Как проверить емкость конденсатора мультиметром: Как проверить конденсатор мультиметром

Как проверить конденсатор мультиметром

Мультиметр – это  электроизмерительное устройство с различными функциями. С его помощью можно проверять напряжение, силу тока, а также производные от этих величин – сопротивление и емкость. С помощью мультиметра можно проверить и работоспособность различных электронных компонентов. В этой статье мы с вами узнаем, как проверить мультиметром конденсатор и его емкость.

Конденсатор и емкость

Конденсаторы используются практически во всех микросхемах и являются частой причиной ее неработоспособности. Так что в случае неисправности устройства следует проверять в первую очередь именно этот элемент.

Виды конденсаторов по типу диэлектрика:

  • вакуумные;
  • с газообразным диэлектриком;
  • с неорганическим диэлектриком;
  • с органическим диэлектриком;
  • электролитические;
  • твердотельные.
Электролитические конденсаторыОбычно используются электролитические конденсаторы

Основные неисправности конденсаторов:

  • Электрический пробой. Обычно вызван превышением допустимого напряжения.
  • Обрыв. Связан с механическими повреждениями, встрясками, вибрациями. Причиной может служить некачественная конструкция и нарушение эксплуатационных условий.
  • Повышенные утечки. Сопротивление между обкладками изменяется, и это приводит к низкой емкости конденсатора, которая не способна сохранять заряд.

Все эти причины приводят к тому, кто конденсатор становится непригодным для дальнейшего использования.

В данном случае присутствует протечка электролитаВ данном случае присутствует протечка электролита

Перед проверкой конденсатора

Т.к. конденсаторы накапливают электрический заряд, перед проверкой их следует разряжать. Это можно сделать отверткой – жалом нужно прикоснуться к выводам, чтобы образовалась искра. Затем можно прозванивать компонент. Проверку конденсатора можно сделать как мультитестером, так и при помощи лампочек и проводов. Первый способ является более надежным и дает более точные сведения об электронном элементе.

До начала проверки следует осмотреть конденсатор. Если он имеет трещины, нарушение изоляции, подтеки или вздутие, поврежден внутренний электролит и прибор сломан. Его нужно поменять на работающее устройство. При отсутствии внешних повреждений придется использовать мультиметр.

Перед проведением измерений нужно определить вид конденсатора – полярный или неполярный. У первого обязательно должна соблюдаться полярность, иначе прибор выйдет из строя. Во втором случае определение плюсового и минусового выходов не требуется, но измерения будут проводиться по другой технологии.

Определить полярность можно по метке на корпусе. На детали должна быть черная полоса с обозначением нуля. Со стороны этой ножки расположен отрицательный контакт, а с противоположной – положительный.

Измерение емкости в режиме сопротивления

Измерение в режиме сопротивленияИзмерение в режиме сопротивления

Переключатель мультиметра следует установить в режим сопротивления (омметра). В этом режиме можно посмотреть, есть ли внутри конденсатора обрыв или короткое замыкание. Для проверки неполярного конденсатора выставляется диапазон измерений 2 МОм. Для полярного изделия ставится сопротивление 200 Ом, так как при 2 МОм зарядка будет производиться быстро.

Сам конденсатор нужно отпаять от схемы и поместить его на стол. Щупами мультиметра нужно коснуться выводов конденсатора, соблюдая полярность. В неполярной детали соблюдать плюс и минус не обязательно.

Измерение в режиме сопротивленияИзмерение в режиме сопротивления

Когда щупы прикоснутся к ножкам, на дисплее появится значение, которое будет возрастать. Это вызвано тем, что мультитестер будет заряжать компонент. Через некоторое время значение на экране достигнет единицы – это значит, что прибор исправен. Если при проверке сразу же загорается 1, внутри устройства произошел обрыв и его следует заменить. Нулевое значение на дисплее говорит о том, что внутри конденсатора произошло короткое замыкание.

Если проверяется неполярный конденсатор, значение должно быть выше 2. В ином случае прибор является не рабочим.

Аналоговое устройствоАналоговое устройство

Вышеописанный алгоритм подходит для цифрового тестера. При использовании аналогового устройства проверка производится еще проще – нужно наблюдать лишь за ходом стрелки. Щупы подключаются так же, режим – проверка сопротивления. Плавное перемещение стрелки свидетельствует о том, что конденсатор исправен. Минимальное и максимальное значение при подключении говорят о поломке электронной детали.

Важно отметить, что проверка в режиме омметра производится для деталей с емкостью выше 0Ю25 мкФ. Для меньших номиналов используются специальные LC-метры или тестеры с высоким разрешением.

Модели мультиметров на Aliexpress

 

Измерение емкости конденсатора

Измерение ёмкости
Измерение ёмкости

Емкость является основной характеристикой конденсатора. Она указывается на внешней оболочке прибора, и при наличии тестера можно замерить реальное значение и сравнить его с номиналом.

Переключатель мультиметра переводится в диапазон измерений. Значение ставится равное или близкое к номиналу, указанному на компоненте. Сам конденсатор устанавливается в специальные отверстия –CX+ (если они есть на мультиметре) или с помощью щупов. Подключаются щупы так же, как и при измерении в режиме сопротивления.

При подключении щупов на мониторе должно появиться значение сопротивления. Если оно близко к номинальной характеристике, конденсатор исправен. Когда расхождение полученного и номинального значений отличаются более чем на 20% , устройство пробито, и его нужно поменять.

Измерение емкости через напряжение

Проверка работоспособности детали может производиться и при помощи вольтметра. Значение на мониторе сравнивается с номиналом, и из этого делается вывод об исправности устройства. Для проверки нужен источник питания с меньшим напряжением, чем у конденсатора.

Соблюдая полярность, нужно подключить щупы к выводам на несколько секунд для зарядки. Затем мультиметр переводится в режим вольтметра и проверяется работоспособность. На дисплее тестера должно появиться значение, схожее с номинальным. В ином случае прибор сломан.

Важно! Напряжение проверяется в самом начале измерения. Это связано с тем, что при подключении конденсатор начинает терять заряд.

Другие способы проверки

Можно проверить конденсатор, не выпаивая его из микросхемы. Для этого нужно параллельно подключить заведомо исправный конденсатор с такой же емкостью. Если устройство будет работать, то проблема в первом элементе, и его следует поменять. Такой способ применим только в схемах с небольшим напряжением!

Иногда проверяют конденсатор на искру. Его нужно зарядить и металлическим инструментом с заизолированной рукояткой замкнуть выводы. Должна появиться яркая искра с характерным звуком. При малом разряде можно сделать вывод, что деталь пора менять. Проводить данное измерение нужно в резиновых перчатках. К этому методу прибегают для проверки мощных конденсаторов, в том числе пусковых, которые рассчитаны на напряжение более 200 Вольт.

Использовать способы проверки без специальных приборов нежелательно. Они небезопасны – при малейшей неосторожности можно получить электрический удар. Также будет нарушена объективность картины – точные значения не будут получены.

Сложности проверки

Основной сложностью при определении работоспособности конденсатора мультиметром является его выпаивание из схемы. Если оставить компонент на плате, на измерение будут влиять другие элементы цепи. Они будут искажать показания.

В продаже существуют специальные тестеры с пониженным напряжением на щупах, которые позволяют проверять конденсатор прямо на плате. Малое напряжение сводит к минимуму риск повреждения других элементов в цепи.

Как проверить емкость – видео ролики в Youtube

Отличное видео с описанием процесса проверки конденсаторов и поиска неисправностей от популярных ютуб-блогеров.

Еще одно видео:

как проверить конденсатор, измерение его емкости мультиметром
  1. Как проверить конденсатор мультиметром
  2. Проверка конденсатора мультиметром
  3. Как проверить конденсатор с помощью приборов
  4. Проверяем конденсатор мультиметром в режиме омметра
  5. Как проверить емкость конденсатора
  6. Как проверить конденсатор при помощи прибора ESR-METR

Одной из самых распространённых причин неисправности электронной техники, это выход из строя конденсатора. Любая электроника, бытовая техника и цифровые процессоры все имеют в своем оборудовании конденсаторы и достаточно одной незначительной неисправности конденсатора, что бы весь механизм прекратил выполнять свои функции.

Как проверить конденсатор мультиметром

Я рад снова видеть все вас на  страницах сайта «Электрик в доме».  Сегодня мы познакомимся и изучим одну из самых используемых деталей в электронике – конденсатор.  История создания первого конденсатора относит нас назад в 1745 год («лейденская банка»).

В наше время, в век технологий нас со всех сторон окружает электротехнические машины и оборудование. Вы конечно хорошо знакомы с конденсатором и если не сталкивались технически, то слышали о нем однозначно.

Одной из самых распространённых причин неисправности электронной техники, это выход из строя конденсатора. Любая электроника, бытовая техника и цифровые процессоры все имеют в своем оборудовании конденсаторы и достаточно одной незначительной неисправности конденсатора, что бы  весь механизм прекратил выполнять свои функции.

Вот почему, в случае  неисправности оборудования, первым делом необходимо обратить ваше внимание на работоспособность в схеме конденсаторов. И сделать это можно только при помощи электронного прибора, так как визуально определить состояние невозможно, если нет внешних повреждений.

Фотография мультиметра с конденсаторами

Для этих целей и предназначен  недорогой прибор мультиметр, выполняющий многие функции. Об одной из них — проверки сопротивления, я уже знакомил вас в своей предыдущей статье. Этот же материал предназначен для изучения методики проверки конденсатора мультиметром.

С этой проблемой ко мне обратился один из моих подписчиков. Следуя уже своей традиции, я как всегда, буду излагать материал просто и доступно для легко понимания всем желающим.

Проверка конденсатора мультиметром

Для лучшего усвоения материала, начнем с небольшой теории:

  • Устройство и принцип работы мультиметра;
  • Виды и особенности конденсаторов.

Устройство (прибор) предназначенное для накопления электрического заряда – это основное определение конденсатора. Конструктивно он состоит из определенного корпуса, внутри которого расположены две параллельные металлические пластины. Между пластинами установлена прокладка (диэлектрик). Площадь пластин напрямую влияет на величину электрического заряда. Чем больше площадь пластин, тем больше величина накопленного заряда.

Конденсаторы могут быть двух видов: полярными и неполярными.

  1. Конденсаторы полярные.

Определить какой вид конденсаторов достаточно не сложно, уже название вам дает подсказку, что «полярные» должны иметь полярность, то есть иметь (+ плюс) и (- минус). Их подключение в электросхему строго регламентировано в соответствие полярности. Плюс подключается к плюсу, минус к минусу. При нарушении этого правила — конденсатор не будет работать, а вместе с ним и вся схема.

Все полярные конденсаторы заполнены электролитом (твердым или жидким), поэтому их классифицируют как электролитические. Их физические параметры (емкость) находится в следующих параметрах  0.1 ÷ 100000 мкФ.

  1. Конденсаторы неполярные

Неполярные конденсаторы, как вы уже поняли, не имеют полярности и не требуют строгого соблюдения условий подключений. У них нет ни плюса, ни минуса. Роль диэлектрика у них могут выполнять: бумага, стекло, керамика и слюда. Их физические параметры (емкость) незначительна и находится в следующем диапазоне (от нескольких микрофарад  до нескольких пикофарад).

Забегая вперед, сразу хочу ответить на ваши вопросы, зачем нам с вами необходимо знать эти технические тонкости. Это очень важно, так как к каждому типу конденсаторов применима своя методика проверки мультиметром. И пред началом проверки, мы должны первым делом, установить тип конденсатора. Это очень важный момент. Прошу вас обратить на это внимание!

Как проверить конденсатор с помощью приборов

Любую проверку конденсаторов необходимо начинать с внешнего осмотра, на наличие внешних признаков повреждений корпуса (трещин, вздутия). Достаточно часто происходит повреждение электролита, что приводит к повышению давления на внутреннюю поверхность оболочки  и последующее ее вздутие.

После того как визуальный осмотр окончен и мы не установили внешних повреждений конденсатора, необходимо продолжить проверку специальным прибором, в нашем случае мультиметром. Этот  простейший прибор поможет нам установить емкость конденсатора и обрывы внутри.

Перед проверкой незабываем, установить тип конденсатора, более подробно об этом написано выше. Продолжаем процесс проверки с соблюдением полярности, для этого подключаем плюсовой щуп к плюсовому контакту конденсатора и соответственно минусовой щуп к контакту минус.

Проверяя неполярный конденсатор, подключение мультиметра проводим произвольно без соблюдения правила полярности. Единственное, что здесь необходимо выполнить, это выставить переключатель  мультиметра на отметку 2 Мом. Это важно, так как при меньшем значении дисплей прибора отобразит  — «1» (единицу), что укажет на неисправность конденсатора.

Проверяем конденсатор мультиметром в режиме омметра

Для примера мы свами выполним проверку четырех конденсаторов: два полярных (диэлектрических) и два неполярных (керамических).

Но перед проверкой мы должны обязательно разрядить конденсатор, при этом достаточно замкнуть его контакты  при помощи любого металла.

Пример разрядки конденсатораПример разрядки конденсатора

Для того чтобы перейти в режим (омметра) сопротивления, мы перемещаем переключатель в группу измерения сопротивления, для того чтобы установить наличие обрыва или короткого замыкания.

Итак, первым делом проверим полярные кондиционеры (5.6 мкФ и 3.3 мкФ), установленных ранее у неработающих энергосберегающих лампочек

Разряжаем конденсаторы путем замыкания их контактов обычной отверткой. Вы можете использовать, удобный для вас, любой другой металлический предмет. Главное чтобы к нему плотно прилегали контакты. Это позволит нам получить точные показания прибора.

Следующим шагом выставляем переключатель на шкалу 2 МОм и соединяем контакты конденсатора и щупы прибора. Далее наблюдаем на дисплее быстро увиливающие параметры сопротивления.

Пример измерения сопротивления конденсатораПример измерения сопротивления конденсатора

Вы спросите меня, в чем дело и почему на дисплее мы наблюдаем «плавающие показатели» сопротивления? Это объяснить довольно просто, поскольку питание прибора (батарейка) имеет постоянное напряжение и за счет этого происходит зарядка конденсатора.

С течением времени конденсатор все больше и больше накапливает заряд (заряжается), тем самым увеличивая сопротивление. Емкость конденсатора влияет на скорость зарядки. Как только конденсатор получит полную зарядку, значение его сопротивления будет соответствовать значению бесконечности, а мультиметр на дисплее покажет «1». Это параметры рабочего конденсатора.

Нет возможности показать картинку на фотографии. Так для следующего экземпляра емкостью 5.6 мкФ,  показатели сопротивления начинаются с 200 кОм и плавно возрастают до тех пор, пока не преодолеют показатель 2 МОм. Эта процедура не занимает более -10 сек.

Для следующего конденсатора емкостью 3.3 мкФ происходит все аналогично, но время процесса занимает менее — 5 сек.

Проверить следующую пару неполярных конденсаторов можно точно также по аналогии с предыдущими конденсаторами. Соединяем щупы прибора и контакты, следим за состоянием сопротивления на дисплее прибора.

Рассмотрим первый «150nК». Вначале его сопротивление несколько снизится примерно до 900 кОм, затем следует его плавное увеличение до определенной отметки. Время процесса занимает — 30 сек.

Пример измерения сопротивления конденсатораПример измерения сопротивления конденсатора

При этом на мультиметре модели МБГО переключатель устанавливаем на шкалу 20 МОм (сопротивление приличное, очень быстро идет зарядка)

Процедура классическая, снимаем заряд при помощи замыкания контактов отверткой:

Смотрим на дисплей, отслеживая показатели сопротивления:

Делаем вывод, что в результате проверки все представленные конденсаторы исправны.

Как проверить емкость конденсатора

Главный показатель, основная характеристика всех конденсаторов — это «емкость».  Измеряя эту характеристику и сравнивая ее с указанными параметрами на корпусе, мы сможем выяснить, исправен кондиционер или нет. Есть приборы, которые легко позволят вам выполнить эту проверку.

Но можно ли проверить емкость конденсатора, как в нашем случае, мультиметром . Если вы будет проверять емкость при помощи щупов, вы не получите желаемого результата. Как же быть?

В этом нам помогут разъемы «гнезда» -CX+(«-» и «+» — это полярность подключения)

изображение разьема мультиметра для измерения емкости

Для этого примера мы будем использовать кондер «150нФ». Маркировка 150nK:

Устанавливаем переключатель на отметку – ближайшее большее значение. В нашем случае это 200 нФ. Следующим шагом вставляем ножки конденсатора в разъемы  -CX+. (не обращаем внимание на полярность, наш кондер неполярный). Дисплей показывает значение емкости– 160.3 нФ, что совпадает с номинальными показателями.Пример измерения емкости конденсатора

Продолжаем проверку  конденсатора с емкостью 4700 пФ. Устанавливаем переключатель на шкале в положение 20 n.

Пример измерения емкости конденсатора

Теперь вставляем ножки в разъёмы прибора и наблюдаем на дисплее параметры 4750 пФ. Вы это можете увидеть на фото. Параметры точно соответствуют параметрам  заявленным производителем.

Запомните,  если показатели сильно отличаются от номинальных параметров или вообще равны нулю, это говорит нам, что конденсатор не рабочий и его необходимо заменить.

 
Как проверить конденсатор при помощи прибора ESR-METR

Недавно я приобрел ESR-METR  и я решил выполнить им ту же самую проверку.

Фото ESR-METR и мультиметра

Методика проверки очень проста. Прибор необходимо откалибровать, в моем случае в комплекте идет специальная перемычка, при помощи которой замыкается нужная группа контактов на колодке 1-4. Нажимаем кнопку и прибор автоматический калибруется, сообщив нам об этом на своем экране. После калибровки  не забываем разрядить конденсатор и подключаем его к нужным нам разъемам. и производим измерение.

пример диагностики конденсатора ЕСР метромКаждый конденсатор обладает и паразитными свойствами, например сопротивлением. Из фото видно, что емкость конденсатора соответствует заявленным характеристикам, а также присутствует паразитное последовательное сопротивление номиналом 1.2 Ом, из за этого потери на данном конденсаторе составляют 0,5%.

Таблица максимальных значений ESR для конденсатораВ нашем случает этот показатель великоват, что говорит о высыхании конденсатора, устанавливать его в схему не рекомендуется.

На этом все. Если у Вас есть замечания или предложения по данной статье, прошу написать администратору сайта.

Успехов!

Как проверить конденсатор мультиметром на работоспособность

По сути ремонт любой радиоэлектронной аппаратуры сводится к поиску и замене неисправных деталей. И, возможно, вы удивитесь тому, насколько часто выходят из строя такие, казалось бы, простые компоненты как конденсаторы. В то время как нежные диоды, чувствительные транзисторы и сложные микросхемы остаются целыми и невредимыми.

Типичные неисправности конденсаторов:

  • КЗ между обкладками. Как правило, это следствие механического повреждения, перегрева или превышения рабочего напряжения (пробой). Самый простой случай, т.к. легко выявляется любым мультиметром в режиме прозвонки;
  • внутренний обрыв с полной потерей емкости (вот почему нельзя коротить отвертками). В случае с конденсаторами большой емкости этот дефект достаточно просто диагностируется. Выявление обрыва у мелких кондеров (менее 500 пФ) является довольно трудоемкой задачей и осуществляется только при помощи спец. приборов;
  • частичная потеря емкости. Для электролитических конденсаторов потеря емкости с годами практически неизбежна, однако это не всегда приводит к неисправности устройства (но может ухудшать его характеристики). Керамические, пленочные и прочие с твердым диэлектриком, как правило, более стабильны, но могут потерять емкость в результате механического повреждения;
  • слишком низкое сопротивление утечки (конденсатор «не держит» заряд). В основном это свойственно электролитическим конденсаторам. Хотя танталовые в этом плане очень хороши;
  • слишком большое эквивалентное последовательное сопротивление (ЕПС или ESR). Проблема по большей части касается «электролитов» и проявляется только при работе с высокочастотными или импульсными токами.

Существует масса способов как проверить конденсатор мультиметром на работоспособность. Пойдем по-порядку.

Содержание статьи:

Внешний осмотр

Иногда достаточно одного взгляда, чтобы определить неисправный конденсатор на плате. В таких случаях нет смысла проверять его какими-либо приборами.Конденсатор подлежит замене, если визуальный осмотр показал наличие:

  • даже незначительного вздутия, следов подтеков;
  • механических повреждений, вмятин;
  • трещин, сколов (актуально для керамики).

Конденсаторы, имеющие любой из указанных признаков, эксплуатировать НЕЛЬЗЯ.

Измерение емкости конденсатора мультиметром и специальными приборами

Некоторые мультиметры имеют функцию измерения емкости. Взять хотя бы эти распространенные модели: M890D, AM-1083, DT9205A, UT139C и т.д.Также в продаже есть цифровые измерители емкости, например, XC6013L или A6013L.

С помощью любого из этих приборов можно не только узнать точную емкость конденсатора, но и убедиться в отсутствии короткого замыкания между обкладками или внутреннего обрыва одного из выводов.

Некоторые производители даже уверяют, что их мультиметры способны проверить емкость конденсатора не выпаивая его с платы. Что, конечно же, противоречит здравому смыслу.

К сожалению, проверка конденсатора мультиметром не поможет определить такие наиважнейшие параметры, как ток утечки и эквивалентное последовательное сопротивление (ESR). Их измерить только с помощью специализированных тестеров. Например, с помощью весьма недорогого LC-метра.

Проверка на короткое замыкание

Способ №1: определение КЗ в режиме прозвонки

Как прозванивать конденсаторы мультиметром? Нужно включить мультиметр в режим прозвонки или измерения сопротивления и приложить щупы к выводам конденсатора.

В зависимости от емкости мультиметр либо сразу же покажет бесконечное сопротивление, либо через какое-то время (от нескольких секунд до десятков секунд).

Если же прибор постоянно пищит в режиме прозвонки (или показывает очень низкое сопротивление в режиме измерения сопротивления), то конденсатор можно смело выкидывать.

Способ №2: определение КЗ конденсатора с помощью светодиода и батарейки

Если нет мультиметра (и даже старой советской «цешки» нету), то можно попробовать подключить светодиод или лампочку к батарейке через исследуемый конденсатор.

Т.к. исправный конденсатор имеет ооочень большое сопротивление постоянному току, лампочка гореть не должна. Хотя, если емкость конденсатора достаточно большая, лампочка может вспыхнуть на короткое время (пока конденсатор не зарядится).

Если же светодиод горит постоянно, конденсатор 100% неисправен.

Если при проверке конденсатора наблюдается эффект постепенного роста сопротивления вплоть до бесконечности (ну или светодиод на какое-то время вспыхивает и гаснет) то конденсатор совершенно точно имеет какую-то емкость. Следовательно, проверку на обрыв можно не делать.

Способ №3: проверка конденсатора лампочкой на 220В

Подходит для высоковольтных неполярных конденсаторов (например, пусковые конденсаторы из стиральных машин, насосов, различных станков и т.п.).

Все что нужно сделать — просто подключить лампу накаливания небольшой мощности (25-40 Вт) через конденсатор. Полярность конденсатора не имеет значения:

Способ позволяет одним выстрелом убить двух зайцев: обнаружить КЗ, если оно есть, и убедиться в том, что конденсатор имеет ненулевую емкость (не находится в обрыве).

При исправном конденсаторе лампочка будет гореть в полнакала. Чем меньше емкость — тем тусклее будет гореть лампочка.

Если лампа горит в полную мощность (точно также как и без конденсатора), значит конденсатор «пробит» и подлежит замене. Если лампочка совсем не светится — внутри конденсатора обрыв.

Способ №3 очень наглядно продемонстрирован в этом видео:

Проверка на отсутствие внутреннего обрыва

Обрыв — распространенный дефект конденсатора, при котором один из его электродов теряет электрическое соединение с обкладкой и фактически превращается в короткий, ни с чем не соединенный (висящий в воздухе), проводник.

Чаще всего обрыв происходит из-за превышения рабочего напряжения конденсатора. Этим грешат не только электролитические конденсаторы, но и специальные помехоподавляющие конденсаторы типа Y (они, кстати говоря, специально так спроектированы, чтобы уходить в отрыв, а не в КЗ).

Конденсатор с внутренним обрывом внешне ничем не отличается от исправного, кроме случаев, когда ножку физически оторвали от корпуса 🙂

Разумеется, в случае отрыва одного из выводов от обкладки конденсатора, емкость такого конденсатора становится равной нулю. Поэтому суть проверки на обрыв состоит в том, чтобы уловить хоть малейшие признаки наличия емкости у проверяемого конденсатора.

Как это сделать? Есть три способа.

Способ №1: исключение обрыва через звуковой сигнал в режиме прозвонки

Включить мультиметр в режим прозвонки, прикоснуться щупами к выводам конденсатора и в этот момент мультиметр должен издать непродолжительный писк. Иногда звук настолько короткий (зависит от емкости конденсатора), что больше похож на щелчок и нужно очень постараться, чтобы его услышать.

Небольшой лайфхак: чтобы увеличить продолжительность звукового сигнала при прозвонке совсем маленьких конденсаторов, нужно предварительно зарядить их отрицательным напряжением, приложив щупы мультиметра в обратном порядке. Тогда при последующей прозвонке мультиметру сначала придется перезарядить конденсатор от какого-то отрицательного напряжения до нуля, и только потом — от нуля до момента отключения пищалки. На все это уйдет значительно больше времени, а значит сигнал будет звучать дольше и его проще будет расслышать.

Вот какой-то чувак, сам того не подозревая, применяет этот лайфхак на видео:

Из своей практике могу сказать, что с помощью уловки, описанной выше, мне удавалось уловить реакцию мультиметра на конденсатор емкостью всего лишь 0.1 мкФ (или 100 нФ)!

Способ №2: увеличение сопротивления постоянному току как признак отсутствия обрыва

Если предыдущий способ не помог и вообще не понятно, как проверить конденсатор тестером, то вот вам более чувствительный метод проверки.

Необходимо переключить мультиметр в режим измерения сопротивления. Выбрать максимально доступный предел измерения (20 или лучше 200 МОм). Приложить щупы к выводам конденсатора и наблюдать за показаниями мультиметра.

По мере заряда конденсатора от внутреннего источника мультиметра, его сопротивление будет постоянно расти до тех пор, пока не выйдет за пределы диапазона измерения. Если такой эффект наблюдается, значит обрыва нет.

Кстати говоря, может так оказаться, что рост сопротивления остановится на значении от единиц до пары десятков МОм — для конденсаторов с жидким электролитом (кроме танталовых) это абсолютно нормально. Для остальных конденсаторов сопротивление утечки должно быть больше, как минимум, на порядок.

При измерении таких высоких сопротивлений необходимо следить за тем, чтобы не касаться пальцами сразу обоих измерительных щупов. Иначе сопротивление кожи внесет свои коррективы и исказит все результаты.

С помощью измерения сопротивления на пределе 200 МОм мне удавалось однозначно определить отсутствие обрыва в конденсаторах емкостью всего 0.001 мкФ (или 1000 пФ).

Вот видео для наглядности:

Способ №3: измерение остаточного напряжения для исключения внутреннего обрыва

Это самый чувствительный способ, позволяющий убедиться в отсутствии обрыва конденсатора даже тогда, когда все предыдущие способы не помогли.

Берется мультиметр в режиме прозвонки или в режиме измерения сопротивления (не важно в каком диапазоне) и на пару секунд прикладываем щупы к выводам испытуемого конденсатора. В этот момент конденсатор зарядится от мультиметра до какого-то небольшого напряжения (обычно 2.8 В).

Затем мы быстро переключаем мультиметр в режим измерения постоянного напряжения на самом чувствительном диапазоне и, не мешкая слишком долго, снова прикладываем щупы к конденсатору, чтобы измерить на нем напряжение. Если у кондера есть хоть какая-нибудь вразумительная емкость, то мультиметр успеет показать напряжение, до которого был заряжен конденсатор.

Этим способом мне удавалось с помощью обычного цифрового мультиметра M890D отловить емкость вплоть до 470 пФ (0.00047 мкФ)! А это очень маленькая емкость.

Вообще говоря, это наиболее эффективный метод прозвонки конденсаторов. Таким способ можно проверять кондеры любой емкости — от малюсеньких до самых больших, а также любого типа — полярные, неполярные, электролитические, пленочные, керамические, оксидные, воздушные, металло-бумажные и т.д.

Правда, если конденсатор имеет совсем маленькую емкость, до 470 пФ, то, увы, проверить его на обрыв без специального прибора, вроде упомянутого ранее LC-метра, никак не получится.

Определение рабочего напряжения конденсатора

Строго говоря, если на конденсаторе нет маркировки и не известна схема, в которой он стоял, то узнать его рабочее напряжение неразрушающими методами НЕВОЗМОЖНО.

Однако, имея некоторый опыт, можно оооочень приблизительно прикинуть «на глазок» рабочее напряжение исходя из габаритов конденсатора. Естественно, чем больше размеры конденсатора и чем меньше при этом его емкость, тем на большее напряжение он расчитан.

Способ №1: определение рабочего напряжения через напряжения пробоя

Если имеется несколько одинаковых конденсаторов и одним из них не жалко пожертвовать, то можно определить напряжение пробоя, которое обычно раза в 2-3 выше рабочего напряжения.

Напряжение пробоя конденсатора измеряется следующим образом. Конденсатор подключается через токоограничительный резистор к регулируемому источнику напряжения, способного выдавать заведомо больше, чем напряжение пробоя. Напряжение на конденсаторе контроллируется вольтметром.

Затем напряжение плавно повышают до тех пор, пока не произойдет пробой (момент, когда напряжение на конденсаторе резко упадет до нуля).

За рабочее напряжение можно принять значение, в 2-3 раза меньше, чем напряжение пробоя. Но это такое… Вы можете иметь свое мнение на этот счет.

Внимание! Обязательно соблюдайте все меры предосторожности! При проверке конденсатора на пробой необходимо использовать защищенный стенд, а также индивидуальные средства защиты зрения.

Энергии заряженного конденсатора бывает достаточно, чтобы устроить небольшой ядерный взрыв прямо на рабочем столе. Вот, можно посмотреть, как это бывает:

А некоторые типы керамических конденсаторов при электрическом пробое способны разлетаться на очень мелкие, но твердые осколки, без труда пробивающие кожу (не говоря уже о глазах).

Способ №2: нахождение рабочего напряжения конденсатора через ток утечки

Этот способ узнать рабочее напряжение конденсатора подходит для алюминиевых электролитических конденсаторов (полярных и неполярных). А таких конденсаторов большинство.

Суть заключается в том, чтобы отловить момент, при котором его ток утечки начинает нелинейно возрастать. Для этого собираем простейшую схему:

и делаем замеры тока утечки при различных значениях приложенного напряжения (начиная с 5 вольт и далее). Напряжение следует повышать постепенно, одинаковыми порциями, записывая показания вольтметра и микроампераметра в таблицу.

У меня получилась такая табличка (моя чуйка подсказала мне, что это довольно высоковольтный конденсатор, так что я сразу начал прибавлять по 10В):

Напряжение на
конденсаторе, В
Ток утечки,
мкА
Прирост тока,
мкА
10 1.1 1.1
20 2.2 1.1
30 3.3 1.1
40 4.5 1.2
50 5.8 1.3
60 7.2 1.4
70 8.9 1.7
80 11.0 2.1
90 13.4 2.4
100 16.0 2.6

Как только станет заметно, что одинаковый прирост напряжения каждый раз приводит к непропорционально бОльшему приросту тока утечки, эксперимент следует остановить, так как перед нами не стоит задача довести конденсатор до электрического пробоя.

Если из полученных значений построить график, то он будет иметь следующий вид:

Видно, что начиная с 50-60 вольт, график зависимости тока утечки от напряжения обретает явно выраженную нелинейность. А если принять во внимание стандартный ряд напряжений:

Стандартный ряд номинальных рабочих напряжений конденсаторов, В
6.3 10 16 20 25 32 40 50 63 80 100 125 160 200 250 315 350 400 450 500

то можно предположить, что для данного конденсатора рабочее напряжение составляет либо 50 либо 63 В.

Согласен, метод достаточно трудоемкий, но не сказать о нем было бы ошибкой.

Как измерить ток утечки конденсатора?

Чуть выше уже была описана методика измерения тока утечки. Хотелось бы только добавить, что Iут измеряется либо при максимальном рабочем напряжении конденсатора либо при таком напряжении, при котором конденсатор планируется использовать.

Также можно вычислить ток утечки конденсатора косвенным методом — через падение напряжения на заранее известном сопротивлении:

При проверке полярных конденсаторов на утечку необходимо соблюдать полярность их подключения. В противном случае будут получены некорректные результаты.

При измерении тока утечки электролитических конденсаторов после подачи напряжения очень важно выждать какое-то время (минут 5-10) для того, чтобы все электрохимические процессы завершились. Особенно это актуально для конденсаторов, которые в течение длительного времени были выведены из эксплуатации.

Вот видео с наглядной демонстрацией описанного метода измерения тока утечки конденсатора:

Определение емкости неизвестного конденсатора

Способ №1: измерение емкости специальными приборами

Самый просто способ — измерить емкость с помощью прибора, имеющего функцию измерения емкостей. Это и так понятно, и об этом уже говорилсь в начале статьи и тут нечего больше добавить.Если с приборами совсем туган, можно попробовать собрать простенький самодельный тестер. В интернете можно найти неплохие схемы (посложнее, попроще, совсем простая).

Ну или раскошелиться, наконец, на универсальный тестер, который измеряет емкость до 100000 мкФ, ESR, сопротивление, индуктивность, позволяет проверять диоды и измерять параметры транзисторов. Сколько раз он меня выручал!

Способ №2: измерение емкости двух последовательно включенных конденсаторов

Иногда бывает так, что имеется мультиметр с измерялкой емкости, но его предела не хватает. Обычно верхний порог мультиметров — это 20 или 200 мкФ, а нам нужно измерить емкость, например, в 1200 мкФ. Как тогда быть?

На помощь приходит формула емкости двух последовательно соединенных конденсаторов:Суть в том, что результирующая емкость Cрез двух последовательных кондеров будет всегда меньше емкости самого маленького из этих конденсаторов. Другими словами, если взять конденсатор на 20 мкФ, то какой бы большой емкостью не обладал бы второй конденсатор, результирующая емкость все равно будет меньше, чем 20 мкФ.

Таким образом, если предел измерения нашего мультиметра 20 мкФ, то неизвестный конденсатор нужно последовательно с конденсатором не более 20 мкФ.Остается только измерить общую емкость цепочки из двух последовательно включенных конденсаторов. Емкость неизвестного конденсатора рассчитывается по формуле:Давайте для примера рассчитаем емкость большого конденсатора Сх с фотографии выше. Для проведения измерения последовательно с этим конденсатором включен конденсатор С1 на 10.06 мкФ (он был предварительно измерен). Видно, что результирующая емкость составила Cрез = 9.97 мкФ.

Подставляем эти цифры в формулу и получаем:

Способ №3: измерение емкости через постоянную времени цепи

Как известно, постоянная времени RC-цепи зависит от величины сопротивления R и значения емкости Cх:Постоянная времени — это время, за которое напряжение на конденсаторе уменьшится в е раз (где е — это основание натурального логарифма, приблизительно равное 2,718).

Таким образом, если засечь за какое время разрядится конденсатор через известное сопротивление, рассчитать его емкость не составит труда.Для повышения точности измерения необходимо взять резистор с минимальным отклонением сопротивления. Думаю, 0.005% будет нормально =)Хотя можно взять обычный резистор с 5-10%-ой погрешностью и тупо измерить его реальное сопротивление мультиметром. Резистор желательно выбирать такой, чтобы время разряда конденсатора было более-менее вменяемым (секунд 10-30).

Вот какой-то чел очень хорошо все рассказал на видео:

Другие способы измерения емкости

Также можно очень приблизительно оценить емкость конденсатора через скорость роста его сопротивления постоянному току в режиме прозвонки. Об этом уже упоминалось, когда шла речь про проверку на обрыв.

Яркость свечения лампочки (см. метод поиска КЗ) также дает весьма приблизительную оценку емкости, но тем не менее такое способ имеет право на существование.

Существует также метод измерения емкости посредством измерения ее сопротивления переменному току. Примером реализации данного метода служит простейшая мостовая схема:Вращением ротора переменного конденсатора С2 добиваются баланса моста (балансировка определяется по минимальным показаниям вольтметра). Шкала заранее проградуирована в значениях емкости измеряемого конденсатора. Переключатель SA1 служит для переключения диапазона измерения. Замкнутое положение соответствует шкале 40…85 пФ. Конденсаторы С3 и С4 можно заменить одинаковыми резисторами.

Недостаток схемы — необходим генератор переменного напряжения, плюс требуется предварительная калиброка.

Можно ли проверить конденсатор мультиметром не выпаивая его с платы?

Не существует однозначного ответа на вопрос как проверить конденсатор мультиметром не выпаивая: все зависит о схемы, в которой стоит конденсатор.

Все дело в том, что принципиальные схемы, как правило, состоят из множества элементов, которые могут быть соединены с исследуемым конденсатором самым замысловатым образом.

Например, несколько конденсаторов могут быть соединены параллельно и тогда прибор покажет их суммарную емкость. Если при этом один из конденсаторов будет в обрыве, то это будет очень сложно заметить.

Или, например, довольно часто параллельно электролитическому конденсатору устанавливают керамический. В этом случае нет ни малейшей возможности прозвонить конденсатор мультиметром на плате и определить внутренний обрыв.В колебательных контурах, вообще, параллельно кондеру может оказаться катушка индуктивности. Тогда прозвонка конденсатора покажет короткое замыкание, хотя на самом деле его нет.

Вот пример, когда все пять конденсаторов покажут ложное КЗ:

Таким образом, проверка конденсаторов мультиметром без выпаивания вообще невозможна.

В схемах импульсных блоков питания очень часто встречаются контура, состоящие из вторичной обмотки трансформатора, диода и выпрямительного конденсатора. Так вот любая «прозвонка» конденсатора при пробитом диоде покажет КЗ. А на самом деле конденсатор может быть вполне исправен.Вообще-то, проверить электролитический конденсатор мультиметром не выпаивая можно, но это только для кондеров ощутимой емкости (>1 мкФ) и только проверить наличие емкости и отсутствие коротыша. Ни о каком измерении емкости и речи быть не может. К тому же, если прибор покажет КЗ, то выпаивать все-таки придется, так как коротить может что угодно на плате.

Мелкие кондеры проверяются только на отсутствие КЗ, обрыв и нулевую емкость таким образом не проверишь.

Вот очень правильный и понятный видос на эту тему:

Примеры выше (а также доходчивое видео) не оставляют никаких сомнений, что проверка конденсаторов не выпаивая из схемы — это фантастика.

Если какой-либо конденсатор вызывает сомнения, лучше сразу заменить его на заведомо исправный. Или хотя бы временно подпаять хороший конденсатор параллельно сомнительному, чтобы подтвердить или опровергнуть подозрения.

Как прозвонить конденсатор мультиметром: инструкция и методы проверки

Самая распространенная причина поломки радиотехники — это неисправность конденсаторов, встроенных в плату устройства. В процессе ремонта важно определить работоспособность каждого из них и выяснить какой именно элемент вышел из строя. Чтобы точно и быстро определить неисправный элемент, важно знать, как прозвонить конденсатор мультиметром не выпаивая его и насколько это правильно. Стандартный метод проверки под силу не только профессионалам, но и рядовым радиолюбителям. Поэтому даже в домашних условиях можно самостоятельно прозвонить устройство.

Разновидности конденсаторов и способы их проверки

Если вы решили разобраться в том, как мультиметром проверить конденсатор, то необходимо выяснить какие разновидности этих устройств на сегодняшний день известны. Они могут быть как полярными, так и неполярными. Основным и очевидным их отличием является наличие полярности у полярных конденсаторов.

Проверка данных элементов выполняется по следующему принципу:  «+» к «+», «—» к «—», иначе, при несоблюдении условий, элементы могут поломаться и даже замкнуть, что приведет к взрыву.

Модели полярного типа относятся к электролитическим. Если устройства были изготовлены еще в советский период, то в случае их взрыва может произойти попадание электролита на поверхность кожи. Современные же изделия оснащены специальным сечением на поверхности, которое в случае разрыва направляет взрывную струю по определенному направлению, исключая разбрызгивание проводящего вещества в различные стороны.

Элементы на плате электрооборудования

Прежде всего способ проверки зависит от того, какой характер имеет неисправность. Прозвонить конденсаторы мультиметром можно посредством:

  • измерения сопротивлений в его диэлектрике;
  • замера его емкости.

Что делать в случае пробоя

Самая распространенная проблема, которая возникает с конденсаторами – это появление пробоя на диэлектрике. Диэлектрики являются своеобразным слоем изоляционного материала с большим сопротивлением, расположенного между одним и вторым проводником, препятствующего протеканию тока между ними.

У исправных элементов допускается небольшое просачивание тока сквозь изоляционное покрытие, именуемое как «ток утечки». Если в диэлектрике возникает пробой, то происходит резкое снижение сопротивления, и он становится обыкновенным проводником. Пробой может возникнуть в результате резкого перепада напряжения в электросети, от которой работает техника. Характерный признак пробоя: вздувшийся корпус устройства, потемневшая поверхность и черные пятна на нем. Перед тем, как проверить конденсаторы мультиметром на факт исправности, стоит осмотреть его визуальным методом, чтобы определить возможные внешние дефекты.

Как прозвонить мультиметром неполярный конденсатор

Чтобы проверить сопротивление диэлектрика с помощью мультиметра, необходимо перевести устройство в режим омметра. Для изготовления диэлектриков в неполярных моделях могут использоваться различные материалы и формы: стекло, керамика, бумага, воздушная прослойка. В результате этого можно достичь крайне высокого сопротивления, которое в исправных устройствах будет отображаться в виде бесконечной величины на мультиметре.  При наличии электрических пробоев, сопротивление будет находится на уровне нескольких десятков Ом.

Проверка мультиметром неполярного конденсатораДо того момента, как прозванивать конденсаторы мультиметром, на приборе нужно выбрать специальный режим, который предусматривает максимально возможное измерение уровня сопротивления.

Для этого достаточно подвести к каждому выводу щуп тестера и посмотреть на дисплее прибора следующее:

  1. Если элемент исправен, то на экране отобразится единица, свидетельствующая о том, что сопротивление выше, нежели установленный максимум.
  2. Если же высвечивается определенный показатель, который ниже измерительного максимума, то это говорит про неисправность проверяемых устройств.

При этом, не стоит забывать про технику безопасности, чтобы случайно не взяться за щуп устройства и вывод конденсатора, поскольку меньшее сопротивление электрического тока у тела спровоцирует прохождение тока через него.

Как прозвонить полярный конденсатор тестером

В сравнении с неполярным типом в полярном сопротивление у диэлектриков в разы ниже, в связи с этим максимальное значение сопротивления на мультиметре должно быть выставлено соответствующем диапазоне. У большинства устройств сопротивление составляет около 100 кОм, у более мощных до 1 мОм. Прежде чем, померить конденсатор мультиметром, нужно замкнуть вывод накопителя, таким образом, чтобы он полностью разрядился.

Полярный конденсатор крупным планом

Далее нужно установить соответствующие пределы измерений, и подключить щуп тестера к конденсатору, с учетом соблюдения полярности. У электролитических конденсаторов имеется достаточно большая емкость, в связи с чем в процессе их подключения сразу же начинается зарядка. На протяжении периода пока длится зарядка, значение сопротивления будет увеличиваться в прямой пропорции, что будет указываться на дисплее устройства.

Конденсаторы считаются исправными, в том случае если показатель сопротивления превышает значение в 100 кОм.

Прозвонка конденсатора мультиметром (аналоговые измерители)

Полярный конденсатор крупным планом

Подобная процедура может быть проделана с помощью аналоговых (стрелочных) измерителей. Величина емкости электролитических конденсаторов определяется тем, с какой скоростью двигается стрелка на приборе в сторону максимального значения. В случае медленного движения стрелки, можно утверждать о большей продолжительности заряда конденсатора, что свидетельствует о его большей емкости. Если же диапазон емкости находится в диапазоне от 1 до 100 микрофарада (мкФ), то достижение стрелкой правой части на циферблате происходит моментально. Если емкость составляет 1000 мкФ, то достижение максимального значения стрелкой происходит за несколько секунд.

Проверка емкости накопителя

Среди большинства специалистов проверка конденсаторов осуществляется омметром, однако более надежный способ проверить пригодность изделия — это измерить его емкость. Из-за повышенной утечки в электролитических конденсаторах возникает частичная потеря емкости, в связи с чем значение ее реальной величины гораздо ниже нежели заявленной на корпусе устройства. При измерении сопротивления на конденсаторе достаточно проблематично найти проявление данного дефекта. Полярный конденсатор крупным планом

Чтобы узнать это наверняка необходимо использование измерителя емкости. Важно учитывать, что не все мультиметры имеют данную функцию, поэтому заранее следует удостовериться, что устройство может выполнить такую работу.

Перед такой проверкой электролитического конденсатора, элемент должен быть полностью разряжен. Это обусловлено тем, что заряженные конденсаторы могут оказать негативное воздействие на тестер и вывести его из строя. В частности это относится к полярным накопителям, у которых имеется высокое рабочее напряжение и большая емкость. Зачастую установка подобных конденсаторов осуществляется в импульсные блоки в роли фильтрующего накопителя.

Как разрядить конденсатор

Полярный конденсатор крупным планом

Чтобы разрядить низковольтные конденсаторы необходимо лишь закоротить каждый вывод. Однако для высоковольтных и тех, которые имеют большую емкость, к выводу следует подключать 5-10-килоомные резисторы. Резисторы необходимы, чтобы препятствовать возникновению искр при замыкании.

В процессе работы важно помнить про безопасность. Нельзя прикасаться к выводу на конденсаторе, поскольку это может спровоцировать замыкание через ваше тело.

Выявление обрыва конденсаторов

Неисправность в виде обрыва случается достаточно редко. Такое нарушение обусловлено механическими повреждениями на накопителе. После подобной поломки у устройства в полной мере теряется накопительная функция, его емкость становится равна нулю. Целостный элемент после повреждения оказывается в виде двух проводников, которые изолированы друг от друга. Выявить такие повреждения конструкции посредством омметра не представляется возможным.

Своеобразные симптомы обрыва у полярного электролитического конденсатора проявляются в том, что в случае изменения сопротивления никакие изменения на экране прибора не проявляются. Что касается неполярных типов, стоит отметить что он имеет малую емкость и обладает высоким сопротивлением, поэтому проверить его также невозможно. Единственным правильным выходом является возможность измерения емкости.

Выявление потери емкости конденсатора

Для определения потери емкости в первую очередь необходимо выполнить замер емкости. Для этого на тестере нужно выставить необходимый предел измеряемых емкостей, разрядить проверяемые устройства, подключить щуп от измерителя к соответствующему гнезду на нем, при соблюдении правильной полярности, и в итоге, прикоснуться щупом к выводу конденсаторов. Естественно, что придерживаясь последовательности действий, понять, как прозвонить конденсатор мультиметром на кондиционере или любом другом бытовом приборе не составит труда.

Как измерить напряжение на конденсаторе

Кроме того, чтобы определить исправен ли элемент, необходимо выполнить проверку соответствия его реального напряжения к номинальному. Чтобы это сделать следует использовать тестер в режиме вольтметра, а также необходимо наличие источника питания для зарядки устройств. Значение напряжения должно быть меньшим нежели, то под которое рассчитаны накопители. Чтобы измерить вам понадобится подсоединить щуп к выводу и чуть подождать, до момента полной зарядки. При переводе прибора в режим вольтметра, необходимо выполнить проверку выдаваемого накопителем напряжения. Величина, которая появится на дисплее устройства на начальном этапе замера, должна соответствовать заявленным показателям. Измерение напряжения на конденсаторе

Следует учитывать, что в процессе проверки у накопителя теряется заряд и, очевидно, что напряжение будет быстро снижаться, именно поэтому важна начальная величина замера.

Существует более доступный способ проверить конденсаторы, но он подходит только для изделий, имеющих гораздо большую емкость. После полноценной зарядки накопителя, нужно взять простую отвертку с изолированной ручкой, поднести ее металлической частью к выводам и замкнуть их. Если же после проделанных манипуляций произошло возникновение искры, то это свидетельствует о работоспособности элемента. Если же она отсутствовала или была слабой, то это говорит о невозможности устройства держать заряд.

Вывод

Среди многих начинающих мастеров-радиолюбителей бытует мнение, что можно прозвонить конденсатор мультиметром не выпаивая его, но мало кто знает, что такие измерения имеют очень большую погрешность. Единственным наиболее правильным методом проверки элемента является визуальная оценка его состояния, на наличие потемнения, взбухания и других дефектов.

Примечательно, что поломка такого характера зачастую происходит в стиральных машинах, телевизорах, микроволновых печах и других видах бытовой техники. В связи с этим, столкнувшись с подобной проблемой вы самостоятельно сможете прозвонить конденсаторы мультиметром, благодаря описанной выше инструкции.

Как проверить конденсатор мультиметром: пошаговый иструктаж

Конденсаторы присутствуют в различной технике. Они же часто являются и причиной неисправностей. Чтобы оперативно выявить неисправный элемент и заменить его, нужно знать, как проверить конденсатор мультиметром, поскольку это самый простой способ.

Мы расскажем как использовать недорогой, но функциональный прибор в выявлении неисправных элементов. В представленной нами статье разобраны разновидности конденсаторов и порядок их проверки. С учетом наших советов вы без затруднений найдете “слабое звено” в электрической схеме.

Содержание статьи:

Что такое конденсатор и зачем нужен?

Промышленность производит конденсаторы самых разных типов, применяемых во многих отраслях. Они необходимы в автомобиле- и машиностроении, радиотехнике и электронике, в приборостроении и производстве бытовой техники.

Конденсаторы — своего рода «хранилища» энергии, которую они отдают при возникновении кратковременных сбоев в питании. Кроме того, определенный вид этих элементов отфильтровывает полезные сигналы, назначает частоту устройств, генерирующих сигналы. Цикл разрядки-зарядки у конденсатора очень быстрый.

Конструкция конденсатораКонструкция конденсатора

Такой электрический компонент, как конденсатор, состоит из пары проводников (токопроводящих обкладок). Между собой они разделены диэлектриком. В цепь, которая пропускает ток постоянного характера, включать его нельзя, поскольку это равнозначно разрыву

В цепи с переменным током обкладки конденсатора поочередно перезаряжаются с частотой протекающего тока. Объясняется это тем, что на зажимах источника такого тока периодически происходит смена напряжения. Результатом таких преобразований является переменный ток в цепи.

Так же как резистор и катушка, конденсатор проявляет сопротивление току переменного характера, но для токов разных частот оно разное. К примеру, хорошо пропуская высокочастотные токи, он одновременно может являться чуть ли не изолятором для низкочастотных токов.

Сопротивление конденсатора связано с его емкостью и частотой тока. Чем больше два последних параметра, тем его емкостное сопротивление ниже.

Полярные и неполярные разновидности

Среди огромного количества конденсаторов, выделяют два основных типа: полярные (электролитические), неполярные. Как диэлектрик в этих устройствах применяют бумагу, стекло, воздух.

Особенности полярных конденсаторов

Название «полярные» говорит само за себя — они обладают полярностью и являются электролитическими. При включении их в схему, необходимо точное ее соблюдение — строго «+» к «+», а «-» к «-». Если проигнорировать это правило, работать элемент не только не будет, но может и взорваться. Электролит бывает жидким или твердым.

Диэлектриком здесь служит пропитанная электролитом бумага. Емкость элементов колеблется в пределах от 0,1 до 100 тысяч мкФ.

Полярные конденсаторыПолярные конденсаторы

Предназначение полярных конденсаторов — фильтрация и выравнивание сигналов. Вывод «плюс» имеет несколько большую длину. Метка «минус» нанесена на корпус

Когда происходит замыкание пластин, выходит тепло. Под его воздействием электролит испаряется, происходит взрыв.

Современные конденсаторы сверху имеют небольшое вдавливание и крестик. Толщина вдавленного участка меньше, чем остальной поверхности крышки. При взрыве его верхняя часть раскрывается наподобие розочки. По этой причине можно наблюдать на торцах корпуса неисправного элемента вспучивание.

Отличия неполярных конденсаторов

Неполярные пленочные элементы имеют диэлектрик в виде стекла, керамики. По сравнению с конденсаторами электролитическими, у них меньший самозаряд (ток утечки). Объясняется это тем, что у керамики сопротивление выше, чем у бумаги.

Соблюдение полярностиСоблюдение полярности

Соблюдение полярности при включении неполярного конденсатора в схему необязательно. Часто они бывают просто микроскопическими, и в некоторых проектах применяются в больших количествах

Все конденсаторы делят на детали общего назначения и специального, которые бывают:

  1. Высоковольтными. Используют в высоковольтных приборах. Их выпускают в различных исполнениях. Существуют керамические, пленочные, масляные, вакуумные ВВ конденсаторы. От обычных деталей они значительно отличаются и доступ к ним ограничен.
  2. Пусковыми. Применяют в электродвигателях для обеспечения их надежной работы. Они повышают стартовый момент двигателя, например, или компрессора при запуске.
  3. Импульсными. Предназначены для создания сильного скачка напряжения и его транзакции на принимающую панель прибора.
  4. Дозиметрическими. Созданы для функционирования в цепях, где уровень токовых нагрузок небольшой. У них очень малый саморазряд, высокое сопротивление изоляции. Чаще всего это элементы фторопластовые.
  5. Помехоподавляющими. Они смягчают электромагнитный фон в большой частотной вилке. Характеризуются незначительной собственной индуктивностью, что позволяет поднять резонансную частоту и расширить полосу сдерживаемых частот.

В процентном соотношении самое большое число выходов деталей из рабочего строя приходится на случаи, когда подают напряжение, превышающее нормативное. Ошибки в проектировании также могут стать причиной неисправности.

Если диэлектрик меняет свои свойства, при этом тоже возникает сбой в работе конденсатора. Это происходит, когда он вытекает, высыхает, растрескивается. Емкость при этом сразу меняется. Измерить ее можно только посредством измерительных приборов.

Порядок проверки мультиметром

Проверку конденсаторов лучше выполнять с изъятием их из электрической схемы. Так можно обеспечить более точные показатели.

Электролитические конденсаторыЭлектролитические конденсаторы

Простые детали, обладающие переменной или постоянной емкостью очень редко выходят со строя. Здесь можно только механически повредить токопроводящие пластины. Чаще всего поломке подвержены электролитические диэлектрические элементы

Основным свойством всех конденсаторов является пропуск тока исключительно переменного характера. Постоянный ток конденсатор пропускает только в самом начале в течение очень короткого времени. Сопротивление его зависит от емкости.

Как проверить полярный конденсатор?

При проверке элемента мультиметром, нужно соблюсти условие: емкость должна быть больше 0,25 мкФ.

Технология измерения конденсатора для выявления неисправностей мультиметром следующая:

  1. Берут конденсатор за ножки и закорачивают каким-нибудь металлическим предметом, пинцетом, например, или отверткой. Это действие необходимо для того, чтобы разрядить элемент. О том, что это произошло, засвидетельствует появление искры.
  2. Устанавливают переключатель мультиметра на прозвонку или замер показателей сопротивления.
  3. Касаются щупами до выводов конденсатора с учетом полярности — к плюсовой ножке подводят щуп красного цвета, к минусовой — черного. При этом вырабатывается постоянный ток, следовательно, через какой-то временной промежуток сопротивление конденсатора станет минимальным.

Пока щупы находятся на вводах конденсатора, он заряжается, а его сопротивление продолжает расти до достижения максимума.

Проверка аналоговым мультиметромПроверка аналоговым мультиметром

Проверку лучше делать аналоговым мультиметром. В этом случае можно наблюдать за поведением стрелки, а не за мельканием цифр на цифровом приборе. Это намного удобней

Если при контакте со щупами мультиметр начнет пищать, а стрелка остановится на нулевой отметке, это указывает на короткое замыкание. Оно и стало причиной неисправности конденсатора. Если сразу же стрелка на циферблате показывает 1, значит, в конденсаторе случился внутренний обрыв.

Такие конденсаторы считаются неисправными и подлежат замене. Если «1» высветится лишь через некоторое время — деталь исправна.

Важно выполнять измерения так, чтобы неправильное поведение не отразилось на качестве измерений. Нельзя в процессе к щупам прикасаться руками. Тело человека обладает очень малым сопротивлением, а соответствующий показатель утечки превышает его во много раз.

Ток пойдет по пути меньшего сопротивления в обход конденсатора. Следовательно, мультиметр покажет результат, к конденсатору не имеющий никакого отношения. Разрядить конденсатор можно и при помощи лампы накаливания. В этом случае процесс будет происходить более плавно.

Такой момент, как разрядка конденсатора, является обязательным, особенно, если элемент высоковольтный. Делают это из соображений безопасности и для того, чтобы не вывести со строя мультиметр. Повредить его может остаточное напряжение на конденсаторе.

Обследование неполярного конденсатора

Конденсаторы неполярные проверить мультиметром еще проще. Сначала на приборе выставляют предел измерения на мегаомы. Далее прикасаются щупами. Если сопротивление будет меньше 2 Мом, то конденсатор, скорей всего, неисправен.

Проверка неполярных конденсаторовПроверка неполярных конденсаторов

При проверке неполярных конденсаторов полярность не соблюдают. Для наглядности лучше взять два конденсатора, один из которых исправный, а другой неисправный. Сравнив результаты, можно более точно сделать вывод о работоспособности детали

Во время зарядки элемента от мультиметра возможно проверить его исправность, если  емкость начинается от 0,5 мкФ. Если этот параметр меньше, изменения на приборе незаметны. Если все же необходимо проверить элемент меньше 0,5 мкФ, то при помощи мультиметра это возможно сделать, но только на короткое замыкание между обкладками.

Если необходимо обследовать неполярный конденсатор с напряжением свыше 400 В, это можно сделать при условии его зарядки от источника, защищенного от к.з. . Последовательно с конденсатором подсоединяют резистор, рассчитанный на сопротивление более 100 Ом. Такое решение ограничит первичный токовый бросок.

Существует и такой метод определения работоспособности конденсатора, как проверка на искру. При этом его заряжают до рабочей величины емкости, затем закорачивают вывода металлической отверткой, имеющей изолированную ручку. О работоспособности судят по силе разряда.

Проверка на искруПроверка на искру

Проверяя элемент, предназначенный для функционирования в сети от 220 В, нельзя забывать о мерах безопасности. Емкость нужно разряжать посредством резистора 10 Ком

Сразу после зарядки и через некоторое время замеряют напряжение на ножках детали. Важно, чтобы заряд сохранялся долго. После нужна разрядка конденсатора посредством резистора, через который он заряжался.

Измерение емкости конденсатора

Емкость — одна из ключевых характеристик конденсатора. Ее необходимо измерять для уверенности, что элемент накапливает, и хорошо удерживает заряд.

Чтобы убедиться в работоспособности элемента, необходимо измерить этот параметр и сопоставить его с тем, который обозначен на корпусе. Перед тем как проверить любой конденсатор на работоспособность, нужно учесть некоторую специфику этой процедуры.

Пытаясь выполнить измерение посредством щупов, можно не получить желаемых результатов. Единственное, что удастся сделать — определить, рабочий этот конденсатор или нет. Для этого выбирают режим прозвона и касаются щупами ножек.

Услышав писк, меняют местами щупы, звук должен повториться. Слышно его при емкости 0,1 мкФ. Чем больше это значение, тем звук дольше.

Если нужны точные результаты, лучший выход в этой ситуации — использование модели, имеющей специальные контактные площадки и возможность регулировки вилки для определения емкости элемента.

Специальные разъемы на мультиметреСпециальные разъемы на мультиметре

Контактные площадки — это специальные разъемы, обозначенные буквосочетанием «-СХ+». Минус и плюс перед буквенными символами — это полярность подключения

Прибор переключают на номинальное значение, указанное на корпусе конденсатора. Вставляют последний в посадочные «гнезда», предварительно разрядив его при помощи металлического предмета.

На экране должна высветиться величина емкости, равная примерно номинальной. Когда этого не происходит, делают вывод о том, что элемент поврежден. Нужно проследить за тем, чтобы в приборе находилась новая батарейка. Это обеспечит более точные показания.

Измерение напряжения мультиметром

Узнать о работоспособности конденсатора можно и путем замера напряжения и сравнения полученного результата с номиналом. Чтобы выполнить проверку, потребуется источник питания. Напряжение у него должно быть несколько меньшим, чем у проверяемого элемента.

Так, если у конденсатора 25 В, то достаточно 9-вольтового источника. Щупы подключают к ножкам, учитывая полярность, и выжидают некоторое время — буквально несколько секунд.

Гарантия на конденсаторГарантия на конденсатор

Если на конденсатор имеется гарантия, она обозначает, что за какое-то время его параметры не выйдут за пределы, превышающие 20% от номинальных значений

Бывает, время истекло, а просроченный элемент все еще работоспособный, хотя характеристики у него другие. В этом случае его необходимо постоянно контролировать.

Мультиметр настраивают на режим измерения напряжения и выполняют проверку. Если почти сразу же на дисплее появится значение идентичное номиналу, элемент пригоден к дальнейшему использованию. В противном случае конденсатор придется заменить.

Проверка конденсаторов без выпаивания

Конденсаторы можно и не выпаивать из платы для проверки. Единственное условие — плата должна быть обесточена. После обесточивания необходимо немного подождать, пока конденсаторы разрядятся.

Следует понимать, что получить 100% результат без выпаивания элемента из платы не получится. Детали, находящиеся рядом, мешают полноценной проверке. Можно удостовериться только в отсутствии пробоя.

С целью проверить на исправность конденсатор, не выпаивая его, к выводам конденсатора просто прикасаются щупами, чтобы измерить сопротивление. Исходя из вида конденсатора, будет отличаться и измерение этого параметра.

Рекомендации по проверке конденсаторов

Есть у конденсаторных деталей одно неприятное свойство — при пайке после воздействия тепла они восстанавливаются очень редко. В то же время качественно проверить элемент можно только выпаяв его со схемы. Иначе его будут шунтировать элементы, находящиеся рядом. По этой причине следует учитывать некоторые нюансы.

После того как проверенный конденсатор будет впаян в схему, нужно ввести в работу ремонтируемое устройство. Это даст возможность проследить за его работой. Если его работоспособность восстановилась или оно стало функционировать лучше, проверенный элемент меняют на новый.

Функции мультиметраФункции мультиметра

Комбинированный прибор мультиметр, особенно оснащенный режимом проверки емкости, дает возможность точно, быстро, а главное достоверно проверить конденсаторные детали

Чтобы сократить проверку, выпаивают не два, а только один из выводов конденсатора. Необходимо знать, что для большинства электролитических элементов этот вариант не подходит, что связано с конструктивными особенностями корпуса.

Если схема отличается сложностью и включает большое число конденсаторов, неисправность определяют посредством измерения напряжения на них. Если параметр не соответствует требованиям, элемент, вызывающий подозрения, необходимо изъять и выполнить проверку.

При обнаружении сбоев в схеме нужно проверить дату выпуска конденсатора. Усыхание элемента в течение 5 лет работы в среднем составляет около 65%. Такую деталь, даже если она в рабочем состоянии, лучше заменить. В противном случае она будет искажать работу схемы.

Для мультиметров нового поколения максимумом для измерения является емкость до 200 мкФ. При превышении этого значения контрольный прибор может выйти со строя, хотя он и оснащен предохранителем. В аппаратуре последнего поколения присутствуют smd электроконденсаторы. Они отличаются очень маленькими размерами.

Конденсатор в smd корпусеКонденсатор в smd корпусе

Среди конденсаторов в корпусах smd самой популярной является серия FK. Они обладают емкостью 1500 мФ максимум, предельным рабочим напряжением 100 В. Имеют автомобильный сертификат AEC-Q200

Отпаять один из выводов такого элемента очень сложно. Здесь лучше приподнять один вывод после отпаивания, изолировав его от остальной схемы, или отсоединить оба вывода.

О том, как мультиметром проверять напряжение в розетке, узнаете из , прочитать которую мы очень советуем.

Выводы и полезное видео по теме

Видео #1. Подробно о проверке конденсатора посредством мультиметра:

Видео #2. Ревизия конденсатора на плате:


Нет смысла приобретать сложное оборудование для диагностики конденсаторов. Вполне можно использовать с этой целью мультиметр с соответствующим диапазоном измерений. Главное — уметь грамотно применить все его возможности.

Хотя это и не узкоспециализированный прибор и пределы его ограничены, для обследования и ремонта большого числа популярных радиоэлектронных устройств, этого достаточно.

Пишите, пожалуйста, комментарии в расположенном ниже блоке, публикуйте фото и задавайте вопросы по теме статьи. Расскажите о том, как проверяли конденсаторы на работоспособность. Делитесь полезными сведениями, которые пригодятся посетителям сайта.

Как проверить конденсатор мультиметром на работоспособность

Как проверить конденсатор мультиметром на работоспособность – вопрос, возникающий у всех радиолюбителей и людей, которые любят заниматься паянием электрических схем разной сложности. Сделать это довольно просто, если знать некоторые тонкости.

Под тестером принято понимать стрелочные аппараты, работающие на аналоговом принципе. Мультиметр – это цифровой прибор, имеющие экран, где и отображается вся информация. На проверку можно отправить только конденсаторы, имеющие большую емкость, но узнать саму емкость невозможно, даже примерно. Если конденсатор рабочий, стрелка прибора вначале слегка отклонится, а потом начнет опускаться до бесконечности.

В статье подробны подробным образом рассмотрены все вопросы проверки конденсаторов на работоспособность. Бонусом служат ролик и подробная статься на эту тему.

Как проверить конденсатор с помощью приборов

Как проверить конденсатор с помощью приборов.

Как проверить конденсатор мультиметром

проверка конденсатора По сути ремонт любой радиоэлектронной аппаратуры сводится к поиску и замене неисправных деталей. И, возможно, вы удивитесь тому, насколько часто выходят из строя такие, казалось бы, простые компоненты как конденсаторы.

В то время как нежные диоды, чувствительные транзисторы и сложные микросхемы остаются целыми и невредимыми. Типичные неисправности конденсаторов:

  • КЗ между обкладками. Как правило, это следствие механического повреждения, перегрева или превышения рабочего напряжения (пробой). Самый простой случай, т.к. легко выявляется любым мультиметром в режиме прозвонки;
  • внутренний обрыв с полной потерей емкости (вот почему нельзя коротить отвертками). В случае с конденсаторами большой емкости этот дефект достаточно просто диагностируется. Выявление обрыва у мелких кондеров (менее 500 пФ) является довольно трудоемкой задачей и осуществляется только при помощи спец. приборов;
  • частичная потеря емкости. Для электролитических конденсаторов потеря емкости с годами практически неизбежна, однако это не всегда приводит к неисправности устройства (но может ухудшать его характеристики). Керамические, пленочные и прочие с твердым диэлектриком, как правило, более стабильны, но могут потерять емкость в результате механического повреждения;
  • слишком низкое сопротивление утечки (конденсатор “не держит” заряд). В основном это свойственно электролитическим конденсаторам. Хотя танталовые в этом плане очень хороши;
  • слишком большое эквивалентное последовательное сопротивление (ЕПС или ESR). Проблема по большей части касается “электролитов” и проявляется только при работе с высокочастотными или импульсными токами.

Существует масса способов как проверить конденсатор мультиметром на работоспособность.

Проверка конденсатора мультиметром

Как проверить конденсатор с помощью приборов Для начала давайте разберемся, что это за устройство, из чего он состоит, и какие виды конденсаторов существуют. Конденсатор представляет собой устройство, которое способно накапливать электрический заряд. Внутри он состоит из двух металлических пластин параллельных между собой. Между пластинами расположен диэлектрик (прокладка). Чем больше пластины, тем соответственно больший заряд они могут накапливать.

Существует два вида конденсаторов:

  1. 1) полярные;
  2. 2) неполярные.

Как можно догадаться по названию полярные имеют полярность (плюс и минус) и подключаются к электронным схемам со строгим соблюдением полярность: плюс к плюсу, минус к минусу. В противном случае конденсатор может выйти из строя. Все полярные конденсаторы – электролитические. Бывают как с твердым, так и с жидким электролитом. Емкость колеблется в диапазоне 0.1 ÷ 100000 мкФ. Неполярные конденсаторы без разницы как подключать или впаивать в схему, у них нет плюса или минуса. В неполярных кондерах диэлектрическим материалом является бумага, керамика, слюда, стекло.

Их емкость не очень большая колеблется в приделах от несколько пФ (пикофарад) до единиц мкФ (микрофарад). Друзья некоторые из Вас могут задаться вопросом, зачем эта ненужная информация? Какая разница полярный-неполярный? Все это влияет на методику измерений. И перед тем как проверить конденсатор мультиметром нужно понимать, какой именно тип устройства перед нами находится.

Как проверить конденсатор с помощью приборов

Прежде всего, выполняется внешний осмотр конденсатора на предмет трещин и вздутия. Нередко причиной неисправности является внутренние повреждения электролитов, что в свою очередь приводит к увеличению давления внутри корпуса, и как следствие вздутие оболочки. Если конденсатор с виду цел, то без специальных приборов трудно сказать работоспособный он или нет. Поэтому в этом случае выполняется проверка конденсатора мультиметром. Этот простой прибор позволит нам определить емкость конденсатора и наличие обрывов внутри.

Различные конденсаторы

Различные конденсаторы.

Перед тем, как приступить к проверке, нужно определиться какого рода конденсатор находится перед вами: полярный или неполярный. Помните, выше я писал, что это будет важно при измерениях. Так вот при выполнении проверки полярных конденсаторов нужно соблюдать полярность и подключать щупы к ним соответственно: плюсовой к ножке «+», а минусовой к ножке «-». При проверке неполярных «кондеров» полярность в подключении соблюдать не нужно, однако здесь есть одна особенность на которую нужно обращать внимание. Для проверки целостности кондера переключатель мультиметра нужно выставить на отметку 2 МОм.

Как проверить конденсатор при помощи мультиметра

Если будет меньше, то на дисплее будет отображаться – «1» (единица), можно ложно подумать что конденсатор неисправен. Переключатель мультиметра устанавливаем в секторе измерения сопротивления (режим омметра). Режим сопротивления даст нам понять есть ли внутри кондера обрыв или короткое замыкание. Для этого выставляем переключатель на отметку 2 МОм и касаемся щупами выводов конденсатора. Как только щупы будут подключены, на дисплее можно увидеть стремительно растущее сопротивление.

Почему так происходит

Проверка конденсатора Почему на дисплее можно наблюдать «плавающие значения сопротивления»? Все дело в том, что при касании щупами выводов к конденсатору прикладывается постоянное напряжение (батарейка прибора) – он начинает заряжаться. Чем дольше мы держим щупы, тем больше конденсатор заряжается, и сопротивление плавно увеличивается. Скорость заряда напрямую зависит от емкости. Спустя время конденсатор зарядится и его сопротивление будет равно «бесконечности», а на дисплее мультиметра мы увидим «1». Это показатель того что конденсатор исправен.

Не все удается передать фотографиями, но для экземпляра 5.6 мкФ сопротивление стартует с 200 кОм и плавно растет, пока не перевалит отметку в 2 МОм. Длится весь процесс, примерно 10 сек. Со вторым конденсатором номиналом 3.3 мкФ происходит все аналогично. Начинает заряжаться, сопротивление растет, как только показания превысят отметку 2 МОм на дисплее можно увидеть «1» что соответствует «бесконечности». По времени процесс длится меньше, примерно 5 сек.

Материал по теме: Как проверить варистор мультиметром.

Измерение емкости конденсатора мультиметром и специальными приборами

Некоторые мультиметры имеют функцию измерения емкости. Взять хотя бы эти распространенные модели: M890D, AM-1083, DT9205A, UT139C и т.д.Также в продаже есть цифровые измерители емкости, например, XC6013L или A6013L. С помощью любого из этих приборов можно не только узнать точную емкость конденсатора, но и убедиться в отсутствии короткого замыкания между обкладками или внутреннего обрыва одного из выводов.

Некоторые производители даже уверяют, что их мультиметры способны проверить емкость конденсатора не выпаивая его с платы. Что, конечно же, противоречит здравому смыслу.

Как проверить конденсатор при помощи мультиметра

К сожалению, проверка конденсатора мультиметром не поможет определить такие наиважнейшие параметры, как ток утечки и эквивалентное последовательное сопротивление (ESR). Их измерить только с помощью специализированных тестеров. Например, с помощью весьма недорогого LC-метра.

Измерение емкости конденсатора мультиметром и специальными приборами

Измерение емкости конденсатора мультиметром и специальными приборами.

Проверка на короткое замыкание

Есть три способа сделать это.

Способ №1: определение КЗ в режиме прозвонки

Как прозванивать конденсаторы мультиметром? Нужно включить мультиметр в режим прозвонки или измерения сопротивления и приложить щупы к выводам конденсатора. В зависимости от емкости мультиметр либо сразу же покажет бесконечное сопротивление, либо через какое-то время (от нескольких секунд до десятков секунд). Если же прибор постоянно пищит в режиме прозвонки (или показывает очень низкое сопротивление в режиме измерения сопротивления), то конденсатор можно смело выкидывать.

Интересный материал для ознакомления: что такое вариасторы.

Способ №2: определение КЗ конденсатора с помощью светодиода и батарейки

Проверка на отсутствие внутреннего обрыва Если нет мультиметра (и даже старой советской “цешки” нету), то можно попробовать подключить светодиод или лампочку к батарейке через исследуемый конденсатор. Т.к. исправный конденсатор имеет ооочень большое сопротивление постоянному току, лампочка гореть не должна.

Хотя, если емкость конденсатора достаточно большая, лампочка может вспыхнуть на короткое время (пока конденсатор не зарядится). Если же светодиод горит постоянно, конденсатор 100% неисправен. Если при проверке конденсатора наблюдается эффект постепенного роста сопротивления вплоть до бесконечности (ну или светодиод на какое-то время вспыхивает и гаснет) то конденсатор совершенно точно имеет какую-то емкость.

Следовательно, проверку на обрыв можно не делать.

Способ №3: проверка конденсатора лампочкой на 220В

Подходит для высоковольтных неполярных конденсаторов (например, пусковые конденсаторы из стиральных машин, насосов, различных станков и т.п.). Все что нужно сделать – просто подключить лампу накаливания небольшой мощности (25-40 Вт) через конденсатор.

Проверка на отсутствие внутреннего обрыва

Обрыв – распространенный дефект конденсатора, при котором один из его электродов теряет электрическое соединение с обкладкой и фактически превращается в короткий, ни с чем не соединенный (висящий в воздухе), проводник. Чаще всего обрыв происходит из-за превышения рабочего напряжения конденсатора. Этим грешат не только электролитические конденсаторы, но и специальные помехоподавляющие конденсаторы типа Y (они, кстати говоря, специально так спроектированы, чтобы уходить в отрыв, а не в КЗ).

Конденсатор с внутренним обрывом внешне ничем не отличается от исправного, кроме случаев, когда ножку физически оторвали от корпуса. Разумеется, в случае отрыва одного из выводов от обкладки конденсатора, емкость такого конденсатора становится равной нулю. Поэтому суть проверки на обрыв состоит в том, чтобы уловить хоть малейшие признаки наличия емкости у проверяемого конденсатора.

Характеристики надежности конденсаторов

Таблица характеристик надежности конденсаторов.

Способ №1: исключение обрыва через звуковой сигнал в режиме прозвонки

конденсаторы

Включить мультиметр в режим прозвонки, прикоснуться щупами к выводам конденсатора и в этот момент мультиметр должен издать непродолжительный писк. Иногда звук настолько короткий (зависит от емкости конденсатора), что больше похож на щелчок и нужно очень постараться, чтобы его услышать. Небольшой лайфхак: чтобы увеличить продолжительность звукового сигнала при прозвонке совсем маленьких конденсаторов, нужно предварительно зарядить их отрицательным напряжением, приложив щупы мультиметра в обратном порядке.

Тогда при последующей прозвонке мультиметру сначала придется перезарядить конденсатор от какого-то отрицательного напряжения до нуля, и только потом – от нуля до момента отключения пищалки. На все это уйдет значительно больше времени, а значит сигнал будет звучать дольше и его проще будет расслышать. Из своей практике могу сказать, что с помощью уловки, описанной выше, мне удавалось уловить реакцию мультиметра на конденсатор емкостью всего лишь 0.1 мкФ (или 100 нФ)!

Способ №2: увеличение сопротивления постоянному току как признак отсутствия обрыва

конденсатор Если предыдущий способ не помог и вообще не понятно, как проверить конденсатор тестером, то вот вам более чувствительный метод проверки. Необходимо переключить мультиметр в режим измерения сопротивления. Выбрать максимально доступный предел измерения (20 или лучше 200 МОм). Приложить щупы к выводам конденсатора и наблюдать за показаниями мультиметра.

По мере заряда конденсатора от внутреннего источника мультиметра, его сопротивление будет постоянно расти до тех пор, пока не выйдет за пределы диапазона измерения. Если такой эффект наблюдается, значит обрыва нет. Кстати говоря, может так оказаться, что рост сопротивления остановится на значении от единиц до пары десятков МОм – для конденсаторов с жидким электролитом (кроме танталовых) это абсолютно нормально. Для остальных конденсаторов сопротивление утечки должно быть больше, как минимум, на порядок.

При измерении таких высоких сопротивлений необходимо следить за тем, чтобы не касаться пальцами сразу обоих измерительных щупов. Иначе сопротивление кожи внесет свои коррективы и исказит все результаты. С помощью измерения сопротивления на пределе 200 МОм мне удавалось однозначно определить отсутствие обрыва в конденсаторах емкостью всего 0.001 мкФ (или 1000 пФ).

Способ №3: измерение остаточного напряжения для исключения внутреннего обрыва

конденсаторы Это самый чувствительный способ, позволяющий убедиться в отсутствии обрыва конденсатора даже тогда, когда все предыдущие способы не помогли. Берется мультиметр в режиме прозвонки или в режиме измерения сопротивления (не важно в каком диапазоне) и на пару секунд прикладываем щупы к выводам испытуемого конденсатора. В этот момент конденсатор зарядится от мультиметра до какого-то небольшого напряжения (обычно 2.8 В).

Затем мы быстро переключаем мультиметр в режим измерения постоянного напряжения на самом чувствительном диапазоне и, не мешкая слишком долго, снова прикладываем щупы к конденсатору, чтобы измерить на нем напряжение. Если у кондера есть хоть какая-нибудь вразумительная емкость, то мультиметр успеет показать напряжение, до которого был заряжен конденсатор. Этим способом мне удавалось с помощью обычного цифрового мультиметра M890D отловить емкость вплоть до 470 пФ (0.00047 мкФ)!

Это очень маленькая емкость. Вообще говоря, это наиболее эффективный метод прозвонки конденсаторов. Таким способ можно проверять кондеры любой емкости – от малюсеньких до самых больших, а также любого типа – полярные, неполярные, электролитические, пленочные, керамические, оксидные, воздушные, металло-бумажные и т.д. Правда, если конденсатор имеет совсем маленькую емкость, до 470 пФ, то, увы, проверить его на обрыв без специального прибора, вроде упомянутого ранее LC-метра, никак не получится.

Более подробно о проверке конденсаторов можно узнать  прочитав статью проверка конденсаторов  Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.

Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vк.coм/еlеctroinfonеt. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

www.electro-shema.ru

www.katod-anod.ru

www.elektt.blogspot.com

www.electricvdome.ru

 

Предыдущая

ПрактикаКак проверить трансформатор при помощи мультиметра

Следующая

ПрактикаКак проверить дроссель при помощи мультиметра

Проверка конденсатора мультиметром и измерение ёмкости

Как проверить конденсатор и его емкость мультиметром?Современный человек не представляет своей жизни без разнообразных бытовых радиотехнических устройств и приспособлений. Основой таких устройств являются различные схемы, где конденсатор занимает одно из ведущих мест. Из статьи вы узнаете, что это за элемент и как его проверить.

Устройство конденсатора

Это радиотехнический элемент, который способен накапливать электрическую энергию и отдавать её в сеть, в заданное время. Конструктивно он представляет две металлические пластины разделённые слоем диэлектрика. Параметры его зависят в основном от площади проводника и от толщины и свойств диэлектрика. Чем больше площадь пластин и меньше расстояние между ними, тем больше ёмкость такого элемента.

Пластины изготавливаются из алюминиевой фольги, которая скручена в рулон. Между пластинами помещается изоляция из различных диэлектрических материалов. В зависимости от того, какой диэлектрик используется, конденсаторы бывают:

  • Керамическими.
  • Бумажными.
  • Электролитическими.

От условий применения их подразделяют:

  • Полярные.
  • Неполярные.

Как проверить конденсатор мультиметром не выпаивая?

Перед ремонтом проведите внешний осмотр схемыПеред началом ремонта радиотехнической схемы, необходимо произвести внешний осмотр радиоэлементов, не выпаивая их из платы. Характерными признаками неисправного накопителя энергии является вздутие его корпуса, изменение цвета. Современные электролитические конденсаторы снабжены специальными щелями, для более безопасного выхода системы из строя. На плате могут появиться признаки температурного воздействия неисправного элемента – токопроводящие дорожки отслаиваются от поверхности, потемнение платы и т. п. Проверять контакт элемента можно осторожно покачав его пальцем.

Если имеется электрическая схема, можно проконтролировать наличие величины напряжения на контрольных точках. Точнее, нужно произвести измерения по цепи разряда конденсатора и оценить его состояние. При подозрении на неисправность нужно параллельно подозрительному компоненту включить в схему исправный, одинакового номинала, что позволит судить о его работоспособности. Такой вариант определения неисправности приемлем в схемах с малым напряжением.

Как проверить конденсатор мультиметром?

Современная промышленность выпускает большое разнообразие моделей приборов для измерения электрических параметров – мультиметров. Они бывают как с аналоговой стрелочной индикацией, так и с жидкокристаллическим дисплеем. Приборы с ЖК дисплеем дают более точные измерения и удобны в использовании. Стрелочные индикаторы предпочитают из-за более плавного перемещения стрелки.

Перед проверкой накопителя энергии надо выпаять из платыПеред проверкой накопителей энергии, их необходимо выпаять из схемы, чтобы избежать влияния на показания других радиотехнических элементов.

Конденсаторы разделяют на полярные и неполярные. К полярным относятся все электролитические. Они включаются в электрическую схему строго с соблюдением полярности. К неполярным – все остальные. Неполярные впаиваются в схему без соблюдения полярности.

Как проверить электролитический конденсатор мультиметром

  • Настраиваем прибор на режим измерения сопротивления до 100 Ком.
  • Дотрагиваемся до контактных выводов этого кондера измерительными проводами мультиметра, при это необходимо строго соблюдать полярность.
  • Внимательно контролируем изменение показаний на шкале измерительного прибора.

Оцениваем результат измерения:

  • Как правильно оценить показания мультиметраЕсли сопротивление начинает расти (происходит заряд) и достигает большого значения, а затем медленно начинает уменьшаться (он разряжается) — элемент исправен.
  • Если сопротивление на шкале мультиметра увеличивается, но нет обратного движения показаний (происходит заряд, но нет разряда) – проводящая пластина находится на обрыве. Такой элемент подлежит замене.
  • Если сопротивление остаётся малым (не происходит заряд измеряемого элемента) – электролит находится в состоянии короткого замыкания. Его необходимо заменить.

Обязательно нужно разряжать электролит перед его проверкой, чтобы не попасть под напряжение. Разрядить его легко, коснувшись одновременно двух контактов электролита любой отвёрткой с изолированной рукояткой.

Как проверить керамический конденсатор

Конденсаторы неполярные (керамические, бумажные и т. п.) проверяются мультиметром немного другим способом:

  • Прибор настраиваем на измерение сопротивления.
  • Выставляем самый максимальный предел измерения.
  • Прикасаемся измерительными проводами к контактам, не касаясь их.

Если в результате этих действий на экране прибора величина сопротивления будет больше 2 Мом. – конденсатор исправен. Если полученное показание сопротивления будет меньше 2 Мом. – элемент неисправен (конденсатор пробит или закорочен). Его необходимо заменить исправным.

При измерении исключите касание проводных частейПомните, что при измерении на максимальных режимах сопротивления, нужно обязательно исключить касание проводящих частей. Связано это с тем, что сопротивление человеческого тела намного меньше сопротивления конденсатора. Это сопротивление и оказывает большое влияние на точность измерения. Тестер не показывает правильные параметры.

Как измерить ёмкость конденсатора мультиметром?

Проверка путём измерения сопротивления зачастую не даёт возможности гарантированно говорить о том, что кондер работоспособен. Именно измерение ёмкости может дать ответ о полной пригодности этого элемента в радиотехнической схеме. Для проведения таких измерений понадобится более точный прибор для проверки конденсаторов, имеющий специальную функцию для измерения ёмкости.

Принцип измерения ёмкости:

  • Аккуратно зачищаем и выравниваем ножки.
  • На измерительном приборе устанавливаем значение ёмкости, близкое к оригиналу.
  • Вставляем конденсатор в специальные контакты на приборе. Ожидаем зарядки элемента несколько секунд. Когда показания на шкале перестанут изменяться – фиксируем их.

Измерить емкость конденсатора самому - это простоИзмерение ёмкости прибором, имеющим специальную функцию, одинаково для накопителей энергии любого типа (полярный, неполярный). Из этой статьи мы узнали, что знание основных навыков для проверки конденсаторов мультиметром дело нужное и не очень сложное. Их легко измерять и прозванивать самостоятельно. О более точных принципах измерения можно узнать из видео в интернете.

Как проверить конденсатор с помощью мультиметра за 5 способов?

I Введение

Два смежных проводника зажаты слоем непроводящей изолирующей среды для образования конденсатора. Конденсаторы являются одним из наиболее часто используемых электронных компонентов. Они играют важную роль в таких схемах, как настройка, обход, соединение и фильтрация. Например, они часто используются в схеме настройки транзисторной радиосвязи, в цепи связи и в схеме обхода цветного телевизора.

В этой статье в основном рассказывается о том, как правильно использовать мультиметры для проверки конденсаторов и алюминиевых электролитических конденсаторов, в том числе подробные инструкции по эксплуатации, принципы работы, уведомление и объяснение некоторых фундаментальных знаний о конденсаторах.

У нас также есть соответствующий пост о том, как проверить пусковые конденсаторы, которые могут вас заинтересовать. Не пропустите!

Как проверить конденсаторы с мультиметром Dgital

Каталог

I Введение

II Определение конденсатора

III Причины и следствия испытаний конденсаторов и характеристик выдерживаемого напряжения

3.1 Почему мы должны измерять емкость конденсатора?

3.2 Почему конденсаторы должны пройти испытание на выдерживаемое напряжение?

IV Разница конденсаторов с различной емкостью в тесте

4.1 Конденсаторный тест малой емкости

4.2 Конденсаторный тест большой емкости

4.3 Тест суперконденсатора

В Как проверить конденсаторы с помощью мультиметра?

5.1 прямой тест с конденсатором

5.2 Тест с файлом сопротивления

5.3 Тест с файлом напряжения

5.4 Тест с зуммером

5.5 Использование цифрового мультиметра для измерения емкости более 20 мкФ

VI Как обнаружить конденсаторы в алюминиевых конденсаторах

6.1 Внешний вид Физическая проверка

6.2 Тест производительности и потерь

6.Испытание напряжения 3 пульсаций

6.4 Испытание на ток утечки

6.5 Испытание на взрыв

6.6 Температурный тест

VII Соображения по тестированию конденсаторов

VIII Один вопрос, связанный с тестированием конденсатора

8.1 Вопрос

8.2 Ответ

II Определение конденсатора

Конденсаторы включают компоненты, которые накапливают электроэнергию и электрическую энергию (потенциальную энергию).Проводник окружен другим проводником, или все линии электрического поля, испускаемые одним проводником, заканчиваются в системе проводимости другого проводника, называемого конденсатором.

III Причины и следствия тестирования конденсаторов и характеристик выдерживаемого напряжения

3.1 Почему мы должны измерять емкость конденсатора?

Целью измерения значения емкости конденсатора в общем смысле электричества является проверка изменения значения его емкости.Сравнивая измеренное значение со значением, указанным на паспортной табличке, вы можете судить о том, является ли внутренняя проводка правильной, и не повреждена ли изоляция из-за влаги, не сломался ли компонент, и утечка масла не привела к уменьшению емкости. Так что будьте осторожны во время существенной операции.

3.2 Почему конденсаторы должны пройти испытание на выдерживаемое напряжение?

Испытание на выдерживаемое напряжение относится к проверке способности выдерживать напряжение различных электрических устройств и конструкций.Процесс подачи высокого напряжения на изолирующий материал или изолирующую конструкцию без ущерба для характеристик изолирующего материала считается испытанием на выдерживаемое напряжение. Говоря в широком смысле, основная цель возможности испытания на выдерживаемое напряжение состоит в том, чтобы проверить способность изоляции выдерживать рабочее напряжение или перенапряжение, а затем проверить, соответствуют ли характеристики изоляции оборудования изделия стандартам безопасности. проверить способность изоляции выдерживать рабочее напряжение или перенапряжение, а затем проверить, соответствуют ли характеристики изоляции оборудования изделия стандартам безопасности.

Рисунок 1. Тестирование конденсаторов

IV Разница в тестировании конденсаторов с различной емкостью

4.1 Тестирование конденсаторов малой емкости

Емкость конденсатора малой емкости обычно ниже 1 мкФ, поскольку емкость слишком мала, зарядка Это явление неочевидно, и при измерении угол кисти вправо не велик. Поэтому, как правило, невозможно оценить его емкость с помощью мультиметра, но можно определить только наличие утечки или поломки.При нормальных условиях значение сопротивления обоих концов мультиметра R × 10 k должно быть бесконечным. Если определенное значение сопротивления измерено или значение сопротивления близко к 0, это означает, что на конденсаторе произошла утечка электричества или он был поврежден в результате поломки.

4.2 Испытание конденсатора большой емкости

Как правило, тестирование большой емкости может проводиться с помощью 1K-10K, см. Ход измерителя во время зарядки и значение сопротивления, указанное последним измерителем. Чем ближе слева, тем лучше.Если сопротивление слишком мало, его нельзя использовать.

4.3 Тестирование суперконденсаторов

Метод измерения суперконденсаторов полностью отличается от других типов конденсаторов. Суперконденсаторы имеют исключительно большие значения емкости, которые не могут быть измерены непосредственно стандартным оборудованием. Обычные методы проверки емкости этих конденсаторов — это зарядка суперконденсаторов при номинальном напряжении и разрядка суперконденсаторов нагрузкой с постоянным током.

Рисунок2. Различные конденсаторы

В Как проверить конденсаторы с помощью мультиметра?

5.1 Прямой тест с конденсатором

Некоторые цифровые мультиметры имеют функцию измерения емкости, и их диапазоны разделены на пять диапазонов 2000p, 20n, 200n, 2μ и 20μ. При измерении вы можете напрямую вставить два контакта разряженного конденсатора в гнездо Cx на плате счетчика и выбрать подходящий диапазон для считывания данных дисплея.

Файл 2000p, подходит для измерения емкости менее 2000 пФ; Файл 20n, подходящий для измерения емкости от 2000 пФ до 20 нФ; Файл 200n, подходящий для измерения емкости между 20 нФ и 200 нФ; Файл 2μ, подходит для измерения емкости от 200 нФ до 2 мкФ; Диапазон 20 мкм, подходит для измерения емкости от 2 до 20 мкФ.

Опыта показывает, что некоторые типы цифровых мультиметров (например, DT890B +) позволяют значительную ошибку при измерении конденсаторов малой емкости ниже 50пФа, и почти нет опорного значения для измерения емкости ниже 20pF.В это время емкость небольшого значения можно измерить последовательным методом.

Метод

: сначала найдите конденсатор с напряжением около 220 пФ, используйте цифровой мультиметр для измерения его фактической емкости С1, а затем подключите небольшой конденсатор для параллельного тестирования, чтобы измерить его полную емкость С2. Разница между ними (C1-C2) заключается в емкости тестируемых маленьких конденсаторов.

С помощью этого метода чрезвычайно точно измерить небольшую емкость 1 ~ 20 пФ.

Рисунок 3. Как проверить конденсатор с помощью мультиметра

5.2 Тест с файлом сопротивления

Практика доказала, что процесс зарядки конденсаторов также можно наблюдать с помощью цифрового мультиметра, который фактически отражает изменение зарядного напряжения в дискретных цифровых величинах , Предполагая, что скорость измерения цифрового мультиметра составляет n раз / секунду, в процессе наблюдения за зарядкой конденсатора вы можете видеть n показаний, которые не зависят друг от друга и увеличиваются последовательно.В соответствии с этой характеристикой дисплея цифрового мультиметра можно определить качество конденсатора и оценить размер емкости.

Далее описывается метод обнаружения конденсатора с использованием измерителя сопротивления цифрового мультиметра, который имеет практическую ценность для приборов без конденсатора. Этот метод подходит для измерения конденсаторов большой емкости от 0,1 мкФ до нескольких тысяч микрофарад.

5.2.1 Метод измерения

Как показано на рисунке 4, установите цифровой мультиметр на соответствующий уровень сопротивления.Красный и черный измерительные провода соответственно касаются двух полюсов тестируемого конденсатора Cx. В это время отображаемое значение будет постепенно увеличиваться с «000» до тех пор, пока на дисплее не появится символ переполнения «1.» Если «000» постоянно отображается, это означает, что конденсатор внутренне замкнут; если он постоянно отображается, внутренние полюсы конденсатора могут быть разомкнуты, или выбранный уровень сопротивления может быть неподходящим. При проверке электролитических конденсаторов обратите внимание на то, что красный измерительный провод (положительный заряд) подключен к положительному электроду конденсатора, а черный измерительный провод подключен к отрицательному электроду конденсатора.

Рисунок 4. Цифровой мультиметр

5.2.2 Принцип измерения

На рисунке 5 показан принцип измерения конденсаторов с файлами сопротивлений. Во время измерения положительный источник питания заряжается, конденсатор Cx должен измеряться через стандартный резистор R0. В момент начала зарядки Vc = 0, поэтому отображается «000». Когда Vc постепенно увеличивается, отображаемое значение увеличивается. Когда Vc = 2VR, прибор начинает отображать символ переполнения «1.«Время зарядки t — это время, необходимое для изменения отображаемого значения от« 000 »до переполнения. Этот интервал времени может быть измерен кварцевым измерителем.

Рисунок 5. Принцип измерения

5.2.3 Измеренные данные с использованием цифрового мультиметра DT830 для оценки емкости

Принцип выбора диапазона сопротивления таков: когда емкость мала, следует выбирать высокое сопротивление, а когда емкость велико, следует выбирать низкое сопротивление.Если вы используете диапазон высокого сопротивления для оценки конденсатора большой емкости, время измерения будет длиться долго, потому что процесс зарядки очень медленный. Если вы используете диапазон низкого сопротивления для проверки конденсатора малой емкости, прибор всегда будет показывать переполнение, потому что время зарядки очень мало, и вы не можете увидеть изменения.

5.3 Проверка с использованием файла напряжения

Обнаружение конденсаторов с помощью мультиметра постоянного тока цифрового мультиметра фактически является методом косвенных измерений.Этот метод может измерять конденсаторы малой емкости от 220 до 1 мкФ и может точно измерять ток утечки конденсатора.

5.3.1 Методы и принципы измерения

Схема измерения показана на рисунке 6. E — это внешняя 1,5 В сухая батарея. Установите цифровой мультиметр на диапазон 2 В постоянного тока, подключите красный измерительный провод к одному электроду тестируемого конденсатора Cx, а черный измерительный провод — к отрицательному полюсу аккумулятора. Входное сопротивление диапазона 2 В составляет RIN = 10 МОм.После включения питания аккумулятор E заряжает Cx через RIN и начинает устанавливать напряжение Vc. Соотношение между Vc и временем зарядки t составляет

Рисунок 6. Схема подключения измерительного конденсатора с блоком напряжения

Здесь, поскольку напряжение на RIN является входным напряжением прибора VIN, поэтому RIN фактически выполняет функцию резистора выборки. очевидно,

VIN (t) = E-Vc (t) = Eexp (-t / RINCx) (5-2)

На рисунке 7 показана кривая изменения входного напряжения VIN (t) и зарядного напряжения Vc (t) на тестируемом конденсаторе.Из рисунка видно, что процесс изменения VIN (t) и Vc (t) как раз противоположен. Кривая VIN (t) уменьшается со временем, тогда как Vc (t) увеличивается со временем. Хотя измеритель показывает процесс изменения VIN- (t), он косвенно отражает процесс зарядки тестируемого конденсатора Cx. Во время теста, если Cx открыт (без емкости), отображаемое значение всегда будет «000». Если внутреннее короткое замыкание Cx, отображаемое значение всегда будет напряжением батареи E и не будет изменяться со временем.

Рисунок 7. Изменить кривую VIN (т) и Vc (т)

Уравнение (5-2) показывает, что когда цепь включена, t = 0, VIN = E, начальным значением отображения цифрового мультиметра является напряжение батареи, а затем, когда Vc (t) увеличивается, VIN (t) постепенно уменьшается. Пока VIN = 0 В, процесс зарядки Cx заканчивается, в это время

Vcx (т) = E

Используя конденсатор для определения уровня напряжения цифрового мультиметра, вы можете не только проверять конденсаторы малой емкости от 220 до 1 мкФ, но и измерять ток утечки конденсатора.Пусть ток утечки измеряемого конденсатора будет ID, а стабильное значение, отображаемое измерителем на конце, равно VD (единица V), затем

Рисунок8. Уравнение (5-3)

5.3.2 Примеры

Пример 1:

Измеренная емкость представляет собой фиксированный конденсатор 1 мкФ / 160 В с использованием диапазона 2 В постоянного тока цифрового мультиметра DT830 (RIN = 10 МОм). Подключите схему в соответствии с рисунком 6. Изначально на индикаторе отображалось значение 1.543 В, а затем отображаемое значение постепенно уменьшалось.Примерно через 2 минуты отображаемое значение стабилизировалось на уровне 0,003 В. Найти ток утечки тестируемого конденсатора.

Рисунок 9. Уравнение

Ток утечки тестируемого конденсатора составляет всего 0,3 нА, что свидетельствует о хорошем качестве.

Пример 2:

Тестируемый конденсатор представляет собой полиэфирный конденсатор емкостью 0,022 мкФ / 63 В. Метод измерения такой же, как в примере 1. Из-за небольшой емкости этого конденсатора VIN (t) быстро уменьшается во время измерения, и примерно через 3 секунды отображаемое значение уменьшается до 0.002V. Подставляя это значение в уравнение (5-3), ток утечки был вычислен равным 0,2 нА.

5.3.3 Примечания

(1) Перед измерением два контакта конденсатора должны быть замкнуты накоротко и разряжены, в противном случае процесс изменения показаний может не наблюдаться.

(2) Не прикасайтесь к электроду конденсатора обеими руками во время измерения, чтобы избежать скачков метра.

(3) Во время измерения значение VIN (t) изменяется экспоненциально и вначале быстро уменьшается.С увеличением времени скорость снижения будет становиться все медленнее и медленнее. Когда емкость тестируемого конденсатора Cx составляет менее нескольких тысяч пикофарад, поскольку VIN (t) изначально падает слишком быстро, а скорость измерения измерителя слишком низкая, чтобы отразить исходное значение напряжения, начальное значение дисплея измерителя составляет напряжение батареи ниже Е.

(4) Когда измеренный конденсатор Cx больше 1 мкФ, для сокращения времени измерения для измерения можно использовать файл сопротивления.Однако, когда емкость тестируемого конденсатора составляет менее 200 пФ, трудно наблюдать за процессом зарядки, поскольку изменение показаний очень короткое.

5.4 Проверка с помощью зуммера

Используя файл зуммера цифрового мультиметра, вы можете быстро проверить качество электролитического конденсатора. Метод измерения показан на рисунке 10. Установите цифровой мультиметр в положение зуммера и используйте два измерительных провода для контакта с двумя контактами тестируемого конденсатора Cx.Должен быть слышен короткий звуковой сигнал, звук остановится, и отобразится символ переполнения «1». Затем снова измерьте два измерительных провода, и снова должен прозвучать зуммер, и наконец появится символ переполнения «1», который указывает, что тестируемый электролитический конденсатор в основном нормальный. В это время вы можете установить высокое сопротивление 20 МОм или 200 МОм, чтобы измерить сопротивление утечки конденсатора и определить его качество.

Рисунок 10. Электрическая схема для тестирования электролитического конденсатора с зуммером

Принцип описанного выше процесса измерения таков: в начале теста ток зарядки прибора до Cx большой, что эквивалентно траектории, поэтому звучит зуммер.Когда напряжение на конденсаторе продолжает увеличиваться, ток зарядки быстро уменьшается, и, наконец, зуммер перестает звучать.

Если во время теста звучит зуммер, это означает, что внутренняя часть электролитического конденсатора была закорочена. Если зуммер продолжает звучать, и измеритель всегда показывает «1», когда ручка измерителя повторно измеряется, это означает, что тестируемый конденсатор открыт или емкость исчезает.

5.5 Использование цифрового мультиметра для измерения емкости более 20 мкФ

Для обычных цифровых мультиметров максимальное значение измерения файла емкости составляет 20 мкФ, что иногда не может удовлетворить требования к измерениям.По этой причине для измерения емкости более 20 мкФ с помощью файла емкости цифрового мультиметра можно использовать следующий простой метод, и можно измерить максимальную емкость в несколько тысяч микрофарад. При использовании этого метода для измерения конденсаторов большой емкости нет необходимости вносить какие-либо изменения в исходную схему цифрового мультиметра.

Принцип измерения этого метода основан на формуле C string = C1C2 / (C1 + C2) двух последовательно соединенных конденсаторов.Поскольку два конденсатора с разными емкостями соединены последовательно, общая емкость после последовательного соединения меньше емкости конденсатора с меньшей емкостью. Поэтому, если емкость измеряемого конденсатора превышает 20 мкФ, используется только один конденсатор емкостью менее 20 мкФ. Последовательно с ним вы можете измерять прямо на цифровом мультиметре.

В соответствии с формулой из двух последовательно соединенных конденсаторов легко получить цепочку C1 = C2C / (цепочка C2-C).Используя эту формулу, можно рассчитать значение емкости измеряемого конденсатора. Вот тестовый пример, иллюстрирующий конкретный метод использования этой формулы.

Испытуемый компонент представляет собой электролитический конденсатор с номинальной емкостью 220 мкФ и имеет значение C1. Выберите электролитический конденсатор с номинальным значением 10 мкФ в качестве C2, используйте конденсатор с цифровым мультиметром 20 мкФ, чтобы измерить фактическое значение этого конденсатора как 9,5 мкФ, и соедините два конденсатора последовательно, чтобы измерить строку C как 9.09μF. Подставляя в формулу C2 = 9,5 мкФ и строку C = 9,09 мкФ, затем

C1 = строка C2C / (строка C2-C) = 9,5 9,09 / (9,5-9,09) ≈211 (мкФ)


Рисунок 11. Цифровой мультиметр

Примечание: Независимо от того, сколько емкости C2 выбрано, конденсатор с большей емкостью должен быть выбран при условии менее 20 мкФ, и C2 в формуле следует заменить на фактическое измеренное значение вместо номинального значение, которое может уменьшить ошибки.Два конденсатора соединены последовательно и измерены цифровым мультиметром. Из-за погрешности емкости и погрешности измерения самого конденсатора, если фактическое измеренное значение близко к расчетному значению, измеряемый конденсатор C1 считается хорошим. вместимость.

Теоретически, этот метод может измерять емкость любой емкости, но если емкость тестируемого конденсатора слишком велика, ошибка будет увеличиваться. Ошибка пропорциональна размеру измеряемого конденсатора.

VI Как проверить алюминиевые электролитические конденсаторы

6.1 Внешний вид Физический осмотр

(1) Сначала проверьте, имеет ли тестируемый конденсатор формальную «Спецификацию продукта», которая включает название продукта, технические характеристики, установочные размеры, требования к процессу, технические параметры, а также имя поставщика, адрес и контактная информация для обеспечения этого. Серийная продукция предоставляется постоянными производителями. Логотип на конденсаторе должен включать товарный знак, рабочее напряжение, стандартную емкость, полярность и диапазон рабочих температур.

(2) Обратитесь к параметрам процесса в «Спецификации продукта» и проверьте, соответствуют ли внешний вид, цвет и материал конденсатора указанным на нем индикаторам процесса.

(3) Используйте штангенциркуль для подтверждения размера установки конденсатора, чтобы гарантировать, что диаметр, высота и диаметр и расстояние между выводными выводами находятся в пределах допуска процесса продукта, а внешние размеры должны соответствовать Требования к выбору компании.

(4) Проверьте внешний вид конденсатора, чтобы убедиться, что он выглядит аккуратно, без явных деформаций, поломок, трещин, пятен, грязи, ржавчины и т. Д. И его маркировка четкая, прочная, правильная и полная.

(5) Проверьте выводные клеммы, чтобы убедиться, что их выводы прямые, не подвержены окислению, ржавчине и не влияют на их проводящие свойства, а выводные клеммы не имеют искажений, деформации и механических повреждений. это влияет на вставку и удаление.

(6) Проверьте, чтобы дата изготовления, отмеченная на электролитическом конденсаторе, не превышала шесть месяцев, и сделайте запись.

Рисунок 12. Алюминиевый электролитический конденсатор

6.2 Тест емкости и потерь

(1) Используйте электрический мост, чтобы проверить, соответствует ли фактическая емкость номинальной емкости (электролитический конденсатор обычно имеет диапазон погрешности ± 20%). Значение тангенса угла потерь tanθ (то есть значение D) соответствует стандарту.

(2) Как использовать мостовой тестер Zen tech: После правильного подключения источника питания нажмите кнопку «ПИТАНИЕ», чтобы включить рабочее напряжение тестера; нажмите клавишу «LCR», чтобы выбрать тип теста (L: индуктивность, C: емкость, R: сопротивление).

(3) Нажмите клавиши «ВВЕРХ» и «ВНИЗ», чтобы выбрать тестовый диапазон (мкФ, нФ, пФ), и нажмите клавишу «FREQ», чтобы выбрать тестовую частоту (100 Гц,

).

(120 Гц, 1 кГц) может выбрать требуемую частоту испытаний в соответствии с техническими параметрами, предоставленными производителем, при тестировании в этой статье выбирается «100 Гц».

(4) Нажмите «SERIES» (параллельно) и «PARALLEL» (параллельно), чтобы выбрать режим подключения для теста, небольшая емкость (менее 10 мкФ)

Чтобы использовать параллельный режим, используйте большой режим (10 мкФ и выше) в последовательном режиме.

(5) После завершения настройки подключите порты проверки моста («НИЗКИЙ» и «ВЫСОКИЙ») к двум концам конденсатора и используйте этикеточную бумагу для записи значения емкости и значения потерь на дисплее соответственно. И прикрепите этикеточную бумагу к соответствующему конденсатору для последующего анализа.

6.3 Проверка напряжения пульсации

(1) Подключите цепь, как показано ниже, и подключите тестируемый конденсатор к регулируемому источнику постоянного тока (обратите внимание, что положительный и отрицательный полюсы не подключены обратно). Соедините положительный электрод зонда осциллографа с неиндуктивным конденсатором (1 мкФ 1200 В пост. Тока) последовательно с положительным электродом тестируемого конденсатора.

Рисунок 13. Схема теста напряжения пульсации

(2) Для настройки осциллографа он должен быть сначала установлен в положение проверки постоянного тока, а ручка точной регулировки напряжения осциллографа должна быть заблокирована.

(3) Во время испытания напряжение постоянного тока должно медленно увеличиваться до номинального напряжения с помощью регулятора напряжения, а изменения, отображаемые осциллографом, должны тщательно контролироваться. Нужно выбрать правильный диапазон, чтобы обеспечить точное считывание напряжения с осциллографа.

(4) Возьмите волновую форму пульса с камерой и запишите диапазон и деление осциллографа на этикеточной бумаге (то есть рассчитайте пульсирующее напряжение и вставьте его в соответствующий конденсатор для последующего анализа и сравнения.

(5) После завершения записи отключите источник питания постоянного тока, разрядите тестируемый конденсатор и неиндуктивный конденсатор с нагрузкой на колбу, а затем извлеките тестируемый конденсатор из испытательного стенда.

6.4 Испытание на ток утечки

6.4.1 Один метод косвенных измерений

Подключите, как показано ниже. Подключите резистор 1 кОм последовательно с тестируемым конденсатором и подключите его к регулируемому источнику постоянного тока. Используйте датчик осциллографа для подключения к обоим концам резистора.Косвенно рассчитайте ток утечки измеряемого конденсатора путем выборки сигнала напряжения на резисторе.

Принципы работы и меры предосторожности: После подключения цепи отрегулируйте источник питания постоянного тока в соответствии с номинальным напряжением конденсатора. После уравновешивания цепи в течение двух минут считайте значение напряжения на резисторе. При считывании осциллографа ручка подстройки напряжения должна быть заблокирована. Запишите максимальное значение формы сигнала напряжения в качестве значения напряжения и разделите его на значение сопротивления, чтобы получить значение тока утечки.Слишком большой ток и резистор перегорел. После испытания конденсатор должен быть разряжен, а затем удален во избежание несчастных случаев.

Рисунок 14. Схема

6.4.2 Метод косвенных измерений Два

Подключите проводку, как показано на рисунке, и последовательно подключите воздушный выключатель между конденсатором и источником питания постоянного тока. Сначала закройте S1 и S2 соответственно и отрегулируйте регулятор напряжения до номинального напряжения для зарядки конденсатора в течение двух минут.

Рисунок 15. Схема

После этого оба S1 и S2 отключаются. В это время регулируемый источник питания имеет номинальное значение. Не шевелись. Добавьте миллиамперметр между S1 и S2, как показано на рисунке ниже: S1 и S2 оба замкнуты, и ток утечки может быть непосредственно считан через миллиамперметр после одной минуты стабилизации.

Рисунок 16. Схема

6.4.3 Меры предосторожности

Не забывайте не подключать миллиамперметр к линии напрямую, когда конденсатор не заряжен, поскольку начальный зарядный ток велик, миллиамперный измеритель сгорит случайно.В процессе разборки сначала разрядите конденсатор с нагрузкой на колбу. При разрядке сначала снимите миллиамперметр и убедитесь, что ток разряда не проходит тестовое сопротивление, чтобы предотвратить повреждение тестового резистора и миллиметра.

6.4.4 Ток утечки при 1.2Un

Отрегулируйте напряжение постоянного тока в 1,2 раза от номинального напряжения электролитического конденсатора, снова измерьте его ток утечки и сравните различные образцы.

6.5 Испытание на взрыв

6.5.1 Испытание постоянным током

Подайте обратное напряжение постоянного тока на тестируемый конденсатор, медленно отрегулируйте регулируемое напряжение постоянного тока и внимательно наблюдайте за током с помощью токоизмерительного измерителя. Настройка мощности постоянного тока обычно составляет не более 30 В. Текущее значение устанавливается в соответствии с размером конденсатора следующим образом:

Если диаметр конденсатора составляет 6 мм ≤ 22,4 мм, ток не может превышать 1 А; когда диаметр конденсатора> 22,4 мм, ток не может превышать 10 А.

6.5.2 Соблюдать температуру поверхности конденсатора

Во время эксперимента используйте термометр, чтобы внимательно следить за температурой поверхности конденсатора (чувствительный контакт термометра можно обернуть вокруг конденсатора лентой). Обратите внимание, что начальный ток очень мал и почти равен нулю. Когда температура конденсатора повышается (около 35-40 ° C), ток значительно увеличивается. В это время следует внимательно наблюдать. Когда ток достигает или приближается к 10А, напряжение должно быть снижено, чтобы обеспечить контроль тока в пределах 10А.

6.5.3 Конденсаторный предохранительный клапан

В течение 30 минут после начала испытания предохранительный клапан конденсатора должен быть открыт. Если предохранитель конденсатора разомкнут, питание следует немедленно отключить (электролитический конденсатор на 350 В 6800F автоматически откроется при следующих условиях, ток около 8 А, температура поверхности около 45-60 ° С), если ток близок к 10А, а предохранитель еще через 30 минут. Если он не включен, эта функция отсутствует.

Рисунок 17. Цифровой вольтметр постоянного тока

6.6 Температурный тест

Емкость конденсатора изменится из-за различных температур окружающей среды. Как правило, емкость будет увеличиваться при повышении температуры. Температурный тест должен проверить изменение емкости после уравновешивания при установленной температуре.

6.6.1 Высокотемпературный тест

(1) Подключите два небольших провода к выводному выводу конденсатора, который необходимо проверить, соответственно, и проверьте емкость двух выводов при нормальной температуре, и маркируйте их для записи.

(2) Поместите конденсатор в коробку для измерения высокой и низкой температуры, изменяющей влажность и тепло, и оставьте выводы вне коробки для проверки емкости.

(3) Включите кнопку переключателя тестового блока, нажмите «Настройка температуры» на экране, установите температуру на 100 ° C и нажмите «Выполнить», чтобы запустить тестовый блок.

(4) Снова проверьте емкость примерно через 2 часа после того, как температура достигнет 100 ° C, и рассчитайте процентное изменение емкости (первоначальное измерение разности).

6.6.2 Испытание на низкую температуру

(1) Поместите тестируемый конденсатор в тестовую коробку (будьте осторожны, не используйте конденсаторы, которые были протестированы при высоких температурах, за исключением особых нужд).

(2) Включите кнопку переключателя тестового блока, нажмите «Настройка температуры» на экране, установите температуру на -25 ° C и нажмите «Выполнить».

(3) Снова проверьте емкость примерно через 2 часа после того, как температура достигнет -25 ° C, и рассчитайте процентное изменение емкости (первоначальное измерение разности).

6.6.3 Меры предосторожности

Тест должен обратить пристальное внимание на наличие каких-либо очевидных изменений в конденсаторе. В случае возникновения серьезных условий, таких как растрескивание поверхности конденсатора и открытие предохранительного клапана, испытательную коробку следует немедленно остановить. Во время испытания должны строго соблюдаться процедуры эксплуатации испытательного бокса, и дверь испытательного бокса не должна открываться по желанию. В конце высокотемпературного испытания конденсатор можно вынуть только после того, как температура внутри испытательной коробки упадет, чтобы предотвратить несчастные случаи, такие как ожоги.

Рисунок 18. Конденсаторы

VII Соображения по тестированию конденсаторов

(1) При измерении мультиметром выберите передачу в соответствии с номинальным напряжением конденсатора. Например, напряжение конденсатора, обычно используемое в электронном оборудовании, низкое — от нескольких вольт до десятков вольт. Если для измерения используется мультиметр RX10k, напряжение батареи в измерителе составляет 12 ± 22,5 В, что может привести к поломке конденсатора.Следовательно, файл RXlk должен использоваться. измерения.

(2) Для конденсатора, только что снятого с линии, обязательно разрядите конденсатор перед измерением, чтобы предотвратить разряд остаточного заряда в конденсаторе на счетчик и повредить счетчик.

(3) Для конденсаторов с высоким рабочим напряжением и большой емкостью конденсаторы должны быть разряжены в достаточной степени, и у оператора должны быть защитные меры для предотвращения поражения электрическим током во время разряда.

8.1 Вопрос

Что мы должны делать при проверке конденсатора с помощью омметра?

8.2 Ответ

Чтобы снять конденсатор с цепи.

Обычно легко снять пусковой или рабочий конденсатор — вы просто отсоединяете его от жгута и отсоединяете провода. Однако будьте осторожны, чтобы не касаться клемм конденсатора. Если конденсатор не мертв, он может быть полностью заряжен, и если это так, вы можете получить серьезный удар.

,

конденсаторов 101 — iFixit

Вот немного сухих вещей, просто чтобы понять, что такое конденсатор и что он вообще делает. Конденсатор — это небольшой (в большинстве случаев) электрический / электронный компонент на большинстве плат, который может выполнять различные функции. Когда конденсатор помещается в цепь с активным током, электроны с отрицательной стороны накапливаются на ближайшей пластине. Отрицательный поток переходит в положительный, поэтому отрицательным является активный вывод, хотя многие конденсаторы не поляризованы.Как только пластина перестает их удерживать, они проталкиваются через диэлектрик на другую пластину, вытесняя электроны обратно в цепь. Это называется разрядкой. Электрические компоненты очень чувствительны к скачкам напряжения, и, как следствие, скачок мощности может убить эти дорогие детали. Конденсаторы подают напряжение постоянного тока на другие компоненты и, таким образом, обеспечивают стабильное питание. Переменный ток выпрямляется диодами, поэтому вместо переменного тока присутствуют импульсы постоянного тока от нуля вольт до пика. Когда конденсатор от линии электропередачи подключен к земле, и постоянный ток не будет проходить, но, поскольку импульс заполняет крышку, это уменьшает ток и эффективное напряжение.Пока напряжение питания падает до нуля, конденсатор начинает вытекать из его содержимого, это сгладит выходное напряжение и ток. Следовательно, конденсатор размещен в линию относительно компонента, что позволяет поглощать пики и дополняет впадины, что, в свою очередь, поддерживает постоянное электропитание компонента.

Существует множество различных типов конденсаторов. Они часто используются по-разному в цепях. Все слишком знакомые конденсаторы в форме круглых жестяных банок обычно представляют собой электролитические конденсаторы.Они сделаны из одного или двух листов металла, разделенных диэлектриком. Диэлектрик может представлять собой воздух (простейший конденсатор) или другие непроводящие материалы. Металлическая фольга, отделенная диэлектриком, затем скручивается, как при сборке фруктов, и помещается в банку. Они отлично подходят для массовой фильтрации, но не очень эффективны на высоких частотах.

Вот конденсатор, который некоторые еще могут помнить из старых радио дней. Это многосекционная банка конденсаторов. Этот конкретный конденсатор с четырьмя (4) секциями.Все это означает, что в одной банке есть четыре отдельных конденсатора с разными значениями.

Керамические дисковые конденсаторы идеальны для более высоких частот, но не подходят для массовой фильтрации, потому что керамические дисковые конденсаторы становятся большими по размеру для более высоких значений емкости. В цепях, где важно поддерживать стабильность источника напряжения, обычно имеется большой электролитический конденсатор параллельно с керамическим дисковым конденсатором. Электролитик будет выполнять большую часть работы, тогда как маленький керамический дисковый конденсатор отфильтровывает высокую частоту, которую пропускает большой электролитический конденсатор.

Тогда есть танталовые конденсаторы. Они небольшие, но имеют большую емкость по сравнению с их размером, чем керамические дисковые конденсаторы. Они более дорогие, но находят широкое применение на платах небольших электронных устройств.

Хотя неполярные, старые бумажные конденсаторы имели черные полосы на одном конце. Черная полоса показала, на каком конце бумажного конденсатора была металлическая фольга (которая служила экраном). Конец с металлической фольгой был соединен с землей (или самым низким напряжением).Основной целью защитного экрана было продлить срок службы бумажного конденсатора.

Вот тот, который нам, скорее всего, интересен больше всего, когда речь заходит об iDevices. Они очень малы по сравнению с ранее перечисленными конденсаторами. Это крышки для поверхностного монтажа (SMD). Несмотря на то, что они имеют миниатюрный размер по сравнению с предыдущими конденсаторами, функция остается прежней. Одной из важных, помимо значений этих конденсаторов, является их «упаковка». Существует стандартизация для размера этих компонентов, т.е.е. пакет 0201 — 0,6 мм х 0,3 мм (0,02 «х 0,01»). Размер упаковки для керамических конденсаторов SMD соответствует тому же, что и для резисторов SMD. Это делает практически невозможным определить, является ли это конденсатором или резистором по визуализации. Вот хорошее описание индивидуального размера в зависимости от номера упаковки.

Определение значения, которое имеет конденсатор, может быть выполнено несколькими способами. Номер один, конечно, это маркировка на самом конденсаторе.

Этот конкретный конденсатор имеет емкость 220 мкФ (микрофарад) с допуском 20%.Это означает, что это может быть где-то между 176 мкФ и 264 мкФ. Имеет номинальное напряжение 160 В. Расположение выводов показывает, что это радиальный конденсатор. Оба вывода выходят с одной стороны в противоположность осевому расположению, где один вывод выходит с любой стороны корпуса конденсаторов. Кроме того, полоска со стрелкой на стороне конденсатора указывает полярность, стрелки указывают на отрицательный вывод .

Теперь главный вопрос — как проверить конденсатор, чтобы увидеть, нуждается ли он в замене.

Чтобы выполнить проверку конденсатора, когда он все еще установлен в цепи, потребуется измеритель ESR. Если конденсатор снят с цепи, то можно использовать мультиметр, установленный в качестве омметра, , но только для выполнения теста «все или ничего». Этот тест покажет только, если конденсатор полностью мертв или нет. Он будет , а не , чтобы определить, находится ли конденсатор в хорошем или плохом состоянии. Чтобы определить, работает ли конденсатор на правильном значении (емкости), потребуется тестер конденсатора.Конечно, это также верно для определения значения неизвестного конденсатора.

Счетчик, используемый для этой вики, является самым дешевым, доступным в любом универмаге. Для этих испытаний также целесообразно использовать аналоговый мультиметр. Это покажет движение более наглядным способом, чем цифровой мультиметр, который отображает только быстро меняющиеся числа. Это должно позволить любому выполнять эти тесты, не тратя целое состояние на что-то вроде измерителя Fluke.

Всегда разряжайте конденсатор перед тестированием, если это не будет сделано, это будет шокирующим сюрпризом.Очень маленькие конденсаторы можно разряжать, соединяя оба провода отверткой. Лучший способ сделать это — разрядить конденсатор через нагрузку. В этом случае кабели аллигатора и резистор выполнят это. Вот отличный сайт, показывающий, как построить разгрузочный инструмент.

Чтобы проверить конденсатор с помощью мультиметра, установите показания счетчика в диапазоне высоких омов, где-то выше 10 кОм и 1 мОм. Прикоснитесь к измерительным проводам на соответствующих проводах на конденсаторе, красный к положительному и черный к отрицательному.Счетчик должен начинаться с нуля, а затем медленно двигаться к бесконечности. Это означает, что конденсатор находится в рабочем состоянии. Если счетчик остается на нуле, конденсатор не заряжается через аккумулятор счетчика, что означает, что он не работает.

Это также будет работать с заглушками SMD. Тот же тест с иглой мультиметра, движущейся медленно в том же направлении.

Еще один тест, который можно выполнить на конденсаторе, — это тест напряжения. Мы знаем, что конденсаторы хранят разность потенциалов зарядов на их пластине, это напряжения.Конденсатор имеет анод с положительным напряжением и катод с отрицательным напряжением. Один из способов проверить, работает ли конденсатор, — это зарядить его напряжением, а затем считать напряжение на аноде и катоде. Для этого необходимо зарядить конденсатор напряжением и подать напряжение постоянного тока на выводы конденсатора. В этом случае полярность очень важна. Если этот конденсатор имеет положительный и отрицательный выводы, то это поляризованные конденсаторы (электролитические конденсаторы). Положительное напряжение пойдет на анод, а отрицательное — на катод конденсатора.Не забудьте проверить маркировку на тестируемом конденсаторе. Затем подайте напряжение, которое должно быть меньше напряжения, на которое рассчитан конденсатор, на несколько секунд. В этом примере конденсатор 160 В будет заряжаться от батареи 9 В постоянного тока в течение нескольких секунд.

После завершения зарядки отсоедините аккумулятор от конденсатора. Используйте мультиметр и измерьте напряжение на выводах конденсатора. Напряжение должно быть около 9 вольт. Напряжение будет быстро разряжаться до 0 В, потому что конденсатор разряжается через мультиметр.Если конденсатор не удерживает это напряжение, он неисправен и должен быть заменен.

Конечно, проще всего проверить конденсатор с помощью измерителя емкости. Вот FRAKO осевой GPF 1000 мкФ 40 В с допуском 5%. Проверка этого конденсатора с помощью измерителя емкости прямолинейна. На этих конденсаторах отмечен положительный вывод. Прикрепите положительный (красный) провод от измерителя к этому и отрицательный (черный) к противоположному. Этот конденсатор показывает 1038 мкФ, явно в пределах его допуска.

Тестирование конденсатора SMD может быть затруднительно с громоздкими зондами. Можно либо припаять иглы к концу этих зондов, либо инвестировать в какой-нибудь умный пинцет. Предпочтительным способом было бы использовать умный пинцет.

Некоторые конденсаторы не требуют каких-либо испытаний для определения неисправности. Если при визуальном осмотре конденсаторов обнаружены какие-либо признаки выпуклых верхушек, их необходимо заменить. Это наиболее распространенный сбой в источниках питания. При замене конденсатора крайне важно заменить его конденсатором того же или более высокого значения.Никогда не субсидируйте с помощью конденсатора меньшей стоимости.

Если конденсатор, который будет заменен или проверен, не имеет каких-либо маркировок, потребуется схема. Изображение ниже отсюда показывает несколько символов для конденсаторов, которые используются на схеме.

Эта выдержка из схемы iPhone указывает символ для конденсаторов, а также значения для этих конденсаторов.

Эта вики — всего лишь основы того, что искать на конденсаторе, она никоим образом не завершена.Чтобы узнать больше о любых распространенных электронных компонентах, есть множество хороших и оффлайн курсов.

Eaton Electronics

Максвелл

Digikey

Моузер

.
Какова роль конденсатора в цепи переменного и постоянного тока? Электротехника

Какова роль конденсатора в цепи переменного и постоянного тока?

Роль конденсатора в цепях переменного тока:

В цепи переменного тока конденсатор меняет свои заряды по мере изменения тока и создает запаздывающее напряжение (другими словами, конденсатор обеспечивает опережающий ток в цепях и сетях переменного тока)

Роль конденсатора в цепях постоянного тока:

В цепях постоянного тока конденсатор, однажды заряженный от приложенного напряжения, действует как размыкающий переключатель.

What is the Role of Capacitor in AC and DC Circuits What is the Role of Capacitor in AC and DC Circuits Роль конденсатора в системах переменного и постоянного тока

Давайте объясним подробно, но сначала мы вернемся к основам конденсатора, чтобы обсудить этот вопрос.

Что такое конденсатор?

Конденсатор представляет собой двухполюсное электрическое устройство, используемое для хранения электрической энергии в виде электрического поля между двумя пластинами. Он также известен как конденсатор, и единицей измерения его емкости является Фарад «F», где Фарад — это большая единица емкости, поэтому в настоящее время они используют микрофарады (мкФ) или нанофарады (нФ).

Конденсатор похож на аккумулятор, так как оба хранят электрическую энергию. Конденсатор — намного более простое устройство, которое не может производить новые электроны, но сохраняет их. Внутри конденсатора клеммы соединены с двумя металлическими пластинами, разделенными диэлектрическим материалом (таким как вощеная бумага, слюда и керамика), которые разделяют пластины и позволяют им удерживать противоположные электрические заряды, поддерживая электрическое поле.

Конденсаторы могут быть полезны для хранения заряда и быстрого разряда в нагрузке.Проще говоря, конденсатор также работает как небольшая перезаряжаемая батарея. Электрический эквивалентный символ различных типов конденсаторов приведен ниже: symbol of different types of capacitor symbol of different types of capacitor

Теперь мы знаем концепцию зарядки конденсатора и его структуру, но, , знаете ли вы, что такое емкость? емкость — это способность конденсатора сохранять заряд в нем. Есть несколько факторов, которые влияют на емкость.

  • Площадь пластины
  • Зазор между пластинами
  • Проницаемость изоляционного материала

Похожие сообщения: Конденсаторы и типы конденсаторов | Фиксированный, переменный, полярный и неполярный

Конденсатор имеет широкий спектр применений в электронике , таких как накопление энергии, преобразование мощности, коррекция коэффициента мощности, генераторы и фильтрация.

В этом уроке мы объясним вам, как вы можете использовать конденсатор в электронной схеме. Существует три способа подключения конденсатора в электронную цепь:

  • Конденсатор серии
  • Конденсатор параллельно
  • Конденсатор в цепях переменного тока
  • Конденсатор в цепях постоянного тока

Похожие сообщения: Конденсаторы MCQ с пояснительными ответами

Как работает конденсатор?
Работа и конструкция конденсатора

Всякий раз, когда на его клеммы подается напряжение (также известный как зарядка конденсатора), ток начинает течь и продолжает распространяться до тех пор, пока напряжение не станет отрицательным и положительным (Анод и Катодные) пластины становятся равными напряжению источника (Applied Voltage).Эти две пластины разделены диэлектрическим материалом (таким как слюда, бумага, стекло и т. Д., Которые являются изоляторами), который используется для увеличения емкости конденсатора.

Когда мы подключаем заряженный конденсатор через небольшую нагрузку, он начинает подавать напряжение (накопленная энергия) на эту нагрузку, пока конденсатор не разрядится полностью.

Конденсатор имеет различные формы, и его значение измеряется в Фарадах (F). Конденсаторы используются в системах переменного и постоянного тока (мы обсудим это ниже).

Емкость (C):

Емкость — это количество электрического заряда, перемещаемого в конденсаторе (конденсаторе), когда один источник напряжения вольт подключен к его клемме.

Математически,

Уравнение емкости:

C = Q / V

Где,

  • C = Емкость в Фарадах (F)
  • Q = Электрические заряды в Coul V = напряжение в вольтах

Мы не будем вдаваться в подробности, потому что наша основная цель этого обсуждения — объяснить роль и применение / использование конденсаторов в системах переменного и постоянного тока.Чтобы понять эту базовую концепцию, мы должны понять основные типы конденсаторов, относящиеся к нашей теме (поскольку существует много типов конденсаторов, и мы обсудим последние типы конденсаторов в другом посте, поскольку он не связан с вопросом).

Похожие сообщения:

Конденсаторы в серии

Как подключить конденсаторы в серии?

Последовательно, ни один конденсатор не подключен напрямую к источнику. Чтобы соединить их последовательно, необходимо соединить их последовательно, как показано на рисунке ниже, Capacitors in Series Capacitors in Series

При последовательном подключении конденсаторов общая емкость уменьшается.Следовательно, соединение последовательно, поэтому ток через конденсаторы будет одинаковым. Кроме того, заряд, накопленный пластиной конденсатора, будет таким же, потому что он исходит от пластины соседнего конденсатора.

Следовательно,

I T = I 1 + I 2 + I 3 +… + I n

и

Q T 901 = + Q 2 + Q 3 +… + Q n

Теперь, чтобы найти значение емкости вышеуказанной цепи, мы применим закон напряжения Кирхгофа (KVL), тогда у нас будет

V T = V C1 + V C2 + V C3

Как мы знаем, Q = CV

И V = Q / C

Итак,

(Q / C T ) = (Q / C 1 ) + (Q / C 2 ) + (Q / C 3 )

Следовательно,

1 / C T = (1 / C 1 ) + (1 / C 2 ) + (1 / C 3 )

Для n th нет.конденсатора, соединенного последовательно,

Capacitance in Series - Capacitors in Series Capacitance in Series - Capacitors in Series

Для двух последовательно соединенных конденсаторов формула будет

C T = (C1 x C2) / (C1 + C2)

Теперь вы можете найти Емкость вышеуказанной цепи, используя формулу,

Здесь, C1 = 10 мкФ и C2 = 4,7 мкФ

Итак, C T = (10 x 4,7) / (10 + 4,7)

C T = 47 / 14,7

C T = 3.19 мкФ

Параллельно конденсаторы

Как подключить конденсаторы параллельно?

Параллельно каждый конденсатор напрямую подключен к источнику, как вы можете видеть на рисунке ниже, Capacitors in Parallel Capacitors in Parallel

При параллельном подключении конденсаторов общая емкость равна сумме всех емкостей конденсатора.Поскольку верхняя и нижняя пластины всех конденсаторов соединены вместе, благодаря этому площадь пластины также увеличивается.

Общий ток в параллельной цепи будет равен току на каждом конденсаторе.

Применяя закон Кирхгофа,

I T = I 1 + I 2 + I 3

Теперь ток через конденсатор выражается как

I = C (dV / dt)

Итак, Capacitors in Parallel Capacitors in Parallel

Решая вышеприведенное уравнение

C T = C 1 + C 2 + C 3

А, для n th нет.конденсатора, соединенного последовательно,

C T = C 1 + C 2 + C 3 +… + C n

Теперь вы можете найти емкость цепи по: используя приведенную выше формулу,

Здесь C 1 = 10 мкФ и C 2 = 1 мкФ

Итак, C T = 10 мкФ + 1 мкФ

C T = 11 мкФ

Похожие сообщения:

Полярный и неполярный конденсатор

Неполярный конденсатор: (Используется как в системах переменного, так и постоянного тока)

Конденсаторы неполярного типа могут использоваться как в системах переменного, так и постоянного тока.Они могут быть подключены к источнику питания в любом направлении, и их емкость не влияет на изменение полярности.

Polar Capacitor: (Используется только в цепях и системах постоянного тока)

Этот тип конденсаторов чувствителен к их полярности и может использоваться только в системах и сетях постоянного тока. Полярные конденсаторы не работают в системе переменного тока из-за изменения полярности после каждого полупериода питания переменного тока.

Types of Capacitors: Polar and Non Polar Capacitors with Symbols Types of Capacitors: Polar and Non Polar Capacitors with Symbols Типы конденсаторов: полярные и неполярные конденсаторы с символами

Роль конденсаторов в цепях переменного тока

Конденсатор имеет множество применений в системах переменного тока, и мы обсудим несколько вариантов использования конденсаторов в сетях переменного тока ниже.

Бестрансформаторный источник питания:

Конденсаторы используются в бестрансформаторных источниках питания. В таких цепях конденсатор соединен последовательно с нагрузкой, потому что мы знаем, что конденсатор и катушка индуктивности в чистом виде не потребляют энергию. Они просто принимают мощность в одном цикле и передают ее в другом цикле нагрузке. В этом случае он используется для снижения напряжения с меньшими потерями энергии.

Асинхронные электродвигатели с разделенной фазой:

Конденсаторы также используются в асинхронном двигателе для разделения однофазного источника питания на двухфазный источник для создания вращающегося магнитного поля в роторе для захвата этого поля.Этот тип конденсатора в основном используется в бытовых водяных насосах, вентиляторах, кондиционерах и многих устройствах, для работы которых требуется как минимум две фазы.

Коррекция и улучшение коэффициента мощности:

Существует множество преимуществ улучшения коэффициента мощности. В трехфазных энергосистемах конденсаторная батарея используется для подачи реактивной мощности на нагрузку и, следовательно, для повышения коэффициента мощности системы. Конденсаторная батарея устанавливается после точного расчета. По сути, он выдает реактивную мощность, которая ранее поступала от энергосистемы, следовательно, он уменьшает потери и повышает эффективность системы.

Конденсаторы в цепях переменного тока

Как подключить конденсаторы в цепях переменного тока?

В цепи постоянного тока конденсатор заряжается медленно, пока зарядное напряжение конденсатора не станет равным напряжению питания. Кроме того, в этом состоянии конденсатор не позволяет току проходить через него после того, как он полностью зарядится. How to Connect a Capacitor in AC Circuit? How to Connect a Capacitor in AC Circuit?

И, когда вы подключаете конденсатор через источник переменного тока, он заряжается и разряжается непрерывно из-за постоянного изменения уровней напряжения.Емкость в цепях переменного тока зависит от частоты подаваемого входного напряжения. Кроме того, если вы видите фазовую диаграмму идеальной конденсаторной цепи переменного тока, вы можете заметить, что ток опережает напряжение на 90⁰. Capacitors in AC Circuits Capacitors in AC Circuits

В конденсаторной цепи переменного тока ток прямо пропорционален скорости изменения подаваемого входного напряжения, которая может быть выражена как

I = dQ / dt

I = C (dV / dt)

Теперь мы рассчитаем емкостное сопротивление в цепи переменного тока .

Поскольку мы знаем, что I = dQ / dt и Q = CV

А, входное напряжение переменного тока в вышеуказанной цепи будет выражаться как,

В = V м Sin вес

Итак, I m = d (CV m Sin wt ) / dt

I m = C * V m Cos wt * w (после дифференциации)

I m = wC V m Sin (wt + π / 2)

At, w = 0, Sin (wt + π / 2) = 1

Следовательно,

I m = wCV m

V m / I м = 1 / wC (где, w = 2πf и V м / I м = X c )

Емкостная реактивность (X c ) = Capacitive Reactance (Xc) Capacitive Reactance (Xc)

Теперь, до рассчитать емкостное реактивное сопротивление вышеуказанной цепи,

Xc = 1 / 2π (50) (10)

Xc = 3183.09 Ω

Похожие сообщения: В чем разница между аккумулятором и конденсатором?

Роль конденсаторов в цепях постоянного тока

Кондиционирование питания:

В системах постоянного тока конденсатор используется в качестве фильтра (в основном). Его наиболее распространенное использование — преобразование переменного тока в постоянный источник питания при выпрямлении (например, мостовой выпрямитель). Когда мощность переменного тока преобразуется в флуктуирующую (с пульсациями, т.е. не в устойчивом состоянии с помощью цепей выпрямителя), мощность постоянного тока (пульсирующий постоянный ток), чтобы сгладить и отфильтровать эти пульсации и флуктуации, используется полярный конденсатор постоянного тока.Его значение рассчитывается точно и зависит от напряжения системы и требуемого тока нагрузки.

Разъединяющий конденсатор:

Разъединяющий конденсатор используется, где мы должны разъединить две электронные схемы. Другими словами, шум, создаваемый одной цепью, основан на развязывающем конденсаторе, и это не влияет на работу другой цепи.

Соединительный конденсатор:

Как мы знаем, конденсатор блокирует постоянный ток и пропускает через него переменный ток (мы обсудим это на следующем занятии, как это происходит).Таким образом, он используется для разделения сигналов переменного и постоянного тока (также используется в цепях фильтра для той же цели). Его значение рассчитывается таким образом, что его реактивное сопротивление минимизируется на основе частоты, которую мы хотим пройти через него. Соединительный конденсатор также используется в фильтрах (схемах удаления пульсаций, таких как RC-фильтры) для разделения сигнала переменного и постоянного тока и удаляет пульсации из пульсирующего напряжения питания постоянного тока для преобразования его в чистое напряжение переменного тока после выпрямления.

Вы также можете прочитать:

.
Опубликовано в категории: Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *