечного сечения стали вводится в инженерные формулы, найденные в ACI 318, для определения несущей способности для данной конструкции плиты. В конструкционной бетонной плите толщина плиты не является фактором, определяющим несущую способность этой плиты. Площадь поперечного сечения стали, расстояние между ними и ее свойства при растяжении — это параметры стали, используемые в расчетах.

Подчеркнем, что несущая способность конструктивно железобетонной плиты определяется свойствами указанной конструкционной стальной арматуры.ACI 301- «Стандартные спецификации для конструкционного бетона» и 318 являются источниками для выбора подхода к проектированию плиты. Для расчета свойств плиты используются методы проектирования Вестергаарда и / или Майерхофа.

Обычная конструкционная бетонная плита на земле использует свойства бетона, чтобы выдерживать расчетные нагрузки. Здесь толщина плиты, а также характеристики прочности бетона на сжатие и изгиб, основанные на 28-дневных испытаниях, являются контролирующими параметрами. По определению, вторичная / термоусадочная арматура используется для контроля трещин после их образования в поперечном сечении бетона.Вторичная арматура не учитывается при определении несущей способности плиты.

Толщина простой бетонной плиты определяется свойствами бетона, используемого в плите. Гильдия ACI 302 для строительства бетонных перекрытий и перекрытий и ACI 360 Design of Slab on Grade предоставляет методологию проектирования для этого типа перекрытий. Существуют дополнительные протоколы проектирования бетонных конструкций ACI, такие как ACI 330 для парковок.

Как правило, дороги и автостоянки, а также большинство промышленных, складских и коммерческих плит перекрытия проектируются из простого конструкционного бетона.Плоские бетонные плиты будут толще, чем структурные плиты, но в большинстве случаев экономически эффективны по сравнению со структурными плитами. Использование бетона, армированного волокнами, по сравнению с обычной сталью в качестве вторичного армирования в большинстве случаев очень рентабельно, поскольку нет никаких затрат на строительство, связанных с волокнами. Мы можем сжать график проекта, избавившись от необходимости предварительно размещать проволочную сетку. Мы также можем снизить затраты, устраняя необходимость в бетононасосе, когда вместо проволочной сетки в плитах на земле используются волокна.В данном случае использование волокон позволяет автофургону готовой смеси выгружать прямо на основание плиты в месте использования.

Уровень дозировки микросинтетических волокон в качестве вторичного армирования в жилых плитах на земле может варьироваться от 1,0 фунта на кубический ярд для моноволокон и до 1,5 фунтов на кубический ярд для фибриллированного полипропиленового волокна. Более низкие уровни дозировки для каждого материала могут использоваться, когда единственная ответственность заключается в растрескивании пластической усадки и оседании пластика.Например, спроектированная доза для моноволоконных полипропиленовых волокон с большим количеством волокон в качестве пластической усадочной арматуры составляет ½ фунта / с.

Макросинтетические волокна

используются при строительстве плит перекрытий коммерческих, промышленных и складских помещений. Здесь средняя остаточная прочность, определенная в соответствии с ASTM C1399, может быть использована для установления минимальных требований к дозировке макросинтетических волокон.

Некоторые измеримые характеристики прочности бетона могут быть улучшены при использовании волокон.Методы испытаний, используемые для получения этих данных, можно найти в документах ASTM, ACI или других согласованных групп или правительственных агентств. ICC ES AC32 представляет собой отличный источник методов испытаний бетона, армированного синтетическим волокном, как для армирования пластических усадочных трещин, так и для армирования термической усадки. ICC ES AC208 доступен для бетона, армированного стальным волокном.

Вторичная арматура, как определено в нескольких документах ACI, в том числе 302, 318 и 330, ограничивает ответственность «удержанием бетона вместе после его растрескивания».Кроме того, количество обычного вторичного армирования определяется по одной из 5 эмпирических формул. Параллельное чтение должно включать статью, написанную для WRI Робертом Андерсоном, PE, в которой обсуждается применение этих формул. В документе г-на Андерсона есть таблица, в которой указано количество вторичного армирования, которое будет обеспечивать каждая формула. Ни одна из пяти формул не дает одинакового ответа.

Основной проблемой при использовании проволочной сетки или арматуры № 3 или № 4 в качестве вторичного армирования является необходимость иметь эту арматуру на надлежащей высоте в пределах поперечного сечения бетона для выполнения работ.Если стулья / опоры не указаны и не используются, WWF обычно не выполняет свои функции. Волокна, с другой стороны, можно найти по всей массе бетона, распределены в трех измерениях, и было доказано, что они обеспечивают усиление вторичной / температурной усадки, а также некоторые другие измеримые преимущества в долговечности, которые продлят срок службы конкретный.

R.C. Зеллерс, ЧП / ПЛС

Директор по инженерным услугам

Сравнение стальных и бетонных конструкций

Бетон и сталь являются одними из самых распространенных строительных материалов, и во многих строительных проектах можно использовать любой из них в качестве основной конструкции.У каждого материала есть свои преимущества и недостатки, как и в любом инженерном решении, и в этой статье дается общее сравнение. Ни один материал не может считаться лучше другого для всех случаев, и лучший вариант определяется условиями проекта.


Уменьшите стоимость вашего следующего строительного проекта.


Бетонная конструкция

Бетон — второй по популярности материал в строительстве после воды: он отличается универсальностью, долговечностью и простотой изготовления, его можно формовать в любой форме.

  • Бетонные конструкции очень устойчивы к сжатию, но не могут эффективно справляться с растяжением.

  • По этой причине большинство бетонных конструкций армируют стальными стержнями, которые обеспечивают дополнительную поддержку растягивающих нагрузок, и эта комбинация называется железобетонной.

Бетонные конструкции можно возводить разными способами, используя разные типы бетона. Три наиболее распространенных типа — это простой цементный бетон, железобетон и предварительно напряженный бетон.

Обычный цементный бетон получают путем смешивания цемента, крупного заполнителя (гравия), мелкого заполнителя (песка) и воды в заданной пропорции в соответствии с потребностями проекта. При затвердевании эти материалы становятся однородной массой.

  • Конструкции из простого цементного бетона обладают высокой прочностью на сжатие, но почти не имеют прочности на растяжение.

  • Таким образом, простой цементный бетон в основном используется в дорогах и бетонных блоках для стен, поскольку эти конструкции подвержены сжимающим нагрузкам.

Железобетон — это простой цементный бетон со стальными стержнями, которые обеспечивают дополнительную прочность на растяжение. Это наиболее распространенный тип бетона, используемый в строительстве, который применяется не только в зданиях, но и в таких конструкциях, как резервуары для воды.

Предварительно напряженный бетон предварительно нагружают путем приложения сжимающего напряжения до того, как он подвергнется любой нагрузке, кроме собственного веса. Сжатие достигается за счет растяжения арматуры из высокопрочной стали в объеме бетона перед приложением внешних нагрузок.Это улучшает его производительность после эксплуатации.

В следующей таблице приведены преимущества и недостатки бетонных конструкций:


Стальная конструкция

Сталь

— это сплав железа, углерода и других элементов. В зависимости от химического состава она классифицируется как низкоуглеродистая сталь, среднеуглеродистая сталь, высокоуглеродистая сталь, низколегированная сталь или высоколегированная сталь.

Как следует из названия, конструкционная сталь — это категория стали, используемой в строительной отрасли .Профили и свойства конструкционной стали регулируются такими стандартами, как стандарты Американского института стальных конструкций (AISC).

  • Большинство профилей из конструкционной стали представляют собой удлиненные балки определенного поперечного сечения.

  • Самая распространенная форма — двутавровая балка, которая очень жесткая по отношению к площади поперечного сечения. Следовательно, он может выдерживать высокие нагрузки без деформаций

В следующих таблицах обобщены преимущества и недостатки стальных конструкций:


Прямое сравнение бетона и стали

Оба материала обладают многочисленными преимуществами, как описано в предыдущих разделах.При выборе между бетонной конструкцией и стальной конструкцией можно ожидать следующих различий:

Наиболее подходящий строительный материал для вашего здания определяется потребностями конкретного проекта. Например, бетон позволяет снизить затраты на строительство в обмен на более длительное время строительства, тогда как сталь предпочтительнее, когда приоритетом является быстрое строительство. В случаях, когда пространство ограничено, сталь экономит место по сравнению с более громоздкой бетонной конструкцией.

(PDF) Прочность бетона на сжатие после ранней загрузки

образца мокрого отверждения из опубликованной статьи были пересчитаны

, чтобы получить результат, аналогичный приведенному здесь.

2. Обзор литературы

Бетон при одноосном нагружении будет образовывать трещины, параллельные

направлению нагружения. При одноосной нагрузке от 30% до

около 70% максимального напряжения в бетоне будет происходить медленное распространение трещин

.При уровне от 70 до 90% трещины начнут заметно увеличиваться (Santiago and Hilsdorf, 1973).

мелких трещин, образовавшихся в трещиноватом бетоне, способны

полностью восстановиться во влажных условиях; этому способствует

образованию нерастворимого карбоната кальция из гидроксида кальция

в гидратированном цементе (Невилл, 1994). Процесс самовосстановления потрескавшегося бетона

известен как автоматическое заживление

.

Из более ранних исследований было обнаружено, что феномен автогенного заживления

излечивает образцы с трещинами до прочности, почти равной

по сравнению с незагруженными образцами, при условии, что образцы не были сильно разрушены

и подвергались непрерывному влажному отверждению (Gilkey,

1926 г.). Впервые аутогенное заживление было обнаружено Абрамсом в

1913 (Whitlam, 1954), когда трещины исчезли на мосту

через 3 года после их появления. Для количественной оценки аутогенного исцеления

время перезарядки варьировалось от 3 дней до 10 лет в

различных исследованиях с момента его открытия.В 1950 г. исследование

образцов бетона возрастом 10–5 лет в условиях постоянной ползучести

было перезагружено для изучения эффектов долговременной ползучести

(Washa and Fluck, 1950). Повторно загруженные образцы показали

«примерно на 5% выше [прочность на сжатие] для бетона

, набиваемого вручную стержнями, чем у сопутствующих разгруженных цилиндров».

Абдель-Джавад и Хаддад (1992) провели испытания, которые составили

, аналогичные приведенным здесь, и пришли к выводу, что «загрузка

бетона после 8 часов заливки до 90% от его прочности на сжатие

[на время нагрузки] не влияет на прочность бетона

в более позднем возрасте ».Нагрузка бетона после максимального напряжения

(то есть до разрушения) привела к потере прочности от 10 до 50%,

в зависимости от возраста во время нагрузки, возраста во время повторных испытаний

и условий отверждения.

После повторного изучения авторами исследования

, проведенного Абдель-Джавадом и Хаддадом (1992), в котором 900

образцов были загружены через 8-72 часа после литья и повторно загружены

в период от 7 до 90 дней, Было обнаружено, что при определенных условиях

раздробленные образцы показали большую прочность

развития по сравнению с образцами, не загруженными ранее.Эксперимент

был направлен на повторное испытание бетона с различными соотношениями вода /

цемент (в / ц) через 7, 28 и 90 дней как в мокрых, так и в сухих условиях

. Рисунок 1 взят из их данных, собранных для влажных

отвержденных образцов

с отношением воды к массе 0–7, показывающим соотношение прочности

образцов, ранее загруженных по сравнению с контрольными образцами

.

При условиях: (1) начальная загрузка происходит через

8 часов литья; (2) нагрузка менее 100%; и (3) возраст повторных испытаний

составлял 28 дней, было обнаружено, что большинство из

образцов показали значительное увеличение прочности в среднем

при старении на 5-7% выше контрольной прочности (рис. 2). ).Это

не соответствует типичным теоретическим моделям относительно

автогенного заживления образцов, где ожидается, что только

образцов восстановят свою первоначальную прочность (Невилл, 1994).

Коутиньо (1977) предположил, что это связано с фактором ползучести;

«давление, как и температура, влияет на химические реакции,

, в частности, на реакцию компонентов цемента с водой.

Давление, которому подвергаются компоненты цемента

, увеличивает их растворимость в воде, с которой они находятся в контакте

, тем самым увеличивая гидратацию цемента ».Также было высказано предположение, что

это увеличение прочности больше, когда

применяется к бетону более молодого возраста в течение более длительных периодов нагружения

, хотя Коутиньо отметил, что увеличение прочности на сжатие

не превышает 15%. .

Исследование 2002 года (Liu et al., 2002), в котором восстановление трещины

при постоянном двухосном сжатии (30% предела прочности

за период 14 дней) также обнаружило это явление

повышенной прочности для исследуемых образцов. сжимать

нагрузку.Был сделан вывод, что «деформации ползучести бетона

однозначно не вызовут повреждения материала. В отличие от

, устойчивая сжимающая нагрузка в раннем возрасте может повысить прочность

». Подобно работе, проделанной Абдель-Джавадом

и Хаддадом (1992), увеличение силы было наиболее заметным примерно через 4 недели после заброса, а в более позднем возрасте стало менее заметным

. Результаты их исследования также показывают

, что устойчивая двухосная нагрузка вызвала большее увеличение прочности

, чем только одноосное нагружение (Таблица 1).

3. Методика эксперимента

Класс цемента CEMII / A LL 32,5R согласно BS EN197 (BSI, 2000)

был использован для создания трех различных смесей с 10 мм 10 мм. через сито 600 мм (таблица 2).

Бетонные кубики диаметром 100 мм были изготовлены в соответствии с BS 8500-1: 2006

(BSI, 2006) и испытаны в соответствии с BS EN 12390-3-2009 (BSI, 2009) на 1,

3 и 7 дней до их обозначенные нагрузки 90, 80 и 70% от предельной нагрузки

.В среднем для двух контрольных образцов было использовано

для каждой переменной, чтобы найти соответствующий процент от предельной нагрузки

для теста. Два повторных образца для переменной

были загружены до соответствующих значений с постоянной скоростью

0–1 Н / мм

2

в секунду и немедленно выпущены.

В дополнение к стандартному тесту, датчик линейного смещения

использовался для регистрации смещения во время тестирования.

Аппарат регистрировал нагрузку и смещение с интервалами 0–1 с

.Поправочный коэффициент, полученный в результате калибровочных испытаний, составил

Строительные материалы Прочность на сжатие

бетона после ранней загрузки

Клесс и Дин

2

Дефекты в бетонных конструкциях — Типы Причины, Предотвращение

🕑 Время считывания: 1 минута

Различные типы дефектов в бетонных конструкциях могут быть трещинами, трещинами, пузырями, расслоением, пылеобразованием, скручиванием, выцветанием, образованием окалины и отслаивания. Эти дефекты могут быть вызваны разными причинами или причинами.

Причины дефектов бетонных конструкций Причины дефектов в бетонных конструкциях можно условно разделить на следующие категории:
  1. Несовершенство конструкции, вызванное ошибками в конструкции, критериях нагрузки, неожиданной перегрузкой и т. Д.
  2. Несовершенство конструкции из-за дефектов конструкции.
  3. Ущерб от пожаров, наводнений, землетрясений, циклонов и т. Д.
  4. Повреждения из-за химического воздействия.
  5. Ущерб из-за морской среды.
  6. Повреждения из-за истирания сыпучих материалов.
  7. Движение бетона в зависимости от физических характеристик.

Дефекты конструкции, связанные с проектированием и детализацией В таком случае проектная группа должна детально изучить проект и разработать меры по устранению недостатков. Как только это будет сделано, методы устранения неисправностей будут аналогичны методам устранения других дефектов.

Несовершенство конструкции из-за дефектов конструкции Неправильные методы строительства образуют самый большой сегмент источника повреждения лучей.Такие дефекты можно условно разделить на следующие:
  1. Дефекты по качеству сырья.
  2. Непринятие заданной бетонной смеси.
  3. Использование неисправного строительного оборудования для производства, транспортировки и укладки бетона.
  4. Неисправное качество изготовления.
  5. Недостаточное качество детализации.
Крайне необходимо правильно подобрать цемент для бетона, входящего в рассматриваемую конструкцию. Обычный портландцемент — самый распространенный из всех цементов.При условии, что качество цемента соответствует соответствующим стандартным спецификациям, во время использования обычно не возникает проблем с обычным портландцементом. Если бетон подвергается воздействию агрессивной среды, может потребоваться использование специальных цементов, таких как сульфатостойкий портландцемент, доменный шлаковый цемент, цемент с низким содержанием C 3 A. Необходимо принимать во внимание качество агрегатов, особенно в отношении реакции щелочного агрегата с агрегатом, к счастью, случаи дефектов / отказов, связанные с реакцией агрегатного щелочного металла, в Индии очень редки.Использование воды, содержащей соль, для изготовления бетона также может способствовать ухудшению качества бетона. Конструирование бетонной смеси может быть удовлетворительно выполнено с использованием самых разных заполнителей. Должна быть обеспечена разумная непрерывность сортировки агрегатов. Чрезмерное использование воды в бетонной смеси — самый большой источник слабости. Точность взвешивания различных компонентов во многом зависит от качества доступной системы взвешивания. Подпружиненные циферблаты весовых дозаторов вносят свой вклад в чрезмерную изменчивость качества взвешиваемого бетона в Индии.Другие факторы, способствующие плохому качеству изготовления, включают расслоение, неправильное размещение, неадекватную или чрезмерную утечку раствора через опалубочные швы, недостаточное покрытие бетона, недостаточное затвердевание и т. Д. Правильная детализация арматуры, включая соответствующее покрытие, имеет важное значение для обеспечения успешного укладки бетона. Плохая детализация приводит к скоплению арматуры до такой степени, что бетон просто невозможно уложить и уплотнить должным образом, даже если бетон поддается обработке.Детализация арматуры должна основываться на правильном понимании того, как будет выполняться укладка и уплотнение бетона.

Другие факторы, приводящие к плохой деталировке конструкции
  1. Входящие углы.
  2. Резкие изменения в разделе.
  3. Недостаточная детализация стыков.
  4. Пределы прогиба.
  5. Плохо детализированные капельницы и шпигаты.
  6. Неадекватный или неправильный дренаж.
  7. Плохая детализация компенсаторов.

Типы дефектов бетона — причины, профилактика

Ниже описаны различные типы дефектов, которые могут наблюдаться на поверхности затвердевшего бетона, и способы их предотвращения:

1. Растрескивание

Трещины в бетоне образуются по многим причинам, но когда эти трещины очень глубокие, использовать такую ​​бетонную конструкцию небезопасно. Различные причины растрескивания: неправильный состав смеси, недостаточное отверждение, отсутствие деформационных и усадочных швов, использование бетонной смеси с высокой осадкой, неподходящий грунт и т. Д.Чтобы предотвратить растрескивание, используйте низкое водоцементное соотношение и максимизируйте крупнозернистый заполнитель в бетонной смеси, следует избегать добавок, содержащих хлорид кальция. Поверхность следует предохранять от быстрого испарения влаги. Нагрузки следует прикладывать к бетонной поверхности только после достижения максимальной прочности.

Рис.1: Растрескивание

2. Крещение

Растрескивание, также называемое растрескиванием рисунка или растрескиванием карты, представляет собой образование близко расположенных неглубоких трещин неравномерным образом.Растрескивание происходит из-за быстрого затвердевания верхней поверхности бетона из-за высоких температур или из-за избыточного содержания воды в смеси, или из-за недостаточного твердения. Растрескивания рисунка можно избежать путем надлежащего отверждения, увлажнения основания, чтобы предотвратить поглощение воды из бетона, путем обеспечения защиты поверхности от резких перепадов температуры.

Рис. 2: образование трещин или узорчатых трещин

3. Вздутие живота

Вздутие — это образование на бетонной поверхности полых выступов разного размера из-за захвата воздуха под готовой бетонной поверхностью.Это может произойти из-за чрезмерной вибрации бетонной смеси или из-за избытка захваченного воздуха в смеси или из-за неправильной отделки. Чрезмерное испарение воды на верхней поверхности бетона также вызовет образование пузырей. Этого можно избежать, если использовать правильную пропорцию ингредиентов в бетонной смеси, покрыть верхнюю поверхность, которая снижает испарение, и использовать соответствующие методы укладки и отделки.

Рис. 3: Бетонные пузыри

4. Расслоение

Расслоение также похоже на образование пузырей.В этом случае также верхняя поверхность бетона отделяется от нижележащего бетона. Затвердевание верхнего слоя бетона до затвердевания нижележащего бетона приведет к его расслоению. Это связано с тем, что вода и воздух, выходящие из подстилающего бетона, попадают между этими двумя поверхностями, поэтому образуется пространство. Как и образование пузырей, отслоение также можно предотвратить, используя надлежащие методы отделки. Приступать к отделке лучше после того, как закончится кровотечение.

Рис. 4: Расслоение

5.Опыление

Пыление, также называемое мелением, представляет собой образование мелкого и рыхлого порошкообразного бетона на затвердевшем бетоне в результате разрушения. Это происходит из-за наличия в бетоне избыточного количества воды. Это вызывает вытекание воды из бетона, при этом мелкие частицы, такие как цемент или песок, поднимаются вверх, и последующий износ вызывает пыль на верхней поверхности. Чтобы избежать образования пыли, используйте бетонную смесь с низкой осадкой, чтобы получить твердую бетонную поверхность с хорошей износостойкостью. Используйте добавки, уменьшающие количество воды, чтобы добиться достаточной осадки.Также рекомендуется использовать более совершенные методы отделки, и отделку следует начинать после удаления стекающей воды с бетонной поверхности.

Рис. 5: Удаление пыли

6. Керлинг

Когда бетонная плита деформируется в изогнутую форму за счет движения краев или углов вверх или вниз, это называется скручиванием. Это происходит в основном из-за разницы в содержании влаги или температуре между поверхностью плиты (вверху) и основанием плиты (внизу). Скручивание бетонной плиты может быть скрученным вверх или вниз.Когда верхняя поверхность сушится и охлаждается раньше, чем нижняя поверхность, она начинает сжиматься, и происходит скручивание вверх. Когда нижняя поверхность высушивается и охлаждается из-за высокой температуры и высокого содержания влаги, она сжимается раньше, чем верхняя поверхность, и происходит скручивание вниз. Чтобы предотвратить скручивание, используйте бетонную смесь с низкой усадкой, обеспечьте контрольные швы, обеспечьте сильное армирование по краям или обеспечьте края большой толщины.

Рис. 6: Скручивание бетонной плиты

7. Выцветание

Выцветание — это образование отложений солей на поверхности бетона.Образующиеся соли обычно имеют белый цвет. Это связано с наличием растворимых солей в воде, которая используется для приготовления бетонной смеси. Когда бетон затвердевает, эти растворимые соли поднимаются на верхнюю поверхность за счет гидростатического давления, и после полного высыхания на поверхности образуются солевые отложения. Этого можно избежать, если использовать для смешивания чистую воду, использовать химически неэффективные заполнители и т. Д. И убедиться, что цемент не должен содержать щелочей более 1% от его веса.

Рис.7: Выцветание

8.Отслоение и растрескивание

Образование окалины и растрескивания, в обоих случаях ухудшается бетонная поверхность и происходит отслаивание бетона. Основная причина таких случаев — проникновение воды через бетонную поверхность. Это вызывает коррозию стали, что может привести к ее растрескиванию или образованию окалины.

Рис. 8: Масштабирование

Некоторыми другими причинами являются использование бетонной смеси без воздухововлекающих добавок, недостаточное отверждение и использование бетона с низкой прочностью и т.
Опубликовано в категории: Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *