Гидравлическая стрелка принцип работы: Гидравлическая стрелка для систем отопления схема

принцип работы, назначение и расчеты

ПОДЕЛИТЕСЬ
В СОЦСЕТЯХ

Что такое гидрострелка в системе отопления? Гидравлический и температурный буфер, который обеспечивает процессы корреляции температур подачи/обратки и упорядоченный максимальный проток теплоносителя, называют гидрострелкой. Статья на тему: «Гидрострелка: принцип работы, назначение и расчеты» раскрывает сущность гидравлического разделения контуров отопления.

Гидрострелка необходима для осуществления гидродинамической балансировки в системе отопления

Зачем нужна гидрострелка в системе отопления?

Объяснить, для чего нужна гидрострелка для отопления, очень просто. Процессы разбалансировки теплоснабжения знакомы владельцам частных домов. Современный котел имеет меньший по объему контур, чем циркуляционный расход потребителя. Работа гидрострелки отопления позволяет отделить гидравлический контур теплогенератора от вторичной цепи, повысить надежность и качество системы.

Ответом на вопрос: «Для чего нужна гидрострелка в системе отопления?», служит список достоинств отопления с гидравлическим терморазделителем:

  • разделитель — обязательное условие производителя оборудования для гарантии технического обслуживания на котел мощностью 50 кВт и более, или теплогенератора с чугунным теплообменником;
  • узел обеспечивает максимальный проток с ламинарным течением теплоносителя, поддерживает гидравлический и температурный баланс системы отопления;
  • параллельное подключение гидрострелки отопления и контура потребителей создает минимальные потери давления, производительности и тепловой энергии;
  • коленное расположение патрубков подачи-обратки обеспечивает температурный градиент вторичных контуров;

Схема движения теплоносителя в коллекторе с гидрострелкой

  • оптимальный подбор и расчет гидрострелки для отопления защищает котел от разницы температур подачи-обратки, предохраняет оборудование от теплового удара, выравнивает циркуляционный объем водяных потоков в первичном и второстепенном контуре;
  • узел повышает КПД котла, позволяет вторичную циркуляцию части теплоносителя в котловом контуре, экономит электроэнергию и топливо;
  • подмес сохраняет постоянный объем котловой воды;
  • при экстренной необходимости разделитель компенсирует дефицит расхода во второстепенном контуре;
  • полый разделитель снижает влияние насосов, обладающих различной мощностью квт, на вторичные контуры и котел;
  • дополнительные функции гидроразделителя — уменьшает гидравлическое сопротивление, формирует условия для сепарации растворенных газов и шлама.

В многоконтурных системах отопления использование гидрострелки обязательно для сбалансированной работы

Принцип работы гидрострелки отопления позволяет стабилизировать гидродинамические процессы в системе. Своевременное удаление механических примесей из теплоносителя продлит срок службы насосов, вентилей, счетчиков, датчиков, отопительных приборов. Разделяя потоки (контур теплогенератора и независимый контур потребителя), гидрострелка обеспечивает максимальное использование теплоты сгорания топлива.

Устройство гидрострелки отопления

Гидроразделитель — вертикальный полый сосуд из труб большого диаметра (квадратного профиля) с эллиптическими заглушками по торцам. Размеры разделителя обусловлены мощностью (кВт) котла, зависят от количества и объема контуров.

Тяжелый металлический корпус устанавливают на опорные стойки, чтобы не создавать линейное напряжение на трубопровод. Компактные устройства крепят к стене, располагают на кронштейнах.

Гидрострелка из нержавеющей стали

Патрубок гидрострелки и отопительный трубопровод соединяют с помощью фланцев или резьбы.

Автоматический клапан воздухоотводчика располагают в верхней точке корпуса. Осадок удаляют через вентиль или специальный клапан, который врезан снизу.

Материал для изготовления гидрострелки — низкоуглеродистая или нержавеющая сталь, медь, полипропилен. Корпус обрабатывают антикоррозийным составом, покрывают теплоизоляцией.

Важно! Модели из полимера применяют в системе, которую отапливает котел мощностью от 13 до 35 кВт. Гидравлические разделители из полипропилена не используют для теплогенераторов, которые работают на твердом топливе. Изготовление гидрострелки своими руками из пропилена требует опыта и навыков работы с профессиональным слесарным и ручным электроинструментом.

Гидравлическая стрелка «Meibes»

Дополнительные функции гидрострелок

Усовершенствованные модели совмещают функции разделителя, регулятора температуры и сепаратора. Клапан-терморегулятор обеспечивает температурный градиент вторичных контуров. Выделение растворенного кислорода из теплоносителя снижает риск эрозии внутренних поверхностей оборудования. Удаление из потока взвешенных частиц продлевает срок службы рабочего колеса и подшипников циркуляционных насосов.

На фото изображена модель гидрострелки для отопления в разрезе:

Устройство гидрострелки — вид в разрезе

Горизонтальные перфорированные перегородки разделяют внутренний объем пополам. Потоки подачи-обратки соприкасаются в зоне «нулевой точки» и скользят в разные стороны, не создавая дополнительное сопротивление.

Сверху, в высокотемпературной зоне, расположены пористые вертикальные пластины деаэрации. Сборник шлама и магнитный уловитель (магниевый анод) расположены в нижней части корпуса.

Конструктивные опции гидрострелки: манометр, датчик температуры, клапан терморегулятор и линия для запитки системы при запуске. Сложному оборудованию необходима наладка, регулярные осмотры и техническое обслуживание.

Принцип работы коллектора с гидрострелкой на 3 контура отопления

Принцип работы гидрострелки в системе отопления частного дома

Поток теплоносителя проходит разделитель со скоростью 0,1-0,2 м/с. Котловой насос разгоняет горячую воду до 0,7-0,9 м/с. Рекомендованный скоростной режим дает представление о том, для чего нужна гидрострелка для отопления.

Изменение объема и направления движения гасит скорость водяных потоков при минимальной потере тепловой энергии в системе. Ламинарное движение потока приводит к тому, что гидравлическое сопротивление внутри корпуса практически отсутствует. Буферная зона разделяет котел и цепь потребителя. Насос каждого из отопительных контуров работает автономно, не нарушая гидравлический баланс.

Принцип работы гидрострелки в схеме отопления с 4-х ходовым смесителем

Схемы гидрострелки для отопления (режим работы):

  • Нейтральный режим работы гидроразделителя, при котором напор, расход, температура и тепловая энергия подачи — обратки соответствуют расчетным параметрам системы. Насосное оборудование обладает достаточной суммарной мощностью. Ламинарное движение потока в гидрострелке обеспечивает процессы деаэрации и осаждения взвешенных частиц.

Нейтральный режим работы гидроразделителя

  • Схема отражает принцип работы гидрострелки отопления, при котором котел не обладает достаточной мощностью, чтобы обеспечить расход во второстепенном контуре. Дефицит расхода приводит к подмесу холодного теплоносителя. Разница температур подачи/обратки приводит к срабатыванию термодатчиков. Автоматика выведет теплогенератор на максимальный режим горения, однако потребитель не получает достаточного количества теплоты. Система отопления разбалансирована, возникает угроза теплового удара.

Если котел не обладает достаточной мощностью, чтобы обеспечить расход во второстепенном контуре, возникает угроза теплового удара

  • Объемный поток первичного контура больше, чем расход теплоносителя зависимой цепи. Вариант, при котором котел функционирует в оптимальном режиме. При розжиге агрегата или параллельном отключении насосов вторичных контуров, теплоноситель циркулирует через гидрострелку по первичному (малому) контуру. Температура обратки, которая поступает в котел, выравнивается подмесом из подачи. Достаточный объем теплоносителя поступает потребителю.

Объемный поток первичного контура больше, чем расход теплоносителя зависимой цепи — котел функционирует в оптимальном режиме

Обязательное условие: производительность, которой обладает циркуляционный насос первичного (котлового) контура на 10% больше, чем суммарный максимальный напор насосов во второстепенном контуре.

Методы расчета гидрострелки в системе отопления частного дома

Как рассчитать гидрострелку системы отопления частного дома самостоятельно? Можно вычислить необходимые размеры по формулам или подобрать диаметр по правилу «3D».

  • Формула определяет диаметр (D) по максимальной пропускной способности гидравлического разделителя (расчеты по паспортным данным на котел):

  • Формула определяет диаметр гидрострелки по мощности теплогенератора. ΔT разница температур подачи/обратки — 10°C:

  • Диаметр патрубка, входящего в гидрострелку или распределительный коллектор:

Обозначение Расшифровка символа Единица измерения
D Диаметр корпуса гидрострелки мм
d Диаметр патрубка мм
P Максимальная мощность, которой обладает котел (паспортные данные котла) кВт
G Максимальный проток (пропускная способность, расход) через гидроразделитель за час м3/час
π Постоянное значение (3,14)
ω Максимальная вертикальная скорость теплоносителя через разделитель (0,2) м/сек
ΔT Разница температур подачи — обратки (паспортные данные котла) °C
C Теплоемкость воды (относительная единица) Вт/(кг°C)
V Скорость теплоносителя через вторичные контуры м/с
Q
Максимальный расход в контуре потребителя м3

 

Важно! Формулы, по которым производят расчет гидрострелки для отопления, получены эмпирическим путем. Диаметр входного патрубка в гидроразделитель соответствует диаметру выпуска котла.

  • Определение параметров гидрострелки практическим методом:

Ориентировочный размер для небольших разделителей выбирают по диаметру входных (выпускных) патрубков. Расстояние между врезками составляет не менее 10 диаметров штуцера. Высота корпуса значительно превышает диаметр.

Коленчатую схему гидрострелки для отопления используют в подборе установки больших размеров. По «правилу 3d» диаметр корпуса составляет три диаметра патрубка. Расстояние 3d определяет пропорции конструкции.

Определение параметров гидрострелки по «правилу 3d»

  • Распределение врезок по высоте колонны разделителя:

Если в системе не предусмотрен распределительный коллектор, то количество врезок в разделитель увеличивают. Трубопровод, соединяющий первый (котловой) контур с гидрострелкой, распределяют по высоте. Способ позволяет регулировать температурный градиент в динамике. Выполнение условия необходимо для качественного отбора теплоносителя вторичными контурами.

Схема врезки контуров системы отопления в обвязку котла

Совмещение коллектора отопления с гидрострелкой

Небольшие дома обогревает котел, в который встроен насос. Вторичные контуры присоединяют к котлу через гидрострелку. Независимые контуры жилых домов с большой площадью (от 150 м2) подключают через гребенку, гидроразделитель будет громоздким.

Статья по теме:

Распределительный коллектор монтируют после гидрострелки. Устройство состоит из двух независимых частей, которые объединяют перемычки. По количеству вторичных контуров врезают попарно расположенные патрубки.

Распределительная гребенка облегчает эксплуатацию и ремонт оборудования. Запорная и регулирующая арматура системы теплоснабжения дома находится в одном месте. Увеличенный диаметр коллектора обеспечивает равномерный расход между отдельными контурами.

Применение гидрострелки убережет котел от теплового удара

Разделитель и компланарная распределительная гребенка образуют гидравлический модуль. Компактный узел удобен для стесненных условий небольших котельных.

Монтажные выпуски предусмотрены для обвязки звездочкой:

  • низконапорный контур теплых полов подключают снизу;
  • высоконапорный контур радиаторов — сверху;
  • теплообменник — сбоку, на противоположной стороне от гидрострелки.

На рисунке представлена гидрострелка с коллектором. Схема изготовления предусматривает установку балансировочных клапанов между коллекторами подачи/обратки:

Схема гидрострелки с коллектором

Регулирующая арматура обеспечивает максимальный проток и напор на дальних от гидрострелки контурах. Балансировка снижает процессы неправильного дросселирование потока, позволяет добиться расчетной подачи теплоносителя.

Важно! Автономная система отопления относится к системам, работающим с высокой температурой среды под давлением (гидрострелка отопления частного дома в том числе).

Сделать гидрострелку отопления своими руками может специалист, обладающий достаточным запасом знаний в теплотехнике, опытом и навыками работы (электрогазосварка, слесарное дело, работа с ручным электроинструментом). Многочисленные интернет-сайты предлагают пошаговые инструкции по изготовлению гидрострелки для отопления, видео ролики также смогут помочь в этом процессе.

Размеры коллектора отопления с гидрострелкой

Теоретические знания помогут составить схемы и чертежи гидрострелки отопления, сделать индивидуальный заказ оборудования в специализированной организации, проконтролировать работу подрядчика. Доверять изготовление ответственных узлов системы отопления непрофессионалам опасно для жизни и здоровья. Следует помнить о том, что испорченное по вине владельца оборудование гарантийному ремонту и возврату не подлежит.

ОЦЕНИТЕ
МАТЕРИАЛ Загрузка… ПОДЕЛИТЕСЬ
В СОЦСЕТЯХ

СМОТРИТЕ ТАКЖЕ

REMOO В ВАШЕЙ ПОЧТЕ

Гидрострелка принцип работы назначение и расчеты

Что такое гидрострелка (гидравлический разделитель) в системе отопления

Правильное название этого устройства — гидравлическая стрелка или гидроразделитель.

Представляет собой кусок круглой или квадратной трубы с приваренными патрубками. Внутри, как правило, ничего нет. В некоторых случаях могут стоять две сетки. Одна (вверху) для лучшего «отхождения» воздушных пузырьков, вторая (внизу) для отсева загрязнений.

Примеры гидрострелок промышленного производства

В системе отопления гидрострелка ставится между котлом и потребителями — отопительными контурами. Располагаться может как горизонтально, так и вертикально. Чаще ставят вертикально. При таком расположении в верхней части ставят автоматический воздухоотводчик, внизу — запорный кран. Через кран периодически сливается некоторая часть воды с накопившейся грязью.

Где в системе отопления ставят гидроразделитель

То есть получается, что вертикально поставленный гидроразделитель, одновременно с основными функциями, отводит воздух и дает возможность удалять шлам.

Назначение и принцип работы

Гидрострелка нужна для разветвленных систем, в которых установлено несколько насосов. Она обеспечивает требуемый расход теплоносителя для всех насосов, независимо от их производительности. То есть, другими словами, служит для гидравлической развязки насосов системы отопления. Потому еще называют это устройство — гидравлический разделитель или гидроразделитель.

Схематическое изображение гидрострелки и ее места в системе отопления

Гидрострелку ставят в том случае, если в системе предусмотрено несколько насосов: один на контуре котла, остальные на контурах отопления (радиаторах, водяном теплом полу, бойлере косвенного нагрева). Для корректной работы их производительность подбирается так, чтобы котловой насос мог перекачивать немного больше теплоносителя (на 10-20%), чем требуется для остальной системы.

Режимы работы

Теоретически возможны три режима работы системы отопления с гидрострелкой. Они отображены на рисунке ниже.

Первый — когда насос котла прокачивает ровно столько же теплоносителя, сколько требует вся система отопления. 

Возможные режимы работы системы отопления с гидроразделителем

Второй режим работы гидрострелки — когда расход отопительных контуров больше мощности котлового насоса (средний рисунок). Эта ситуация опасна для системы и допускать ее нельзя. Она возможна, если насос котла имеет слишком малую производительность. В этом случае для обеспечения требуемого расхода, в контуры вместе с нагретым теплоносителем от котла будет подаваться теплоноситель из обратки. Такой режим работы не является нормальным и котел быстро выйдет из строя.

Третий режим работы — когда насос котла подает больше нагретого теплоносителя, чем требуют отопительные контура (правый рисунок). В этом случае часть нагретого теплоносителя возвращается обратно в котел. В результате температура поступающего теплоносителя поднимается, работает он в щадящем режиме. Это и есть нормальный режим работы системы отопления с гидрострелкой.

Когда гидрострелка нужна

Гидрострелка для отопления нужна на 100%, если в системе будет стоять несколько котлов, работающих в каскаде. Причем работать они должны одновременно (во всяком случае, большую часть времени). Вот тут, для корректной работы гидроразделитель — лучший выход.

При наличии двух одновременно работающих котлов (в каскаде) гидрострелка — лучший вариант

Еще гидрострелка для отопления может быть полезна для котлов с чугунным теплообменником. В емкости гидроразделителя постоянно происходит смешивание теплой и холодной воды. Это уменьшает дельту температур на выходе и входе котла. Для чугунного теплообменника — это благо. Но с той же задачей справится байпас с трехходовым регулируемым клапаном и обойдется он значительно дешевле. Так что даже для чугунных котлов, стоящих в небольших системах отопления, с примерно одинаковым расходом вполне можно обойтись без подключения гидрострелки.

Когда можно поставить

Если в системе отопления есть только один насос — на котле, гидрострелка не нужна совсем.

Установка гидрострелки оправдана при следующих условиях:

  • Контуров три и больше, все очень разной мощности (разный объем контура, требуется разная температура). В таком случае, даже при идеально точном подборе насосов и расчете параметров, есть возможность нестабильной работы системы. Например, часто встречается ситуация, когда при включении насоса теплых полов, радиаторы стынут. Вот в этом случае нужна гидроразвязка насосов и потому ставится гидравлическая стрелка.
  • Кроме радиаторов имеется водяной теплый пол, отапливающий значительные площади. Да, его подключать можно через коллектор и смесительный узел, но он может заставлять работать котловой насос в экстремальном режиме. Если у вас часто горят насосы на отоплении, скорее всего, нужна установка гидрострелки.
  • В системе среднего или большого объема (с двумя и более насосами) собираетесь установить автоматическую регулирующую аппаратуру — по температуре теплоносителя или по температуре воздуха. При этом не хотите/не можете регулировать систему вручную (кранами).

Пример системы отопления с гидрострелкой

Как подобрать параметры

Подбирается гидравлический разделитель с учетом максимально возможной скорости потока теплоносителя. Дело в том, что при высокой скорости движения жидкости по трубам она начинает шуметь. Чтобы не было этого эффекта, максимальная скорость принимается равной 0,2 м/с.

Параметры, нужные для гидроразделителя

По максимальному потоку теплоносителя

Чтобы рассчитать диаметр гидрострелки по этому методу, единственное, что нужно знать — это максимальный поток теплоносителя, который возможен в системе и диаметр патрубков. С патрубками все просто — вы же знаете, какой трубой будете делать разводку. Максимальный поток, который может обеспечить котел, мы знаем (есть в технических характеристиках), а расход по контурам зависит от их размера/объема и определяется при подборе контурных насосов. Расход на все контуры складывается, сравнивается с мощностью котлового насоса. Большая величина подставляется в формулу для расчета объема гидрострелки.

Формула расчета диаметра гидравлического разделителя для системы отопления в зависимости от максимального потока теплоносителя

 

Приведем пример. Пусть максимальный расход в системе 7,6 куб/час. Допустимая максимальная скорость берется стандартная — 0,2 м/с, диаметр патрубков 6,3 см (трубы на 2,5 дюйма). В этом случае получаем: 18,9 * √ 7,6/0,2 = 18,9 * √38 = 18,9 * 6,16 = 116,424 мм. Если округлить, получаем, что диаметр гидрострелки должен быть 116 мм.

По максимальной мощности котла

Второй способ — подбор гидравлической стрелки по мощности котла. Оценка будет приблизительной, но ей можно доверять. Нужна будет мощность котла и разница температур теплоносителя в подающем и обратном трубопроводе.

Расчет гидрострелки по мощности котла

 

Расчет также несложный. Пусть максимальная мощность котла — 50 кВт, дельта температур — 10°C, диаметры патрубков такие же — 6,3 см. Подставив цифры, получаем — 18,9 * √ 50 / 0,2 * 10 = 18,9 * √ 25 = 18,9* 5 = 94,5 мм. Округлив, получаем диаметр гидрострелки 95 мм.

Как найти длину гидрострелки

С диаметром гидроразделителя для отопления определились, но надо знать еще и длину. Ее подбирают в зависимости от диаметра подключаемых патрубков. Есть два вида гидрострелок для отопления — с отводами, расположенными один напротив другого и с чередующимися патрубками (располагаются со сдвигом один относительно другого).

Определяем длину гидрострелки из круглой трубы

Рассчитать длину в этом случае легко — в первом случае это 12d, во втором — 13d. Для средних систем можно и диаметр подобрать в зависимости от патрубков — 3*d

Назначение гидрострелки. Видео

Источники:

Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:

Проголосовавших: 1 чел.
Средний рейтинг: 5 из 5.

принцип работы, назначение и расчеты, монтаж

Владельцам индивидуальных домов при организации системы теплоснабжения знакомо понятие разбалансировки после присоединения контуров к котлу. Для выравнивания давления и уменьшения его на котельное оборудование устанавливается гидрострелка. Принцип работы, назначение и расчеты мы разберем в сегодняшнем обзоре.

Гидроразделитель в системе теплоснабжения

Читайте в статье

Понятие гидрострелки

В профессиональной среде можно встретить иные названия гидрострелки:

  • гидравлический или термогидравлическийразделитель;
  • анулоид.

Применение гидрострелки рекомендовано преимущественно для котельного оборудования из серии долгого горения на твердом топливе, нежели для газовых.

Основное назначение работы разделителя гидравлического (это официальное название гидрострелки) – разделение гидравлических потоков. Контуры разделяются каналом, делая их независимыми и автономными при передаче носителя тепла по отопительной системе. При этом тепло хорошо передается от одного контура к другому.

Гидрострелка: принцип работы назначение и расчеты

Система теплоснабжения индивидуального дома может состоять из нескольких подсистем. Реализация каждого разветвления должна осуществляться независимо от давления и расхода теплоносителя каждой функции. В связи с тем, что теплоноситель поступает из одной точки, это приводит к разбалансировке отдельных контуров системы.

Чтобы не возникла подобная ситуация, устраиваются гидрострелки (анулоиды) в системе теплоснабжения.

Основные функции

При организации теплоснабжения от котла на твердых видах топлива, водные потоки нагреваются бойлером, сопротивление которого на порядок меньше, чем в основной системе.

В состав системы отопления часто включены подогрев пола, санузлы и кухня. То есть, на один генератор тепла подключены как минимум три потребителя. Температурный режим каждого настроен индивидуально, и, соответственно, имеет разное сопротивление отопительной развязки. Для того, чтобы не возникла разбалансировка системы отопления, их необходимо совместить.

Именно это и является основным принципом работы гидравлической стрелки. Иными словами, она разделяет систему теплоснабжения на два автономных контура: теплогенератора и общего отопления дома, в который включены все подсистемы.

Важно! При наличии контура теплогенератора снижается или исключается влияние контура общей системы на теплогенератор.

Развязка подсистем в общей системе устроена по такому же принципу, они не влияют друг на друга. Таким образом, гидравлическая стрелка решает вопрос балансировки котельного оборудования и системы теплоснабжения.

Применять разделитель рекомендуется в том случае, когда без его использования разница давления между подачей и обраткой превышает четыре сотых метра водяного столба. Внутри анулоида осуществляется обмен горячей и остывшей воды.

Работа разделителя происходит в одном из 3 режимов:

  • потоки обоих контуров равны. Функционирование при правильно подобранных насосах происходит только при условии одновременной работы всех насосов котельного оборудования и отопительной системы в обычном режиме;
  • поток первого контура значительно меньше второго. Реализация возможна только для тех случаев, когда достаточно работы только одного котла из всей системы отопления.
  • поток второго контура значительно меньше первого. Реализация возможна, когда приостановлена подача тепла или требуется отопление только одной зоны.

Благодаря работе гидрострелки, обеспечивается возможность регулирования котельного оборудования и отопительной системы всего дома. Поэтому экономить на ее приобретении и установке не стоит.

Режимы работы гидрострелки

Дополнительные функции

Помимо защиты теплообменника от теплового удара, гидрострелка предохраняет систему отопления от повреждений в случае аварийного выключения системы водоснабжения дома, подогрева пола и иных подсистем.

Кроме того, она выполняет роль отстойника для механических образований, таких как накипь и ржавчина. Еще одна из важных функций, для чего нужна гидрострелка в системе отопления – устранение воздушных масс из теплоносителя.

Устройство гидрострелки

Термогидравлический разделитель – это труба, дополненная вваренными в корпус 4-мя патрубками. Это наиболее распространенная модель. Количество патрубков может быть увеличено в зависимости от оснащения системы отопления.

Гидравлический разделитель может быть круглой или прямоугольной формы. Принцип работы практически не отличается между собой. Прямоугольная форма выглядит лучше. Круглая — больше подойдет с точки зрения организации гидравлики. Но в основном, форма практически не влияет на организацию функционирования системы.

Дополнительно, в состав гидрострелки могут быть включены:

  • фильтры;
  • сепараторы воздуха с отведением воздушных масс;
  • краны;
  • трехходовые клапаны с элементами терморегулирования, которые препятствуют попаданию холодной воды в обратку контура котла;
  • дополнительная теплоизоляция;
  • шламоуловитель;
  • термометр;
  • манометр.

Корпус гидравлического разделителя может быть выполнен из низкоуглеродистой, нержавеющей стали или меди. Выпускают также гидрострелку из полипропилена. Дополнительно ее обрабатывают специальными антикоррозийными составами и теплоизолируют при необходимости.

Это следует знать! Гидроразделители из полимера можно использовать для отопительной системы, которую обслуживает котельное оборудование мощностью 13-35 кВт. Их нельзя применять для оборудования, работающего на твердых видах топлива.

Устройство гидрострелки

Принцип работы гидравлического разделителя

Устройство анулоида предельно просто. Это небольшая часть трубы, на срезе имеющая вид квадрата.Система теплоснабжения распределяется на большой и малый контуры. В составе малого контура – котельное оборудование и гидроразделитель. В состав большого включается потребитель – система теплоснабжения.

Когда потребление тепла в котельном оборудовании равно его генерации, в гидрострелке направление жидкости идет по горизонтали. В случае отклонения в генерации/расходе, теплоноситель попадает в малый контур, что увеличивает температуру перед котельным оборудованием. Котел автоматически отключается, при этом теплоноситель продолжает движение до снижения температуры. После чего котельное оборудование включается вновь.

Теперь мы знаем, что такое гидрострелка в системе отопления. Она обеспечивает равномерность теплопотоков в контурах, гарантируя их независимое функционирование.

Принцип подключения контуров через гидрострелку

Конструкции гидрострелок

В конструкции нет ничего сложного. Однако, определенные правила должны быть соблюдены. Производители предлагают модели различной конфигурации и размеров. Можно без труда подобрать необходимое изделие по своим характеристикам. Встречаются гидрострелки для отопления, в которых совмещена работа разделителя и коллектора для подключения контура.

Высокая стоимость заводского производства наталкивает на мысль о самостоятельном изготовлении гидрострелки. Для этого необходимо иметь начальные навыки сварочных и слесарных работ. Основное – это соблюдение размеров для обеспечения бесперебойной работы изделия.

Рассмотрим основные конструкции гидравлических разделителей:

ФотоТипы конструкций
Продлите жизнь отопительному оборудованию – гидрострелка: принцип работы, назначение и расчеты Классический – функционирует по правилу«3D» (трех диаметров). На схеме указаны внутренние диаметры и проход, не зависимо от толщины стенок корпуса.
Продлите жизнь отопительному оборудованию – гидрострелка: принцип работы, назначение и расчеты Чередующиеся патрубки. Принято считать, что расположение в виде ступеньки вниз улучшает сепарацию газов, при этом ступенька вверх улучшает отделение твердых взвесей.
Горизонтальный вариант расположения гидрострелки с разным расположением патрубков.
Гидрострелка в виде решетки. В быту можно встретить конструкцию из секций радиатора отопления. Такая система нуждается в дополнительном утеплении во избежание теплопотерь.

Гидрострелка для нескольких контуров

Использование гидрострелки необходимо при наличии нескольких контуров.Это может быть одним из обязательных условий производителя для предоставления гарантийных обязательств на котельную установку и монтажные работы.

В частных домах площадью более 200 кв.м, в которых налажено функционирование нескольких контуров (теплые полы, ванные комнаты, кухня), использование гидравлического разделителя увеличит срок эксплуатации котельного и насосного оборудования. Кроме того, сделает их функционирование более плавным, а значит экономичным.

Гидрострелка для системы из трех контуров

Расчет гидрострелки для отопления

Производители выпускают гидроразделители, рассчитанные на конкретную мощность системы теплоснабжения. Для самостоятельного изготовления несложного устройства необходимо рассчитать основные значения и составить своими руками чертежи гидрострелки.

Методика расчета по мощности котла

Для расчета потребуется единственное значение – диаметр патрубка или разделителя. Все остальные параметры отталкиваются от этого значения.

Произведем расчет для гидрострелкипо правилутрех диаметров. Данные необходимо брать из паспорта на котельное оборудование.

Продлите жизнь отопительному оборудованию – гидрострелка: принцип работы, назначение и расчетыπ – 3,14.

ПараметрХарактеристикаЕдиница измерения
Dдиаметр разделителямм
dдиаметр патрубкамм
Gпропускная способность гидроразделителя в системе отопления за один часм³/час
Ωскорость потока(максимальная величина) через гидроразвязкум/с
Qрасход (максимальный ) в контуре теплосистемы потребителям³/час

Для облегчения расчетов нашей командой был разработан специальный калькулятор.

Калькулятор расчета гидрострелки по мощности котла

 

Методика расчета по производительности насосов

Можно выполнить расчет исходя из производительности насосного оборудования. Для данного метода исходные параметры насосов в контурах котельного оборудования и всей отопительной системы.

Расчет необходимо выполнить для того, чтобы не перегрузить насосное оборудование котельной установки при обеспечении необходимого расхода потоков по всем контурам. Иными словами, общая производительность всех насосов системы выше показателя насосного оборудования, обеспечивающего движение теплоносителя через отельное оборудование.

D=2×√ ((∑Qот–Qкот) / (π×V)), где

ПараметрХарактеристикаЕдиница измерения
Qотпроизводительность насосного оборудования на всех контурах системы теплоснабжениям³/час
Qкотпроизводительность насосного оборудования  в малом контурем³/час
Vскорость теплоносителям/с

Для этого варианта также предусмотрен свой калькулятор.

Калькулятор расчета гидрострелки по мощности котла

 

Совмещение коллектора отопления с гидрострелкой

Для обогрева домов с небольшой площадью используют котел со встроенным насосным оборудованием. Контуры отопительной системы подключаются через гидравлическую стрелку.

В домах с площадью от 150 квадратных метров подключение контуров производится через гребенку, которая обеспечивает техобслуживание и эксплуатацию систем.

Монтаж коллектора производится после емкостного гидравлического разделителя. Распределительный коллектор состоит из 2 независимых друг от друга частей, которые объединены перемычками. Патрубки врезаются попарно исходя из количества вторичных контурных систем.

Все запорные и регулирующие элементы отопительной системе устанавливаются в 1 месте. Благодаря увеличенному диаметру распределительного коллектора, обеспечивается равномерный расход теплоносителя между всеми контурами.

Коллектор совместно с гидроразделителем образует единую гидравлическую систему-модуль.

Важно! Регулирующая арматура полностью обеспечивает максимальный поток и напор теплоносителя на всех контурах. Балансировка помогает добиваться расчетных показателей движения потока.

Стандартный коллектор с гидроразделителем

Где можно купить гидрострелку для отопления: производители и цены

Чтобы определиться, покупать гидрострелку с коллектором или изготовить гидроразделитель своими руками, предлагаем небольшой обзор производителей и ориентировочные цены на рынке аналогичных товаров России.

Гидроразделитель с коллектором в системе теплоснабжения жилого дома

Схема изготовления гидрострелки для отопления своими руками

Самостоятельно изготовить гидрострелку непросто. Сначала следует составить схему и предварительные расчеты. Кроме того, необходимо владеть навыками сварочных и слесарных работ.

Пошаговый процесс изготовления разделителя на 6 выходов поможет в данном вопросе:

ФотоОписание работ
Продлите жизнь отопительному оборудованию – гидрострелка: принцип работы, назначение и расчетыПеред началом работы нужно подготовить следующие материалы и инструменты: 2 дюймовые резьбы для основного контура и 6 резьб на ¾ для контура отопительной системы, профильную трубу 80 с толщиной стенки 3 мм, дюймовую трубу 25, профильную трубу 20×20, 2 квадратные шайбы на торцы, 2 стальные резьбы, сварочный аппарат с электродами,  болгарку, 2 металлические коронки 25 и 29 диаметра, сверло 8,5 мм, быстро сохнущую грунтовку и молотковую краску.
Продлите жизнь отопительному оборудованию – гидрострелка: принцип работы, назначение и расчетыОтрезаем кусок трубы квадратного сечения размером 900 мм.
Продлите жизнь отопительному оборудованию – гидрострелка: принцип работы, назначение и расчетыСверлим предварительные отверстия многоступенчатым сверлом по заранее нанесенным отметкам. На одной стороне расстояние от края 50×150×150×200×150×150×50, на противоположной стороне 325×250×325. Этого достаточно для котла, работающего на твердом топливе.
Продлите жизнь отопительному оборудованию – гидрострелка: принцип работы, назначение и расчетыОтверстия расширяем коронкой 25 диаметра. Аналогично выполнятся отверстия коронкой 29 диаметра.
Продлите жизнь отопительному оборудованию – гидрострелка: принцип работы, назначение и расчетыГотовые отверстия в трубе.
Продлите жизнь отопительному оборудованию – гидрострелка: принцип работы, назначение и расчетыПривариваем стальные муфты к шайбам
Продлите жизнь отопительному оборудованию – гидрострелка: принцип работы, назначение и расчетыНа данном этапе муфты с заглушками необходимо зачистить.
Продлите жизнь отопительному оборудованию – гидрострелка: принцип работы, назначение и расчетыШайбы к торцам привариваются в 2 этапа. Сначала прихватываются в нескольких точках, затем выполняется основной сварочный шов. После чего все необходимо зачистить.
Продлите жизнь отопительному оборудованию – гидрострелка: принцип работы, назначение и расчетыК выполненным отверстиям на трубе аналогичным образом привариваются резьбы, после чего трубу необходимо зачистить.
Продлите жизнь отопительному оборудованию – гидрострелка: принцип работы, назначение и расчетыПо окончанию процесса необходимо провести испытание. Для этого на все резьбы накручиваются заглушки, и система подключается к насосу с показаниями манометра 7,2 атмосферы.
Продлите жизнь отопительному оборудованию – гидрострелка: принцип работы, назначение и расчетыПосле проведенных испытаний, гидрострелку необходимо прогрунтовать и покрасить. Пока сохнет краска, можно приготовить крепления для разделителя.

Данный процесс наглядно можно посмотреть на мастер-классе профессионального специалиста:

Изготовить гидрострелку из полипропилена своими руками еще проще. Для этого необходимы специальные инструменты для резки пластика и специальный аппарат для сварки.

Схема гидравлического разделителя

Особенности монтажа гидрострелки

Гидрострелку устанавливают за котлом, при наличии коллектора – перед ним. Патрубки подключают при помощи фланцев или резьб в следующем порядке: на одной стороне разделителя их подсоединяют к выходам в порядке 1, 2, 3, на противоположной стороне в зеркальном порядке 3, 2, 1. Это не догма, в зависимости от условий расположение трубной развязки может меняться.

Наиболее часто применяется вертикальный распределитель. Это наиболее удачное расположение для отсеивания водных потоков от взвесей. Если требуют условия, его расположить можно и горизонтально.

Для крепления небольших моделей могут использоваться кронштейны. Гидрострелки с большим весом размешают на полу или подставке, чтобы не перегружать систему трубопровода.

Монтаж гидроразделителя в частном доме

Заключение

Итак, теперь вы знаете, что это такое: гидравлическая стрелка. В подведении итогов, можно отметить основные ее достоинства. Она надежно защищает теплообменник из чугуна от тепловых и гидроударов, упрощается подбор насосного оборудования, все оборудо

Гидрострелка для отопления — назначение и основные параметры

Система отопления – это достаточно сложный «организм» для эффективного функционирования которого требуется добиться максимального согласования, балансировки работы всех его элементов. Добиться такой «гармонии» — не так просто, особенно если система сложная, разветвленная, включающая несколько контуров, различающихся и по принципу работы, и по температурному режиму. Кроме того, отопительные контуры отдельные приборы теплообмена могут иметь свои устройства автоматической регулировки и обеспечения работы, которые своим вмешательством не должны оказывать влияния на функциональные возможности «соседей».

Гидрострелка для отопленияГидрострелка для отопления

Существует несколько подходов к достижению подобного «унисона», но одним из наиболее простых и эффективных способов является совсем несложное, но очень эффективное устройство – гидравлический разделитель, или, как его чаще называют, гидрострелка для отопления. Что это за элемент, каков принцип его работы, как его правильно рассчитать и смонтировать – в настоящей публикации.

Для чего нужен гидравлический разделитель в системе отопления

Чтобы разобраться в предназначении гидрострелки, давайте вспомним, как вообще работает автономная система отопления.

  • В простейшем варианте систему с принудительной циркуляцией можно представить так.
Простейшая одноконтурная система отопленияПростейшая одноконтурная система отопления

Схема приведена с большим упрощением. Так, на ней не показаны расширительный бак и элементы группы безопасности, просто из соображений «облегчения» рисунка.

К – котел, обеспечивает нагрев теплоносителя.

N1 – циркуляционный насос, благодаря работе которого теплоноситель перемещается по трубам подачи (красные линии) и «обратки» (синие линии). Насос может быть установлен на трубе или же быть входить в конструкцию котла – особенно это характерно для настенных моделей.

На замкнутом контуре труб врезаны радиаторы отопления (РО), обеспечивающие теплообмен – тепловая энергия теплоносителя передаётся в помещения дома.

При правильном подборе циркуляционного насоса по производительности и создаваемому напору в простейшей одноконтурной системе отопления, его может быть вполне достаточно в единственном экземпляре, и особой нужды в установке дополнительных устройств вроде бы и нет. Будет по этому поводу замечание – несколько позднее.

2016-03-02_193434Циркуляционные насос – важнейший элемент системы отопления

Хотя и существуют схемы с естественной циркуляцией теплоносителя, следует все же установить циркуляционный насос – это резко поднимет эффективность работы системы отопления. Как выбрать циркуляционный насос для отопления, как просчитать оптимальные параметры прибора – в специальной публикации нашего портала.

  • Для небольшого дома такой простой схемы может быть вполне достаточно. Но в здании побольше часто приходится использовать несколько контуров отопления. Усложним схему.
Справиться ли один насос с несколькими контурами? Далеко не факт...Справиться ли один насос с несколькими контурами? Далеко не факт…

На данном рисунке показано, что насос обеспечивает движение теплоносителя через коллектор (Кл), откуда он разбирается на несколько разных контуров. Это могут быть:

— Один или несколько высокотемпературных контуров с обычными радиаторами или конвекторами (РО).

— Водяные теплые полы (ВТП), для которых уже температура теплоносителя должна быть значительно ниже, значит будут задействованы специальные термостатические устройства. Сенсорная длина контуров теплых полов также обычно превышает в несколько раз обычную радиаторную разводку.

— Система обеспечения дома горячей водой с установкой бойлера косвенного нагрева (БКН). Здесь – совершенно особые требования к циркуляции теплоносителя, так как обычно изменением расхода протекающего через бойлер теплоносителя регулируется и температура нагрева горячей воды.

Справится ли наш единственный насос с такой нагрузкой, с таким расходом теплоносителя? Наверное, нет. Конечно, существуют модели высокой производительности и мощности, с большими показателями создаваемого напора, но не беспредельны возможности и самого котла. Его теплообменник и внутренние патрубки рассчитаны на определенную производительность и создаваемое давление, и завышать эти значения – не следует, так как это вполне может привести к выходу из строя дорогостоящей котельной установки.

Да и сам насос, если будет работать постоянно на пике своих возможностей, обеспечивая теплоносителем все контуры разветвлённой системы, вряд ли прослужит долго. Это не говоря даже о повышенной шумности мощного оборудования и немалом расходе электроэнергии.

  • Какой выход – устанавливать на каждый контур собственный циркуляционный насос, рассчитанный по параметрам своей «подсистемы», которую он обслуживает.
Работа нескольких насосов требует обязательного согласования, иначе система будет разбалансированнойРабота нескольких насосов требует обязательного согласования, иначе система будет разбалансированной

Итак, на каждый из контуров установлен собственный насос. Проблема решена? Увы, это далеко не так – она просто перешла в «другую плоскость» и даже усугубилась!

Чтобы такая системы работала стабильно, необходим очень точный расчет насосного оборудования. Но даже это, скорее всего, не сделает столь сложную схему равновесной. Насосы, как правило, увязаны с системами термостатического регулирования каждого из контуров, то есть их текущие, на данный момент, эксплуатационные характеристики – величины изменяющиеся. Один контур временно приостанавливает свою работу, другой, наоборот, включается. Не исключены варианты одновременного функционирования или, наоборот, временного простоя всех насосов. Циркуляция в одном контуре может создать инерционное, «паразитное» перемещение теплоносителя в другом, там, где это в настоящий момент не требуется – и так далее, разнообразных вариантов может быть немало.

В итоге это нередко приводит к недопустимому перегреву теплых полов, к неравномерности отопления различных помещений, к «запиранию» контуров и к другим негативным явлениям, которые сводят на нет старания хозяев создать высокоэффективную систему.

А хуже всего в этом случае насосу, установленному около котла – вся нестабильность параметров системы в первую очередь отражается на его работе, и в конечном итоге – на «раздерганном», не поддающимся точным регулировкам функционировании котла. А ведь нередко в крупных домах устанавливаются каскадно два и более котлов – управление такой системой становится вообще чрезвычайно сложной, почти невыполнимой задачей. Все это вызывает быстрый износ дорогостоящего оборудования.

  • А выход, оказывается, совсем прост – необходимо разделить всю гидравлическую систему не только на контуры конечного потребления, через коллектор, но и выделить отдельный контур котла.
Проблема балансировки решается установкой гидравлического разделителя (гидрострелки)Проблема балансировки решается установкой гидравлического разделителя (гидрострелки)

Именно эту функцию и выполняет гидравлическая стрелка (ГС). Это нехитрое устройство устанавливается между котлом и коллектором.

Правильное полное название гидрострелки – гидравлический разделитель. Стрелкой ее назвали, по всей видимости, потому, что она способна перенаправлять гидравлические потоки теплоносителя, обеспечивая сбалансированность всей системы в целом.

Конструкция обычной гидрострелки - чрезвычайно простаКонструкция обычной гидрострелки — чрезвычайно проста

Конструктивно этот элемент представляет собой полую трубу круглого или прямоугольного сечения, заглушенную с обоих торцов, с двумя парами патрубков – выходных, для подачи, и входных – для трубы «обратки».

По сути, образуются два взаимосвязанных, но, по сути – независимых друг от контура: малый конур котла и большой, включающий коллектор со всеми разветвлениями на остальные контуры. В каждом из этих двух контуров свой расход и скорость движения теплоносителя, которые не оказывают сколь-нибудь значимого влияния друг на друга. Обычно показатель Q1 – величина стабильная, так как насос котла работает постоянно на одних оборотах, Q2 – изменяющаяся по ходу текущей работы системы отопления.

По сути, система разделяется на малый контур котла и большой - с приборами теплообмена.По сути, система разделяется на малый контур котла и большой — с приборами теплообмена.

Диаметр трубы подбирается таким образом, чтобы создавался участок пониженного гидравлического сопротивления, что позволяет выровнять давление в малом контуре, поставить его вне зависимости от работы или простоя рабочих контуров. В целом это приводит к сбалансированной работе каждого из участков системы отопления, к плавному, не подверженному скачкам давления и температуры функционированию котельного оборудования и всей системы в целом.

Как работает гидравлический разделитель

В принципе, возможны три режима функционирования гидравлического разделителя.

ИллюстрацияОписание режима работы гидрострелки
сит 1Это – практически идеальное, равновесное состояние системы.
Напор, созданный насосом малого контура котла равен суммарному напору всех контуров отопления (Q1 = Q2).
Температура на входе и выходе подачи равны (t1 = t3).
Аналогичная ситуация и на патрубках «обратки» (t2 = t4).
Вертикальное перемещение теплоносителя минимально или даже вовсе отсутствует.
На практике такая ситуация если и встречается, то крайне редко, эпизодически, так как параметры работы контуров отопления имеют тенденцию к периодическому изменению.
сит  2Ситуация вторая.
Суммарный расход теплоносителя в контурах отопления превышает аналогичный показатель насоса котла (Q1 .
По сути, можно охарактеризовать так, что «спрос» на воду превышает то, что может «предложить» котел.
Ситуация достаточно часто встречающаяся, когда одновременно задействовано большинство контуров.
В этом случае образуется вертикальный восходящий поток от патрубка обратки большого контура к патрубку подачи. Перемещаясь вверх, вертикальный поток перемешивается с горячим теплоносителем, поступающим от котла.
Температурный режим: t1 > t3, t2 = t4.
сит3Ситуация диаметрально противоположная – расход в малом контуре (не изменяясь номинально) стал выше, чем суммарно в контурах отопления (Q1 > Q2).
«Предложение» превысило «спрос» на теплоноситель.
Типичные причины такой ситуации:
– срабатывание термостатической аппаратуры на контурах отопления или на бойлере косвенного нагрева, временно выключающей подачу теплоносителя.
– временное полное отключение одного или нескольких контуров из-за невостребованности в отоплении тех или иных помещений.
– временный вывод из эксплуатации контуров для проведения ремонтных или профилактических работ.
– запуск котельного оборудования для прогрева, с постепенным ступенчатым подключением рабочих контуров.
Ничего критичного не происходит – контур котла работает в большей части «на себя», перекачивая основной объем теплоносителя по малому кругу.
В самой гидрострелке образуется вертикальный нисходящий поток, от подачи к «обратке».
Температурный режим: t1 = t3, t2 > t4.
При таком режиме работы температура в «обратке» достаточно быстро доходит до порога срабатывания автоматического отключения котельного оборудования, чем достигается рациональное использование топлива.

Гидравлический разделитель может выполнить еще ряд полезных функций.

  • Прежде всего – обещанное замечание про систему отопления не самого разветвленного типа. Гидрострелка может стать полезным, а иногда даже – и обязательным элементом в том случае, если теплообменник котла изготовлен из чугуна.
Чугунные теплообменники не любят резких перепадов температур - могут дать трещинуЧугунные теплообменники не любят резких перепадов температур — могут дать трещину

При всех своих достоинствах этот металл все же обладает существенным недостатком – механической и термической хрупкостью. Резкий перепад температуры с большой амплитудой может привести к появлению трещины в чугунной детали. Таким образом, при розжиге системы отопления в холодное время года может возникнуть очень существенная разница температур – в топке и в трубе обратки. Прогрев теплоносителя в большом контуре займет немало времени, и этот период является весьма критичным для чугунного теплообменника. А вот если контур «укоротить», то есть запустить через гидравлический разделитель, нагрев теплоносителя осуществится гораздо быстрее, и вероятность деформации теплообменника котла будет минимальной.

Цены на гидравлический разделитель STOUT

Гидравлический разделитель STOUT

Кстати, некоторые производители котельного оборудования с чугунными теплообменниками прямо указывают на необходимость установки гидрострелки – нарушение этих требований влечет прекращение гарантийных обязательств.

  • Резкое расширение объема в трубе гидрострелки и вызванное этим падение скорости движения жидкости вполне можно дополнительно «поставить на службу».
Возможные дополнительные функции гидрострелки - сепарация воздуха и очистка теплоносителя от твердых взвесейВозможные дополнительные функции гидрострелки — сепарация воздуха и очистка теплоносителя от твердых взвесей
  1. Полностью исключить газообразование в теплоносителе – практически невозможно, поэтому в системе отопления устанавливаются спускные краны Маевского или автоматические воздухоотводчики – в группе безопасности, на радиаторах отопления и т.п. Очень эффективным, за счет большого объема, сепаратором воздуха способен стать и гидравлический разделитель. Для этого на него сверху врезают автоматический воздухоотводчик (поз. 1). Кроме того, на моделях заводского производства часто внутри цилиндра устанавливается специальная мелкоячеистая сетка, которая способствует активному отделению растворенного воздуха от жидкости с последующим выпуском его через отводчик.
  2. Резкое замедление скорости потока способствует гравитационному оседанию твердых взвесей, появление которых вполне вероятно в теплоносителе. Если снизу установить кран (поз. 2), то появится возможность регулярно очищать систему от скопившегося шлама.
Видео: Анимированная демонстрация функционирования гидравлического разделителя

Специфика конструкции гидравлического разделителя

Как видно из изложенного, конструкция гидравлического разделителя – достаточно незамысловата. Тем не менее, она должна подчиняться определенным правилам.

В продаже в специализированных магазинах можно встретить немало предложений, разных размеров и конфигураций, то есть имеется возможность подобрать модель, максимально по своим параметрам подходящую под имеющуюся или планируемую систему отопления. Нередко встречаются оригинальные модели, которые конструктивно совмещают и сам гидравлический разделитель, и коллектор для подключения контуров. Иногда можно увидеть гидрострелки и вообще необычной звездчатой конфигурации.

Разнообразные варианты гидравлических разделителей заводского изготовленияРазнообразные варианты гидравлических разделителей заводского изготовления

Однако, если посмотреть на стоимость этих изделий, то наверняка возникнет мысль о возможности самостоятельного изготовления. И вправду, для хозяина дома, знакомого со слесарными и сварочными работами смонтировать гидравлический разделитель – не должно составить особого труда. Главное, соблюсти рекомендуемые размерные параметры, которые обеспечат оптимальную функциональность прибора.

Классическая схема гидравлического разделителя основывается на правиле «трех диаметров». Как это выглядит – показано на схеме.

"Классическая" схема по принципу "трех диаметров"«Классическая» схема по принципу «трех диаметров»

Диаметры, безусловно, показывают внутренний, условный проход, вне зависимости от толщины стенок.

Другая схожая схема — с патрубками, чередующимися по высоте. Ее пропорции показаны на второй схеме.

Схема с чередованием патрубков по высотеСхема с чередованием патрубков по высоте

Считается, что «ступенька вниз» для подачи будет способствовать лучшей сепарации газов, а «ступенька вверх» на обратке эффективнее отделяет твёрдые взвеси.

Как рассчитать диаметр гидрострелки D – будет рассказано в следующем разделе публикации. А пока что стоить заметить, что подобное соотношение диаметров выбрано неслучайно. Одна из главных целей – обеспечить скорость вертикальных потоков в пределах 0,1 ÷ 0,2 м/с, не более. Для чего это нужно:

  • Минимальная скорость обеспечивает максимальную очистку теплоносителя от шлама, способствует лучшей сепарации воздуха.
  • При небольшой скорости обеспечивается наиболее качественная естественная конвекция горячего, из подачи, и остывшего, из «обратки» теплоносителя. Это создает определенную температурную градацию по высоте – подобным свойством нередко пользуются применяя гидрострелка в качестве коллектора с разным температурным напором — отдельно для высокотемпературных (радиаторы или бойлер) и низкотемпературных («теплые полы») контуров. Такой подход позволяет снизить нагрузки на терморегулирующее оборудование, повысить общую эффективность каждого из контуров и всей системы в целом.
Гидравлический разделитель, позволяющий добиться градиента температур по высотеГидравлический разделитель, позволяющий добиться градиента температур по высоте

Следует сказать, что вертикальное расположение гидрострелки, хотя и считается «классическим», но отнюдь не является догмой. Если не брать в расчет функции отделения из теплоносителя воздуха и сбора твердых взвесей, то, в зависимости от конкретных условий расположения труб в системе отопления, можно принять и горизонтальный вариант. Причем, даже расположение патрубков подачи и обратки котлового и отопительного контуров тоже может меняться. Несколько примеров представлено на схеме ниже.

Возможные схемы горизонтального размещения гидравлического разделителяВозможные схемы горизонтального размещения гидравлического разделителя

При таком расположении гидравлического разделителя требование к минимизации скорости потока в нем уходит на «второй план» — отделения осадков не требуется, а смешивание происходит за счет встречного направления потоков из первичного котлового контура и контура отопления. Это позволяет задействовать при изготовлении трубы меньшего диаметра. Но при этом необходимо создать условия, чтобы обеспечивалось качественное перемешивание. Для этого подающий и обратный патрубки каждого их контуров должны быть разнесены на расстояние, не менее чем четыре диаметра d, и при этом при любом диаметре патрубка эта дистанция не может быть менее 200 мм.

Пример смонтированной горизонтальной гидрострелкиПример смонтированной горизонтальной гидрострелки

Гидрострелка не обязательно всегда является сварной стальной конструкцией. Можно встретить немало примеров, когда мастера их изготавливают из медных труб или даже из полипропилена – такое устройство вообще будет стоить совсем недорого. Правда, при использовании пластика температурный режим в системе отделения не должен превышать максимальных 70 °С.

Гидравлический разделитель выполнен из полипропиленовых трубГидравлический разделитель выполнен из полипропиленовых труб

Можно встретить и совсем неожиданные решения. Так, например, гидравлический разделитель выполняют из труб небольшого диаметра, придавая ему вид решетки. При таком подходе вполне можно ограничиться полипропиленовыми или даже металлопластиковыми трубами Ø 32 мм.

Решетчатый гидравлический разделитель из труб небольшого диаметраРешетчатый гидравлический разделитель из труб небольшого диаметра

Следуя этому же принципу, некоторые мастера устанавливают вместо такой решетки несколько секций старого ненужного радиатора отопления. С функцией гидравлического разделителя такое устройство справится в полной мере. Правда, необходимо учесть то, что неизбежны большие тепловые потери. Придётся продумать качественную термоизоляцию подобной импровизированной гидрострелки.

Расчет стандартного гидравлического разделителя

Предлагаемые в продаже готовые гидравлические разделители рассчитаны на определенную мощность системы отопления. Но если принято решение самостоятельно изготовить эту, в принципе, несложную конструкцию, то важно рассчитать базовые параметры – минимальный диаметр самой гидрострелки и диаметры подводящих патрубков. После этого, руководствуясь схемами, представленными выше, несложно будет составить собственный чертеж.

Ниже будут представлены два варианта расчета гидравлического разделителя «классического» вертикального типа.

Расчет от мощности системы отопления

Существует универсальная формула описывающая зависимость расхода теплоносителя от общей потребности в тепловой мощности, теплоемкости теплоносителя и разницы температур в трубах подачи и «обратки»

Q = W / (с × Δt)

Q – расход, л/час;

W – мощность системы отопления, кВт

с – теплоемкость теплоносителя (для воды – 4,19 кДж/кг×°С или 1,164 Вт×ч/кг×°С или 1,16 кВт/м³×°С)

Δt – разница температур на подаче и «обратке», °С.

Вместе с тем, расход при движении жидкости по трубе равен:

Q = S × V

S – площадь поперечного сечения трубы, м²;

V — скорость потока, м/с.

S = Q / V= W / (с × Δt × V)

Опытным путем доказано, что для оптимального смешивания в гидравлическом разделителе, для качественного отделения воздуха и выпадения в осадок шлама, скорость в нем должна быть не выше 0,1 – 0,2 м/с. Раз уж выбрана единица измерения час, то умножаем на 3600 секунд. Получается 360 – 720 м/час. Можно взять усредненное значение – 540 м/час

Если расчет производится для воды, то можно сразу ввести несколько исходных значений, чтобы упростить формулу

S = W / (1,16 × Δt × 540) = W / (626 × Δt)

Определив сечение, по формуле площади круга несложно определить и требуемый диаметр.

D = √ (4×S/π) = 2 × √ (S/π)

Подставляем значения:

D = 2 × √ (W / (626 × Δt × π)) = 2 × √ (W / (1966 × Δt)) = 2 × 0,02255 × √(W/Δt)

= 0,0451 × √(W/Δt)

Так как значение будет получено в метрах, что не совсем удобно, можно перевести его сразу в миллиметры, умножив на 1000.

В итоге формула примет такой вид:

  • D = 45,1 √(Wt) – для скорости потока в трубе гидрострелки в 0,15 м/с.

Несложно просчитать и значения для верхнего и нижнего предела допустимой скорости потока:

  • D = 55,2 √(Wt) – для скорости в 0,1 м/с;
  • D = 39,1 √(Wt) – для скорости в 0,2 м/с.

Определив диаметр гидрострелки, несложно вычислить и диаметры входных и выходных патрубков.

Быстро провести расчеты поможет встроенный калькулятор, размещенный ниже:

Калькулятор расчета рекомендуемых параметров гидрострелки по мощности и разнице температур

Перейти к расчётам

Расчет параметров гидрострелки на основании производительности насосов

Есть и другой способ определить требуемые минимальные размерные параметры гидравлического разделителя. В этом случае за исходные величины будут браться величины производительности насосов в контуре котла и всех контуров отопления и, при наличии, горячего водоснабжения.

Как уже было понятно из описания принципа работы гидрострелки, ее основное предназначение – не перегружать насосное оборудование котельной установки, обеспечивая при этом должный расход теплоносителя во всех контурах отопления. Так на практике и получается, что суммарная производительность всех насосных установок всегда выше аналогичного показателя насоса, обеспечивающего циркуляцию непосредственно через котел.

В самом «пиковом» варианте, когда одновременно задействованы все насосы во всех контурах, суммарная производительность через гидрострелку стане равна разнице:

Q = ∑Qот. – Qкот.

∑Qот. – суммарная производительность всех насосов на контурах отопления и, если есть, на бойлере косвенного нагрева, м³/час

Qкот. – производительность циркуляционного насоса в малом контуре котла отопления. м³/час.

Вернемся вновь в формулам, которые рассматривались выше.

S = W / (с × Δt × V)

Мощность, как уже было показано выше, равна:

W = Q × с × Δt

Значит,

S = (Q × с × Δt) / (с × Δt × V) = Q / V

Отсюда осталось совсем немного для определения диаметра:

D = √ (4×S/π) = 2 × √ (Q /(π × V)) = 2 × √ ((∑Qот. – Qкот.) / (π × V))

Уточнить паспортные характеристики установленного или планируемого к установке насосного оборудования – несложно. Единственное, при расчетах не забывайте приводить значение производительности к единым величинам — м³/час, а скорость потока через гидрострелку – к м/час. Полученный результат останется привести к миллиметрам, умножив на 1000.

Можно сразу упростить формулу, введя константы и рекомендуемую скорость потока, как и в первом расчете. В итоге получаются следующие выражения:

При скорости вертикального потока равной:

  • 0,1 м/с: D = 59,5 × √ (∑Qот. – Qкот.)
  • 0,15 м/с: D = 48,6 × √ (∑Qот. – Qкот.)
  • 0,2 м/с: D = 42,1 × √ (∑Qот. – Qкот.)

Эти соотношения заложены в размещенный ниже калькулятор:

Калькулятор расчета параметров гидрострелки исходя из производительности насосов

Перейти к расчётам

Рассчитанные величины являются минимальными. Если диаметр будет выше, то никакой беды от этого не случится – плавность работы системы отопления только выиграет. А вот заужение ниже расчетной величины – недопустимо!

Естественно, при приобретении или самостоятельном изготовлении гидравлического разделителя ориентируются на стандартные диаметры труб, но только приведенные от полученных результатов обязательно в большую сторону.

Заключение

Подводя итоги публикации, отметит еще раз основные достоинства системы отопления, оснащенной гидравлическим разделителем:

  • Чугунный теплообменник котла получает надежную защиту от тепловых ударов. Что продлевает срок службы котельного оборудования.
  • Намного упрощается подбор насосов. Для каждого контура модно приобрести прибор необходимой производительности, и это не потребует установки мощного насоса в контуре котла – гидрострелка в полной мере нивелирует этот дисбаланс.
  • Расход теплоносителя через котел отличается стабильностью, то есть оборудование всегда работает в штатном оптимальном режиме, без скачков давления и температуры.
  • Вся система отопления в целом получается сбалансированной, все контуры независимы и не оказывают значимого влияния один на другой.
  • Появляется возможность удаления шлама и газов.

И напоследок – еще один видео-сюжет о значимости гидрострелки в системе отопления:

Видео: Насколько важна гидрострелка в разветвлённой системе отопления?

Гидравлическая стрелка: устройство и принцип работы

Гидравлические разделители
Функция гидравлических сепараторов, заключается в том, чтобы разделить (т.е. сделать независимыми) различные контуры системы, что позволяет предотвратить возникновение интерференций и взаимных помех.
Чтобы определить преимущества использования и рабочие характеристики гидравлических разделителей, мы :
1. Проанализируем, как взаимодействуют между собой контуры в традиционных системах.
2. Определим критерии для появления интерференций
3. Проанализируем нарушения работы, вызванные интерференциями.
4. И рассмотрим, как гидравлические сепараторы предотвращают возникновение интерференции между контурами.

Интерференции между контурами

Для определения природы интерференций проанализируем нижеприведенную систему и рассмотрим, что происходит при поочередном включении насосов системы. Обратим внимание на изменение перепада давления между коллектором подачи и коллектором обратки (ΔP) без учета абсолютного давления в системе.
Когда все насосы выключены
Если не учитывать явление естественной циркуляции, то в этом положении жидкость в системе остается неподвижной, а ΔP равна нулю.

С целью разделения и оптимизации потоков теплоносителя в системах с несколькими отопительными контурами или котлами используется гидравлическая стрелка. Она позволяет избежать их противодействия друг другу, а также регулировать работу конкретного элемента без необходимости отключения или перенастройки всей системы. Рассмотрим, как устроен гидравлический разделитель, а также каким образом осуществляется его работа.

Включение насоса №1

Приводит в движение жидкость своего контура и заставляет увеличиваться ΔP между коллекторами.
Данное увеличение равно напору Δp1, которое насос №1 создает для прохода жидкости от коллектора обратки к коллектору подачи: иными словами, через контур котла. Тот же ΔP сохраняется, по логике, также на соединениях контуров 2 и 3 при выключенных на них циркуляционных насосах. Причем в коллекторе обратки давление выше, чем в коллекторе подачи, что может привести к появлению паразитной циркуляции в контурах 2 и 3, причем в направлении, противоположном предусмотренному.
Включение насоса №2
Чтобы привести в движение жидкость своего контура, насос №2 должен сначала преодолеть противоположное Δp1, нагнетаемое насосом №1. Более того включение насоса №2 приведет к последующему увеличению ΔP между коллекторами подачи и обратки, поскольку увеличится расход теплоносителя через контур котла, и поэтому потребуется приложить больший напор для продвижения жидкости через контур.
Включение насоса №3
Чтобы запустить циркуляцию в своем контуре насос №3 должен преодолеть сопротивление противоположного Δp2, нагнетаемого насосами №1 и №2. Требуемое усилие может быть настолько большим, что насос будет не в состоянии обеспечить необходимый расход теплоносителя через свой контур. Кроме того включение насоса 3 приводит, к последующему увеличению Δp3 по причинам, указанным
выше.

Появление интерференций и пороговые значения ΔР

На рассмотренном примере видно, что поэтапное включение насосов увеличивает ΔP между коллек-
торами подачи и обратки, что приводит к появлению взаимных помех (т.е. интерференции) между на-
сосами разных контуров. Невозможно точно установить значения, ниже которых можно считать ΔP приемлемым: то есть значения ΔP, ниже которых интерференция между контурами не вызывает очевидных сбоев в работе системы. Эти значения зависят от большого количества переменных величин. Однако, в большинстве случаев допустимым ΔP принимают значения 0,4÷0,5 м вод.ст. Более высокие значения (а не редко можно
обнаружить системы с ΔP 1,5÷2,0 м вод.ст.) могут приводить к серьезным проблемам в работе системы.

Проблемы, связанные со слишком высокими значениями ΔP

Основные проблемы можно классифицировать следующим образом:
1. Насосам не удается обеспечить требуемый расход
Это серьезная дисфункция, которая чаще всего возникает в системах, в которых установлены как большие, так и слабые насосы. В таких системах, небольшим насосам не удается «справиться» потому, что им необходимо затрачивать слишком много энергии для того, чтобы преодолеть противодавление более мощных насосов. Увеличенное сопротивление системы приводит к падению расхода, и как следствие, недостаточному снабжению контура теплоносителем.
2. Насосы часто ломаются
Это проблема обусловлена тем, что интерференция между контурами вынуждает насосы работать вне их рабочего поля, что является причиной их частого выхода из строя.
3. Горячие отопительные приборы даже при выключенном насосе
Как рассматривалось выше, данная проблема вызвана паразитной циркуляцией в контуре с выключенным насосом, создаванной включенными насосами других контуров. Необходимо заметить, что подобные явления могут возникать также при естественной циркуляции или при циркуляции в перепусках при закрытых регулирующих клапанах. Это явление легко определить по характерным признакам: у радиаторов появляются неодинаково
горячие участки поверхности, а их патрубки на обратке горячее, чем патрубки на подаче.
Вышеперечисленные отклонения и проблемы позволяют нам утверждать, что системы с высоким ΔP
между коллекторами подачи и обратки (что почти всегда наблюдается в средних и больших системах)
не могут работать с соблюдением расчетных (проектных) характеристик.

Гидравлические сепараторы

Гидравлический сепаратор создает зону с низким гидравлическим сопротивлением, которая позволяет сделать гидравлически независимыми первичный и вторичный контуры; поток в одном контуре не образует поток в другом, если гидравлическое сопротивление сепаратора является незначительным. В этом случае, расход, который проходит через соответствующие контуры, зависит исключительно от характеристик насосов и их контуров, предотвращая взаимное влияние насосов разных контуров. Поэтому, при использовании гидравлического разделителя, насосы выдают необходимые характеристики, теплоноситель будет циркулировать, только когда включен соответствующий насос, производительность насоса будет удовлетворять требования контура по расходу теплоносителя на данный момент времени. Когда насосы вторичного контура выключаются, нет циркуляции в соответствующих контурах, то весь расход, нагнетаемый насосом первичного контура, перепускается через сепаратор. Используя гидравлический разделитель, можно иметь первичный котловой контур с постоянным расходом и вторичный контур потребителей с изменяющимися расходами.

Определение типоразмера: Метод максимального расхода

Гидравлический разделитель рассчитывается исходя из значения максимального рекомендованного расхода в точке установки разделителя. Иными словами значение расхода для разделителя должно быть больше или равно большему из суммы расходов первичного контура (Gперв.) и суммы расходов вторичного контура (Gвторичн.)


В гидравлических сепараторах могут возникать значительное смешение.
В некоторых системах «горячий» теплоноситель, исходящий от котла, остывает от обратки контура потребителей и контуры потребителей получают «охлажденную» подачу. В этом случае, отопительные приборы подбираются с учетом такого охлаждения, а не на основе рабочей температуры подачи котла.В других случаях «холодная» обратка потребителей подогревается «горячей» подачей котла, и в котел поступает «подогретая» обратка. Такие ситемы используются для предотвращения явлений конденсации в самих котлах и в патрубках отводных газов, что особенно
полезно для котлов на биомассе.
Далее проанализируем изменения температуры на патрубках гидравлического разделителя в зависи-
мости от изменения расходов между первичным и вторичным контурами :

1.Расход первичного контура равен расходу вторичного контура
Это типичная ситуация в небольших системах, учитывая, что в них насосы (или насос) первичного контура обычно подбираются с расходами равными расходам вторичного контура. В этом случае можно считать, что температуры первичного и вторичного контуров оказываются в таком соотношении:

T1 = T3
T2 = T4
Поэтому, это тот случай, при котором сепаратор не изменяет температуры ни подачи ни обратки. Как следствие, можно подобрать отопительные приборы на основе максимальной рабочей температуры, поступающей из теплогенератора.

2.Расход первичного контура меньше расхода вторичного контура
Эта ситуация встречается в системах с одним или несколькими настенными котлами,когда их внутренние насосы слишком слабы, чтобы доставлять отопительных приборам требуемую тепловую мощность. Такую же ситуацию, можно обнаружить в системах с удаленными котельными, когда нужно поддерживать низким расход первичного контура для того, чтобы сэкономить на эксплуатации системы в целом и насосов в частности.
В рассматриваемом случае температуры первичного и вторично-
го контуров соотносятся следующим образом:

T1 > T3
T2 = T4

Поэтому температура на подаче вторичного контура (к потребителям) оказывается ниже температу-
ры на подаче первичного контура (от котла). Для расчета максимальной температуры теплоносителя,
направляемой к потребителям (T3), необходимо чтобы были известны значения следующих величин:
• T1 – температура подачи первичного контура [°C]
• Q – тепловая мощность системы [Ккал/ч]
• Gперв. – расход первичного контура [м3/ч]
• Gвтор. – расход вторичного контура [м3/ч]
Далее можно продолжать следующим образом:
1. Сначала рассчитываются перепады температуры первичного и вторичного контуров:
ΔTперв. = Q / Gперв. (1a),
ΔTвтор. = Q / Gвтор. (1b)
2. На основании перепада температуры первичного контура определяется температура обратки первичного контура:
T2 = T1 – ΔTперв. (2)
3. Учитывая, что в рассматриваемом случае, температура обратки первичного контура равна температуре обратки вторичного контура, можно рассчитать требуемую температуру, по выражению:
T3 = T4 + ΔTвтор. = T2 +ΔTвтор. (3)
Это и есть максимальная рабочая температура, на основе которой подбираются отопительные приборы системы.

3. Расход первичного контура больше расхода вторичного контура

Ситуации, когда расход первичного контура превышает расход вторичного контура, чаще всего встречаются в системах на
низкой температуре. Повышая температуру обратки в котел, мы избегаем проблем, связанных с выпадением конденсата из дымо-
вых газов. В рассматриваемом случае температуры первичного и вторичного контуров соотносятся следующим образом:
T1 = T3
T2 > T4
Поэтому температура обратки первичного контура (температура обратки в котел) оказывается выше температуры обратки вторичного контура.
Для расчета максимальной температуры теплоносителя на обратке в котел (T2), необходимо знать
значения следующих величин:
• T1 – температура подачи первичного контура [°C]
• Gперв. – расход первичного контура м3/ч]
• Q – тепловая мощность системы [Ккал/ч]
Далее рассчитаем:
1. Сначала перепад температуры первичного контура: ΔTперв. = Q / Gперв. (4)
2. На основании данного значения определяется температура обратки самого первичного контура:
T2 = T1 – ΔTперв. (5)
Если нужно определить расход первичного контура, (иными словами расход котлового насоса) необ-
ходимый для обеспечения температуры обратки не ниже порогового значения (T2 ), предотвращающего выпадение конденсата, нужно определить следующие величины:
• T1 – температуру подачи первичного контура [°C]
• T2 – температуру обратки первичного контура [°C]
• Q – тепловую мощность системы [Ккал/ч]
Далее определяем:
1. Перепад температур первичного контура: ΔTперв. = T1 – T2 (6)
2. На основании этого значения, определяется требуемый расход котлового насоса:
Gперв. = Q / ΔTперв


Дано:
B. Характеристики контура радиаторов:
T1 = 80°C (температура подачи котлов). QB = 6.000 Ккал/ч (тепловая мощность)
Характеристики единичного настенного котла: GB = 600 л/ч (расход насоса)
Qк = 27.000 Ккал/ч C. Характеристики контура приточной вентиляции:
Gк = 1.600 л/ч (максимальный расход насоса) QC = 22.000 Ккал/ч (тепловая мощность)
A. Характеристики контура водоподогревателя: GC = 4.400 л/ч (расход насоса)
QA = 22.000 Ккал/ч (тепловая мощность) D. Характеристики контура фенкойлов:
GA = 2.200 л/ч (расход насоса ) QD = 27.000 Ккал/ч (тепловая мощность)
GD = 5.400 л/ч (расход насоса)

Решение:
Для начала рассчитывается общая тепловая мощность потребителей, расход первичного контура и расход
вторичного контура. Далее ведет расчеты согласно раздела ‘‘расход первичного контура ниже расхода во вторич-
ном контуре’’.
1. Общая тепловая мощность потребителей:
Q = QA + QB + Qк+ QD = 77.000 Ккал/ч
2. Расход первичного контура.
Предположим, что соединительный контур между настенными котлами и сепаратором выполнен с низким
гидравлическим сопротивлением. Следовательно, расход первичного контура можно принять за максимальный,
обеспечиваемый внутренними насосами настенных котлов:
Gперв. = 3 x 1.600 = 4.800 л/ч
3. Расход вторичного контура.
Он определяется как сумма расходов насосов потребителей
Gвтор.= GA + GB + Gк + GD = 12.600 л/ч
Важно: на основании этого расхода (поскольку он выше расхода первичного контура) подбирается
гидравлический сепаратор с необходимой пропускной способностью.
4. Перепады температуры первичного и вторичного контуров рассчитываются по формулам (1a) и (1b):
ΔTперв. = Q/Gперв. = 77.000/4.800 = 16°C
ΔTвтор. = Q/Gвтор. = 77.000/12.600 = 6°C
5. Температура обратки первичного контура определяется по формуле (2):
T2 = T1 – ΔTперв. = 80 – 16 = 64°C
6. Температура подачи вторичного контура пределяется по формуле (3):
T3 = T4 + ΔTвтор. = T2 + ΔTвтор.
T3 = 64 + 6 = 70°C

Это и есть та максимальная рабочая температура, на основании которой необходимо подбирать змеевик водоподогревателя, радиаторы, фэнкойлы и теплообменник приточной установки.

Многофункцианальный гидравлический сепаратор серии 549…
Многофункциональный гидравлический сепаратор, помимо того, что разделяет гидравлические контуры, включает в себя и другие функциональные компоненты, каждый из которых помогает решать проблемы типичные для контуров систем отопления и кондиционирования.
Устройство разработано для выполнения функций:
• Гидравлического разделения
Для того,чтобы сделать независимыми первичные и вторичные гидравлические контуры.
• Деаэрации
Использует комбинированное действие нескольких физических процессов: расширение сечения снижает скорость потока, сетка из технополимера создает вихревые потоки, которые благоприятствуют высвобождению микропузырьков. Пузырьки, сливаясь между собой, увеличиваются в объёме, поднимается в верхнюю часть и удаляются поплавковым автоматическим воздухоотводчиком.
• Дешламации
Дешламатор отсорбирует и собирает частицы шлама, присутствующие в контурах, благодаря их столкновению с поверхностью внутреннего элемента.
• Удалению магнитных частиц
Специальная запатентованная магнитная система притягивает железомагнитный шлам содержащийся в воде: железомагнитные частицы удерживаются в зоне сбора, во избежание их возможного возвращения в циркуляцию.

Устройство гидравлической стрелки

Гидравлическая стрелка для систем отопления представляет собой полую трубу, с двух сторон которой имеются патрубки для подключения контуров. Она может изготавливаться из следующих материалов:

  • металл – стальной или медный гидравлический разделитель котла используется в промышленных и домашних системах отопления, характеризующихся высокими (свыше 70°С) температурами и давлением теплоносителя;
  • пластик – вы можете купить в Москве гидравлическую стрелку для применения в системах мощностью 13-35 кВт, температура теплоносителей в которых не превышает 70°С.

Гидравлический разделитель для отопления устроен достаточно просто. Ее основу составляет металлическая или пластиковая труба, имеющая по обеим сторонам выходы для подключения подающего трубопровода и контура отопления. Внутри гидрострелки могут быть установлены разграничивающие пластины, шлакосборник, выпрямитель потока, воздухоотводчик и другие элементы, обеспечивающие нормальную циркуляцию рабочей среды. В зависимости от сложности устройства и функциональности данной арматуры варьируется цена на гидравлическую стрелку.

Принцип работы

Прежде, чем купить гидравлический разделитель, следует иметь представление о принципах его работы. В основе нее лежит выравнивание параметров расхода теплоносителя в первичном контуре котла и трубопроводе системы отопления. При этом различаются три режима работы теплоносителя:

  • расход теплоносителя в контурах системы превышает аналогичный показатель у котла, поэтому в гидрострелке образуется восходящий поток;
  • в котле и отопительном контуре теплоноситель расходуются одинаково, поэтому в гидрострелке устанавливается равновесие;
  • в котле теплоноситель расходуется в большей степени, чем в отопительном контуре, что вызывает нисходящую циркуляцию рабочей среды в гидрострелке.

Данная трубопроводная арматура может быть спроектирована с учетом подключения к нескольким отопительным контурам и котлам. В зависимости от их количества цена на гидравлический разделитель может существенно изменяться.

Что такое гидравлическая стрелка — принцип работы, конструкция и расчет

В некоторых схемах отопления специалисты настоятельно рекомендуют установку гидравлического распределителя. Основной аргумент «за» – стабилизация системы и улучшение ее эксплуатационных качеств. Какие функции выполняет этот элемент?

Когда необходимо ставить гидравлический распределитель

Коллекторное отопление

Одним из качественных характеристик отопления является гидродинамическое распределение на его участках и всей системы в целом. Т.е. давление и скорость движения теплоносителя должно быть примерно одинаковым везде. На практике добиться такого результата можно только при небольшой протяженности трубопроводов и отсутствии разветвлений.

Для двухтрубной или коллекторной систем часто наблюдается большая разница между давлением на выходной трубе от котла и обратной. Есть несколько объективных причин этому явлению.

Самыми распространенными из них являются:

  • Недостаточная мощность насосов для равномерной циркуляции теплоносителя. Они не могут обеспечить должную скорость его движения.
  • При использовании зональных устройств подачи горячей воды (терморегуляторы) создается избыточное гидравлическое сопротивление на определенных участках.
  • Несогласованность работы (резонанс) при наличии 2-х и более насосов.
  • Наличие контуров с различными показателями сечения труб – теплый пол, косвенный нагрев бойлера и т.д.

В итоге это приводит не только к неравномерному давлению, но и некорректному температурному распределению по отдельным магистралям. Для решения этих проблем следует устанавливать гидравлическую стрелку.

Функциональные особенности

На первый взгляд ее конструкция и принцип работы выглядит очень просто. Она состоит из основной емкости, сечение которой больше, чем у подающих магистралей. У нее имеются 4 патрубка с диаметром, равным основному трубопроводу.

Режимы работы гидравлической стрелки

Чаще всего гидравлический распределитель устанавливается в коллекторной схеме отопления. Он необходим для нормализации давления между подающей и обратной трубой. Можно определить 3 режима работы этого устройства.

  1. Стабильная система. Давление в магистралях равно. Вследствие этого температура воды на входных и выходных патрубках одинакова.
  2. Поток из отопительного контура превышает аналогичный из котла. Температурная разница создает частичное распределение теплоносителя из обратной магистрали в основную. Тем самым происходит стабилизация. Это обеспечит защиту теплообменника котла от перегревания.
  3. Превышение давления из потока котла по сравнению с отопительным. Такой режим чаще всего применяется при отключении одного или нескольких контуров.

Таким образом достигается оптимальная работа всей системы отопления. Для правильного применения гидравлического распределителя следует сначала рассчитать его размеры и определиться с местом установки.

Правила расчета и монтажа

 Оптимальный вариант – приобрести заводскую модель.  Они рассчитаны для конкретных отопительных систем в зависимости от максимального объема потока теплоносителя через гидрострелку и скорости его движения. Если же было принято решение изготовить ее своими руками – можно воспользоваться следующей формулой для вычисления диаметра патрубков.

formulaformula

Промежуточные величины можно вычислить самостоятельно, либо воспользоваться специализированными программными комплексами. Следующим этапом будет определение размеров основной емкости. Для этого можно воспользоваться двумя методами.

  • Трех диаметров – патрубки располагаются на одной оси.
  • Чередующиеся подключения – патрубки устанавливаются в шахматном порядке.

 

formulaformula

Способы расчета размеров основной емкости

Место установки распределителя определяется схемой отопления. Однако рекомендуется руководствоваться правилом – он должен находиться максимально близко к котлу. Для коллекторной схемы гидрострелку подключают перед ним. Таким образом стабилизация системы происходит до вхождения теплоносителя в распределительный коллектор.

Исключения составляет монтаж дополнительного насоса. В таком случае гидравлический распределитель монтируется между ним и подключением обратной трубы к котлу. Это позволяет компенсировать разность частот работающих насосов.

Гидрострелка для отопления: принцип работы и назначение — RMNT

Гидравлический разделитель — устройство, овеянное множеством мифов. Чтобы разобраться, с какими задачами гидрострелка действительно способна справляться, а какие её свойства — лишь необоснованные заявления маркетологов, предлагаем подробно рассмотреть принцип действия этого узла и его назначение.

Как устроена гидрострелка

Гидрострелка представляет собой колбу с установленным в верхней части автоматическим воздухоотводчиком. На боковой поверхности корпуса врезаются патрубки для присоединения магистральных труб отопления. Внутри гидрострелка абсолютно полая, в нижней части может врезаться резьбовой патрубок для установки шарового крана, предназначение которого — слив отстоявшегося шлама со дна разделителя.

По сути своей гидравлическая стрелка — это шунт, закорачивающий потоки подачи и обратки. Целью работы такого шунта является выравнивание температуры теплоносителя, а также его расхода в генерирующей и распределительной частях гидравлической системы отопления. Для получения реального эффекта от гидросепаратора требуется тщательный расчёт его внутреннего объёма и мест врезки патрубков. Однако большинство представленных на рынке устройств изготавливается серийно без адаптации под конкретную систему отопления.

Часто можно встретить мнение, что в полости колбы обязательно должны присутствовать дополнительные элементы, такие как рассекатели потока или сетки для фильтрации механических примесей или отделения растворённого кислорода. В реальности такие способы модернизации не демонстрируют сколь-нибудь значимой эффективности и даже наоборот: например, при засорении сетки гидрострелка полностью перестаёт работать, а вместе с ней и вся система отопления.

Какие возможности приписывают гидросепаратору

В среде инженеров-теплотехников встречаются диаметрально противоположные мнения по поводу необходимости установки гидрсотрелок в системах отопления. Масла в огонь подливают заявления производителей гидротехнического оборудования, сулящие увеличение гибкости настройки режимов работы, повышение КПД и эффективности теплоотдачи. Чтобы отделить зёрна от плевел, для начала рассмотрим абсолютно беспочвенные заявления о «выдающихся» способностях гидравлических сепараторов.

КПД котельной установки никак не зависит от устройств, установленных после присоединительных патрубков котла. Полезное действие котла целиком и полностью заключено в преобразовательной способности, то есть в процентном отношении тепла, выделенного генератором, к теплу, поглощённому теплоносителем. Никакие специальные методы обвязки не могут повысить КПД, он зависит только от площади поверхности теплообменника и корректного выбора скорости циркуляции теплоносителя.

Многорежимность, которая якобы обеспечивается установкой гидрострелки, это также абсолютный миф. Суть обещаний сводится к тому, что при наличии гидрострелки можно реализовать три варианта соотношений расхода в генераторной и потребительской части. Первый — абсолютное выравнивание расхода, что на практике как раз возможно только при отсутствии шунтирования и наличии в системе только одного контура. Второй вариант, при котором в контурах расход больше, чем через котёл, якобы обеспечивает повышенную экономию, однако в таком режиме по обратке в теплообменник неизбежно поступает переохлаждённый теплоноситель, что порождает ряд негативных эффектов: запотевание внутренних поверхностей камеры сгорания или температурный шок.

Также существует ряд доводов, каждый из которых представляет бессвязный набор терминов, но по сути своей не отражающий ничего конкретного. К таковым относятся повышение гидродинамической стабильности, увеличение срока службы оборудования, контроль за распределением температуры и иже с ними. Также можно встретить утверждение, что гидроразделитель позволяет стабилизировать балансировку гидравлической системы, что на практике оказывается прямо противоположным. Если при отсутствии гидрострелки реакция системы на изменение протока в любой её части неизбежна, то при наличии разделителя она ещё и абсолютно непредсказуема.

Реальная область применения

Тем не менее, термогидравлический разделитель — устройство далеко не бесполезное. Это гидротехнический прибор и принцип его действия достаточно подробно описывается в специальной литературе. Гидрострелка имеет вполне определённую, пусть и достаточно узкую область применения.

Важнейшая польза от гидроразделителя — возможность согласовать работу нескольких циркуляционных насосов в генераторной и потребительской части системы. Часто случается, что подключенные к общему коллекторному узлу контуры снабжаются насосами, производительность которых отличается в 2 и более раз. Наиболее мощный насос при этом создаёт разницу давлений настолько высокую, что забор теплоносителя остальными устройствами циркуляции оказывается невозможным. Несколько десятков лет назад эта проблема решалась так называемым шайбованием — искусственным занижением протока в потребительских контурах путём вваривания в трубу металлических пластин с различным диаметром отверстий. Гидрострелка шунтирует подающую и обратную магистраль, за счёт чего разрежение и избыточное давление в них нивелируются.

Второй частный случай — избыточная производительность котла по отношению к потреблению контуров распределения. Такая ситуация характерна для систем, в которых ряд потребителей работает не на постоянной основе. Например, к общей гидравлике могут быть привязаны бойлер косвенного нагрева, теплообменник бассейна и отопительные контуры зданий, которые отапливаются лишь время от времени. Установка гидрострелки в таких системах позволяет поддерживать номинальную мощность котла и скорость циркуляции всё время, при этом излишек нагретого теплоносителя поступает обратно в котёл. При включении дополнительного потребителя разница расходов снижается и излишек уже направляется не в теплообменник, а в открытый контур.

Гидрострелка также может служить коллектором генераторной части при согласовании работы двух котлов, особенно если их мощность существенно отличается. Дополнительным эффектом от работы гидрострелки можно назвать защиту котла от температурного шока, но для этого расход в генераторной части должен превышать расход в сети потребителей не менее чем на 20%. Последнее достигается путём установки насосов соответствующей производительности.

Схема подключения и монтаж

Гидравлическая стрелка имеет схему подключения, столь же простую, как и собственное устройство. Большая часть правил относится не столько к подключению, сколько к расчёту пропускной способности и расположению выводов. Тем не менее, знание полной информации позволит провести монтаж корректно, а также убедиться в пригодности выбранной гидрострелки для её установки в конкретную систему отопления.

Первое, что нужно чётко усвоить — гидрострелка будет работать только в системах отопления с принудительной циркуляцией. При этом насосов в системе должно быть как минимум два: один в контуре генерационной части, и хотя бы один в потребительской. При прочих условиях гидравлический разделитель будет играть роль шунта с нулевым сопротивлением и, соответственно, закоротит собой всю систему.

Пример схемы подключения гидрострелки: 1 — котёл отопления; 2 — группа безопасности котла; 3 — расширительный бак; 4 — циркуляционный насос; 5 — гидравлический разделитель; 6 — автоматический воздухоотводчик; 7 — запорные вентили; 8 — кран слива; 9 — контур № 1 бойлер косвенного нагрева; 10 — контур № 2 радиаторы отопления; 11 — трёхходовой кран с электроприводом; 12 — контур № 3 тёплый пол

Следующий аспект — размеры гидрострелки, диаметр и расположение выводов. В общем случае диаметр колбы определяется исходя из наибольшего расчётного протока в магистрали. За максимум может приниматься расход теплоносителя либо в генерационной, либо в потребительской части системы отопления согласно данным гидравлического расчёта. Зависимость диаметра колбы разделителя от протока описывается соотношением расхода к скорости протока теплоносителя через колбу. Последний параметр фиксированный и, в зависимости от мощности котельной установки, может варьироваться от 0,1 до 0,25 м/с. Частное, полученное при вычислении указанного соотношения, нужно умножить на поправочный коэффициент 18,8.

Диаметр патрубков подключения должен составлять 1/3 от диаметра колбы. При этом вводные патрубки располагаются от верха и низа колбы, а также друг от друга на расстоянии, равном диаметру колбы. В свою очередь выходные патрубки располагаются так, чтобы их оси были смещены относительно осей вводов на два собственных диаметра. Описанными закономерностями определяется общая высота корпуса гидрострелки.

Гидрострелка подключается к прямому и возвратному магистральному трубопроводам котла или нескольких котлов. Разумеется, при подключении гидрострелки не должно быть и намёка на сужение условного прохода. Это правило вынуждает использовать в обвязке котла и при подключении коллектора трубы с очень значительным условным проходом, что несколько осложняет вопрос оптимизации компоновки оборудования котельной и повышает материалоёмкость обвязки.

О сепарационных коллекторах

Напоследок кратко коснёмся темы многовыводных гидрострелок, также известных как сепколлы. По сути своей это коллекторная группа, в которой подающий и возвратный разветвитель объединены разделителем. Такого рода устройства крайне полезны при согласовании работы нескольких контуров отопления с разной нормой расхода и температурой теплоносителя.

Сепарационный коллектор вертикального монтажа позволяет обеспечить градиент температур в выходных патрубках за счёт смешивания порций теплоносителя. Это делает возможным прямое подключение, к примеру, бойлера косвенного нагрева, радиаторной группы и петель тёплого пола без смесительной группы: разница температур между соседними выводами сепколла будет естественным образом поддерживаться в пределах 10–15 °С в зависимости от режима циркуляции. Однако стоит помнить, что такой эффект возможен только если возвратный патрубок генераторной части расположен выше возвратных отводов потребителей.

В качестве итога дадим важную рекомендацию. Для большинства бытовых систем отопления мощностью до 100 кВт установка гидравлического разделителя не требуется. Гораздо более правильным решением будет подобрать производительность циркуляционных насосов и согласовать их работу, а для защиты котла от температурного шока связать магистрали трубкой-байпасом. Если же проектная либо монтажная организация настаивают на установке гидрострелки, это решение обязательно должно обосновываться технологически.

Как работает гидравлика | Наука гидравлики

Криса Вудфорда. Последнее изменение: 2 июля 2019 г.

Какая связь между водой пистолет и этот гигантский журавль? На первый взгляд, никакой связи. Но подумайте о науке, стоящей за ними, и вы достигнете удивительного вывод: водяные пистолеты и краны используют силу движущихся жидкостей очень похожим образом. Эта технология называется гидравликой, и это используется для питания всего, от автомобильных тормозов и мусоровозов до рулевые и гаражные домкраты для моторных лодок.Давайте подробнее разберемся, как это работает!

На фото: этот кран поднимает свою гигантскую стрелу в воздух с помощью гидроцилиндра. Вы можете заметить здесь барана? Основная из них — сияние серебра на солнечном свете в центре картины. Также имеются гидроцилиндры, поддерживающие стабилизаторы («аутригеры»): опоры, которые выступают возле колес для поддержки крана у основания, когда стрела выдвинута (они выделены желтыми и черными предупреждающими полосами).

Нельзя раздавить жидкость!

Газы легко раздавить: все знают, как легко это сжать воздушный шар.Твердые тела прямо противоположны. Если вы когда-нибудь пытались сжать кусок металла или кусок дерево, только пальцами, вы поймете, что это практически невозможно. А как насчет жидкостей? Где они вписываются? Вы, наверное, знаете, что жидкости промежуточное состояние, немного похоже на твердые тела и немного на газы в других. Теперь, когда жидкости легко перетекают с места на место, вы можете подумать, что они будут вести себя как газы, когда вы устанете их сжимать. Фактически, жидкости практически несжимаемы, как и твердые тела.По этой причине болит живот, если вы испортили свое погружение в бассейн. Когда ваше тело врезается в бассейн, это потому, что вода не может стекать вниз (как матрас или батут будет) или достаточно быстро уйти с дороги. Вот почему прыжки с мостов в реки может быть очень опасно. Если вы не нырнете правильно, прыжки с моста в воду почти как на бетон. (Узнайте больше о твердых телах, жидкостях и газах.)

Фото: Почему вода так быстро брызгает из шприца? Вы вообще не можете сжать жидкость, поэтому, если вы протолкнете воду через широкую часть шприца, сильно надавив на поршень внизу, куда пойдет эта вода? Он должен выбраться через верх.Поскольку верх намного уже низа, вода выходит из него высокоскоростной струей. Гидравлика запускает этот процесс в обратном порядке, чтобы обеспечить более низкую скорость, но большую силу, которая используется для привода тяжелых машин. То же самое и с водяным пистолетом, который фактически представляет собой шприц в форме пистолета.

Тот факт, что жидкости не сжимаются легко, невероятно полезно. Если вы когда-нибудь стреляли из водяного пистолета (или бутылка с жидкостью для мытья посуды, наполненная водой), вы использовали эту идею уже.Вы, наверное, заметили, что нажимать спусковой крючок водного пистолета (или выжать воду из посуды для мытья посуды бутылка). Когда вы нажимаете на спусковой крючок (или сжимаете бутылку), вы приходится довольно много работать, чтобы вытеснить воду через узкую сопло. Вы действительно оказываете давление на воду — и поэтому он брызгает с гораздо большей скоростью, чем вы двигаете курок. Если бы вода не была несжимаемой, водяные пистолеты не работали бы должным образом. Вы нажмете на спусковой крючок, и вода внутри просто сжать в меньшее пространство — он не вылетит из сопла, как вы ожидали.

Если водяные пистолеты (и сжимаемые бутылки) могут изменять силу и скорость, это означает (в строгих научных терминах) они работают так же, как инструменты и машины. Фактически, наука о водяных пистолетах приводит в действие некоторые из самых больших машин в мире — краны, самосвалы и экскаваторы.

Теоретическая гидравлика

Переверните водяной пистолет, и это (грубо упрощено) что происходит внутри:


Фото: упрощенный вид гидравлической воды. пистолет.

Когда вы нажимаете на спусковой крючок (показанный красным), вы применяете относительно большая сила, которая перемещает спусковой крючок на небольшое расстояние.Потому что вода не будет втиснуться в меньшее пространство, он проталкивается через тело пистолет к узкой насадке и выстреливает с меньшей силой, но с большей скорость.

Теперь предположим, что мы можем заставить водяной пистолет работать в обратном направлении. Если мы могли стрелять жидкостью в сопло на большой скорости, вода течь в обратном направлении, и мы сгенерируем большое усилие, направленное вверх на спусковой крючок. Если бы мы увеличили масштаб нашего водяного пистолета много раз мы мог генерировать достаточно большую силу, чтобы поднимать предметы. Именно так гидроцилиндр или домкрат.Если вы брызгаете жидкость через узкую трубки на одном конце, вы можете заставить поршень подниматься медленно, но с большим силы, на другом конце:


Фото: Как увеличить силу с помощью водяного пистолета работает в обратном направлении.

Наука, лежащая в основе гидравлики, называется Паскаля принцип . По сути, потому что жидкость в трубе несжимаемый, давление должно оставаться постоянным на всем протяжении его, даже когда вы сильно нажимаете на него с одного или другого конца. Теперь давление определяется как сила, действующая на единицу площади.Итак, если мы надавим с небольшим усилием на небольшом участке, на узком конце трубки на слева, должна быть большая сила, действующая вверх на большую поршень справа, чтобы давление оставалось равным. Вот как сила увеличивается.

А как насчет энергии?

Другой способ понять гидравлику — подумать о энергии .

Мы уже видели, что гидроцилиндры могут дать нам больше силы или скорости, но они не могут делать и то, и другое одновременно — и это из-за энергии.Посмотрите еще раз на изображение водяного пистолета вверху. Если быстро надавить на узкую трубу (с небольшим усилием), поршень на широкой трубе поднимается медленно (с большой силой). Почему это могло быть? Основной закон физики называется закон сохранения энергии гласит, что мы не может сделать энергию из воздуха. Количество энергии, которое вы используете для перемещения поршня. равна приложенной вами силе, умноженной на расстояние, на которое вы ее перемещаете. Если наш водяной пистолет производит вдвое большую силу на широком конце, чем мы прилагаем к узкому концу, он может только продвинуться вдвое.Это потому, что энергия, которую мы доставляем, нажимая вниз, переносится прямо вокруг трубы до другого конца. Если то же количество энергии теперь должно перемещать вдвое большую силу, он может переместить его только на половину расстояния за то же время. Вот почему более широкий конец движется медленнее чем узкий конец.

Гидравлика на практике

Вы можете увидеть работу гидравлики этого экскаватора. Когда водитель тянет за ручку, двигатель экскаватора закачивает жидкость в узкие трубы и кабели (показаны синим), заставляющие гидроцилиндры (показаны красным) для расширения.Тараны немного похожи на велосипедные насосы, работающие в обеспечить регресс. Если сложить несколько таранов, можно сделать рука вытягивается и двигается так же, как у человека, только с гораздо большим сила. Гидравлические цилиндры эффективно служат мускулами землекопа:


Фото: В этом экскаваторе работают несколько различных гидроцилиндров. Тараны обозначены красными стрелками. и узкие, гибкие гидравлические трубы и кабели, которые питают их синим цветом.

Каждый поршень работает как водяной пистолет с дизельным двигателем, задним ходом:


Фото: Гидравлические цилиндры экскаватора крупным планом.

Двигатель прокачивает гидравлическую жидкость через одну из тонких трубок, чтобы вывести более толстый плунжер с гораздо большей силой, например:


Фото: Как гидроцилиндр умножает силу.

Вам может быть интересно, как гидроцилиндр может перемещаться как внутрь, так и наружу, если гидравлическая жидкость всегда толкает его в одном направлении. Ответ в том, что жидкость не всегда движется одинаково. Каждый ползун питается с противоположных сторон по двум отдельным трубам. В зависимости от того, как движется жидкость, плунжер толкает внутрь или наружу, очень медленно и плавно, как показывает эта небольшая анимация:


Фото: Гидравлический цилиндр движется внутрь или наружу в зависимости от того, в каком направлении течет гидравлическая жидкость.

В следующий раз, когда вы будете в пути, посмотрите, сколько гидравлических машин вы заметите. Вы можете быть удивлены, сколько ими пользуются грузовики, краны, экскаваторы, самосвалы, экскаваторы, бульдозеры. Другой пример: гидравлический кусторез на задней части трактора. Режущая головка должна быть прочной и тяжелой, чтобы прорезать живую изгородь и деревья, и водитель не может поднять или установить ее вручную. К счастью, гидравлическое управление делает все это автоматически: с несколькими гидравлическими соединениями, немного похожими на плечо, локоть и запястье, резак движется с такой же гибкостью, как человеческая рука:


Фото: Типичный гидравлический кусторез.

Скрытая гидравлика

Однако не все гидравлические машины настолько очевидны; иногда их гидроцилиндры скрыты от глаз. Лифты («лифты») хорошо скрывают свою работу, поэтому не всегда очевидно, работают ли они традиционным способом (поднимаются и опускаются кабелем, прикрепленным к двигателю) или вместо этого используют гидравлику. В небольших лифтах часто используются простые гидроцилиндры, устанавливаемые непосредственно под лифтовой шахтой или рядом с ней. Они проще и дешевле традиционных лифтов, но могут потреблять немного больше энергии.

Двигатели — еще один пример, когда гидравлику можно скрыть от глаз. традиционный электродвигатели используют электромагнетизм: когда электрический ток течет через катушки внутри них, он создает временную магнитную силу, которая толкает кольцо постоянных магнитов, заставляя вал двигателя вращаться. Гидравлические моторы больше похожи на насосы, работающие реверсом. В одном примере, называемом гидравлическим редукторным двигателем, жидкость течет в двигатель по трубе, заставляя вращаться пару тесно сцепленных шестерен, прежде чем течь обратно через другую трубу.Одна из шестерен соединена с валом двигателя, который приводит в движение все, что двигатель запитывает, в то время как другая («холостой ход») просто свободно вращается, чтобы завершить механизм. Там, где традиционный гидроцилиндр использует силу перекачиваемой жидкости для толкания гидроцилиндра вперед и назад на ограниченное расстояние, гидравлический двигатель использует непрерывно текущую жидкость для вращения вала столько, сколько необходимо.

Иллюстрация: Упрощенный гидравлический мотор-редуктор. Жидкость (желтая) втекает слева, вращает две шестерни и вытекает вправо.Одна из шестерен (красная) приводит в действие выходной вал (черный) и машину, к которой подключен двигатель. Другая шестерня (синяя) — холостая.

Зачем использовать гидравлический мотор вместо электрического? Там, где мощный электродвигатель обычно должен быть действительно большим, такой же мощный гидравлический двигатель может быть меньше и компактнее, потому что он получает свою мощность от насоса на некотором расстоянии. Вы также можете использовать гидравлические двигатели в местах, где электричество может быть нежизнеспособным или безопасным — например, под водой, или где существует риск возникновения электрических искр, вызывающих пожар или взрыв.(Другой вариант в этом случае — использовать пневматику — силу сжатого воздуха.)

,Принцип работы гидравлических приводов

Гидравлические приводы используют давление жидкости, а не давление инструментального воздуха, чтобы приложить силу к диафрагме для перемещения привода клапана, а затем для позиционирования штока клапана.

Практически во всех конструкциях гидравлических приводов для преобразования давления жидкости в механическую силу используется поршень, а не диафрагма.

Высокое номинальное давление поршневых приводов хорошо подходит для типичных давлений гидравлической системы, а смазывающая природа гидравлического масла помогает преодолеть характерное трение поршневых приводов.

Учитывая высокое номинальное давление большинства гидравлических поршней, с помощью гидравлического привода можно создавать огромные приводные силы, даже если площадь поршня небольшая.

Например, гидравлическое давление 2000 фунтов на квадратный дюйм, приложенное к одной стороне поршня диаметром 3 дюйма, создаст линейную тягу, превышающую 14000 фунтов (7 тонн)!

Помимо способности гидравлических приводов легко создавать чрезвычайно большие усилия, они также демонстрируют очень стабильное положение благодаря несжимаемости гидравлического масла.

В отличие от пневматических приводов, в которых рабочая жидкость (воздух) «эластична», масло внутри цилиндра гидравлического привода не поддается заметной деформации под нагрузкой. Если прохождение масла к гидравлическому цилиндру и от него заблокировано небольшими клапанами, привод будет надежно «заблокирован» на месте.

Это важная особенность для определенных приложений позиционирования клапана, когда привод должен надежно удерживать положение клапана в одном положении.

Некоторые гидравлические приводы содержат собственные насосы с электрическим управлением для подачи гидравлической энергии, поэтому клапан фактически управляется электрическим сигналом.

Другие гидравлические приводы полагаются на отдельную гидравлическую систему (насос, резервуар, охладитель, ручные или соленоидные клапаны и т. Д.) Для обеспечения гидравлического давления для работы.

Системы подачи гидравлического давления, однако, имеют тенденцию быть более ограниченными по физическому диапазону, чем пневматические распределительные системы из-за необходимости использования толстостенных труб (для сдерживания высокого давления масла), необходимости очищать систему от всех пузырьков газа, и проблема поддержания герметичной распределительной сети.

Обычно непрактично строить систему подачи и распределения гидравлического масла, достаточно большую, чтобы покрыть все промышленное предприятие. Еще один недостаток гидравлических систем по сравнению с пневматическими — отсутствие собственного накопителя энергии.

Системы сжатого воздуха, благодаря сжимаемости (эластичности) воздуха, естественным образом накапливают энергию в любых объемах под давлением и, таким образом, обеспечивают определенную степень «резерва» мощности на случай отключения главного компрессора. Гидравлические системы, естественно, не обладают этой желательной чертой.

Гидравлические приводы

Гидравлический поршневой привод прикреплен к большой запорный клапан (используется для включения / выключения управления, а не дросселированием) появляется в следующей фотографии.

Над круглым корпусом клапана можно увидеть два гидроцилиндра, установленных горизонтально.

Как и показанный ранее пневматический поршневой клапан, этот привод клапана использует зубчатый механизм для преобразования линейного движения гидравлических поршней во вращательное движение для поворота трима клапана:

Hydraulic Actuators Hydraulic Actuators

Особенность, не очевидная в этом На фотографии показан ручной гидравлический насос, который можно использовать для ручного приведения в действие клапана в случае отказа гидравлической системы.

Также читайте: Вопросы и ответы по гидравлической системе

.

Принцип работы гидравлической системы

Принцип работы гидравлической системы — Мы, безусловно, знакомы с вышеуказанным тяжелым оборудованием. На этом оборудовании много тяжелой работы. Это оборудование предназначено для подъема тяжелых грузов или для копания. В качестве «вилочного» привода используется гидравлическая система. Гидравлическая система — это система, в которой для выполнения простой работы используется энергия жидкости. Гидравлическая система представляет собой применение закона Паскаля.

Гидравлическая машина, подает гидравлическую жидкость под давлением к гидравлическому двигателю или гидроцилиндру для выполнения определенных работ. Гидравлические двигатели создают вращательное движение, которое можно использовать для вращения тяжелых грузов, таких как шкивы, цепи и т. Д. Гидравлические цилиндры производят возвратно-поступательные движения, которые широко применяются в тяжелом оборудовании, водяных затворах (например, на плотинах), а также в больших клапаны. Гидравлическая жидкость регулируется клапаном управления потоком и проходит через гидравлическую трубку.

Принцип работы гидравлической системы

Гидравлическую систему можно просто пояснить на картинке выше.Первое изображение показывает, что при использовании гидравлической системы требуется меньшее усилие (F), чтобы поднять больший груз.

На втором рисунке поясняется принцип использования гидромотора на шкиве. И требуется меньший крутящий момент, чтобы можно было вращать шкивы с большей нагрузкой (большой крутящий момент).

    Двигатель T = Двигатель T • (Двигатель V / V pompa )

Гидравлический контур

Гидравлическая система состоит из гидравлических насосов, трубопроводов, регулирующих клапанов, баков для гидравлической жидкости, фильтров, приводов (цилиндров или гидравлических двигателей) и других устройств в качестве дополнения.

Цепь гидравлической системы

На рисунке выше показана гидравлическая система, которая приводит в движение поршень гидроцилиндра. Собранная в резервуаре рабочая жидкость перекачивается гидравлическим насосом, так что она имеет определенное давление. Жидкость поступает к электромагнитному клапану, который регулирует движение гидроцилиндров. Если положение цилиндра удлиняется (продвигается вперед), электромагнитный клапан перемещается влево, поэтому жидкость может толкать поршень вперед. Когда электромагнитный клапан направлен вправо, гидроцилиндр втягивается.Во время движения в цилиндре происходит утечка гидравлической жидкости. Эта жидкость возвращается в резервуар по специальному трубопроводу.

Гидравлический контур с приводом от гидромотора

Приведенная выше система мало чем отличается от гидравлической системы с поршневым приводом. Просто здесь исполнительный механизм представляет собой гидравлический двигатель для использования крутящего момента (крутящего момента). Электромагнитный клапан регулирует направление вращения гидравлического двигателя. В отличие от более сложных электродвигателей, требующихся для вращения в обоих направлениях, гидравлические двигатели легче применять, когда необходимо вращаться в обоих направлениях.

Нравится:

Нравится Загрузка …

Связанные

.Гидравлический блок питания

: эта электронная книга ответит на все вопросы о гидравлическом блоке питания

Target Hydraulics Target Hydraulics
  • Дом
  • О нас
    • О нас
    • Компания
    • Гидравлическая безопасность
    • Сертификация
    • Блог
  • Продукты
      • Target Hydraulics Target Hydraulics Гидравлический блок питания

        • Блоки питания переменного тока
        • Гидравлический блок питания постоянного тока
        • Мини-гидроагрегаты
      • Target Hydraulics Target Hydraulics Гидравлический блок питания

        • Блоки питания переменного тока
        • Гидравлический блок питания постоянного тока
        • Двухротационные блоки питания
        • Промышленные блоки питания
        • Гидравлический насос и двигатель
      • Target Hydraulics Target Hydraulics Блок гидравлического коллектора

        • Коллекторы с центрированным литьем
        • Центральный гидравлический блок
        • Патронный вентильный блок
        • Гидравлические блоки по индивидуальному заказу
        • Гидравлический подъемный клапан
      • Target Hydraulics Target Hydraulics Гидравлические клапаны картриджа

        • Картридж электромагнитного клапана
        • Гидравлические клапаны потока
        • Гидравлический клапан давления
      • Target Hydraulics Target Hydraulics Гидравлические компоненты

.
Опубликовано в категории: Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *