Газобетонные блоки толщина: Толщина стен из газобетона — какая должна быть?

Толщина стен из газобетона — какая должна быть?

Толщина стен из газоблока непосредственно влияет на тепло в доме. Чем толще газобетонные стены, тем комфортнее в помещении зимой. Казалось бы, что может быть проще: делай стену шире — и забудь про холода. Но есть и обратная сторона медали: большая ширина стены из газобетона означает и использование большого количества стройматериалов, а значит, рост расходов.

Решать, какая должна быть толщина кладки из газоблока, необходимо еще на стадии проектирования жилища, когда закладываются его главные параметры. При этом важно ориентироваться на критерии, от которых зависит теплопроводность стен.

Теплоизоляционные характеристики газобетона

Газобетонные блоки входят в категорию ячеистых бетонов. Имеют низкие показатели теплопроводности по сравнению с большинством других стеновых материалов. Такой уровень — залог того что в помещении будет тепло зимой зимой и комфортно летом.

Низкой теплопроводностью блоки из газобетона обязаны пористой структуре. В процессе производства материала пузырьки газа равномерно распределяются внутри, тем самым снижая его способность отдавать тепло.

Пористая структура, с одной стороны, наделяет газоблоки преимуществами, но с другой — ухудшает их прочность. Прочность газобетона на сжатие в зависимости от марки составляет 15–50 кг/см2. Блоки с низкой плотностью, например, D200, имеют минимальную теплопроводность. Однако использовать такой газоблок для несущих стен нельзя из-за ограниченной несущей нагрузки: как правило, он применяется в качестве утеплителя.

Выбирая размер подходящего блока газобетона для кладки стен дома, уделяют внимание и теплопроводности, и прочности на сжатие.

Рассчитывая оптимальное значение толщины стен объекта из газобетона, важно помнить о влиянии влаги на теплопроводность. Намокшие блоки хуже удерживают тепло, поэтому нужно защищать их от осадков фасадными материалами: кирпичом, сайдингом, штукатуркой.

Соотношение прочности газоблоков и этажности зданий

Нормативы по возведению стен здания из газобетонных блоков указаны в СТО 501-52-01-2007. В соответствии с этим документом при строительстве зданий нужно учитывать прочность газоблоков на сжатие.

Определить, какой должна быть прочность материала для постройки стены из газобетонных блоков, поможет таблица:

Этажность здания Одноэтажное Двухэтажное Трехэтажное
Прочность газоблоков   со сборно- монолитными или плитами перекрытия с монолитными перекрытиями со сборно- монолитными или плитами перекрытия с монолитными перекрытиями
В 2,0 + – ! – ! – !
В 2,5 ++ +
В 3,5 +++ ++ + + +
В 5,0 +++ +++ ++ ++ +

Условные обозначения:

«+» — материал подходит для использования;

«++» — подходит с запасом;

«+++» — подходит с большим запасом;

«–» — не рекомендуется;

«– !» — категорически не рекомендуется.

По плотности выделяют теплоизоляционные марки газобетона (до D350), конструкционные (от D700) и комбинированные — конструкционно-теплоизоляционные (D400, D500 и D600).

Оптимальную плотность газоблоков определяют с учетом назначения постройки. Например, при определении толщины стен возводимого гаража из газобетона или подсобного помещения, для которого качественная теплоизоляция не важна, уделяют внимание только прочности.

Для многих регионов России оптимальным стройматериалом считаются газоблоки марок D400 и D500. Они достаточно прочны при низкой теплопроводности. Например, теплопроводность блоков ЭКО D500 B3,5 составляет 0,12 Вт/м* °С.

Кроме того, выбирая газобетон для наружных стен, важно оценивать его морозостойкость. Качество изготовленный материал способен перенести до сотни циклов заморозки-разморозки без каких-либо отрицательных последствий для своих характеристик и эксплуатационных свойств.

Толщина газобетонной стены: стандарты и рекомендации

Показатели теплозащиты зданий, которые обеспечивают формирование благоприятной температуры в помещении и способствуют экономичному расходу энергии, можно найти в СНиП 23-02-2003. Документ содержит правила для объектов с постоянным проживанием и отоплением.

Рекомендуемая толщина возводимых стен из газобетона должна вычисляться при проектировании дома. Определиться с этим параметром помогает учет следующих критериев:

  • устойчивость стройматериала к морозу, влаге, коррозии, высокой температуре;
  • траты на отопление;
  • защита от излишнего увлажнения.

Если у вас нет желания обращаться за составлением теплотехнического расчета к специалистам, можно выполнить его самостоятельно, ориентируясь на средние показатели. Этого достаточно, чтобы в доме было уютно и тепло.

По рекомендациям производителей и на основе статистики установлены следующие стандарты подбора размеров (толщины) газоблока для строительства дома:

  • При постройке домов сезонного проживания толщина стены с кладкой из газобетонных блоков может начинаться от 200 мм. Но специалисты рекомендуют остановиться на 300 мм.
  • При устройстве цоколя и подвала следует выбирать газоблоки толщиной 400 мм, марки D500 или D600, класса В3,5-В5.
  • Для межквартирных перегородок рекомендована толщина газобетона 300 мм, для межкомнатных — 100-150 мм.
  • Минимальная толщина, которую может иметь несущая стена на основе прошедшего автоклавирование газобетона, — 375 мм, самонесущей — 300 мм. Для сравнения: наименьшая толщина стен из пеноблоков при равнозначной теплопроводности конструкций должна быть в 1,6 раза больше, т. е. для несущих — 600 мм, для самонесущих — 480 мм.

 

Расчет оптимальной толщины кладки из газобетонных блоков

конструкций должна быть в 1,6 раза больше, т. е. для несущих — 600 мм, для самонесущих — 480 мм.

В упрощенном виде толщина несущей стены, строящейся из газобетона, рассчитывается по следующей формуле:

Т = Rreg*λ

Теплопроводность

λ — коэффициент теплопроводности. У каждой марки блоков этот коэффициент свой. Необходимый показатель в конкретном случае можно выбрать в таблице ниже: в ней приведены общие значения по ГОСТ 31359-2007. Также его можно найти в протоколах испытаний завода-изготовителя стройматериалов.

Марка по плотности Коэф. теплопроводности в сухом состоянии, Вт/м*°С
D400 0,096
D500 0,12
D600 0,14
D700 0,17

 

Сопротивление передаче тепла

Rreg — сопротивление передаче тепла, которым обладают стены из газоблока. Данный параметр можно вычислить, умножив коэффициент a (0,00035) на Dd (градусо-сутки периода отопления, ГСОП) и прибавив к полученному числу коэффициент b (1,4).

Данные коэффициенты представлены в СНиП 23-02-2003. ГСОП представляют собой разницу между тем, какая температура за окном и в помещении наблюдается в течение отопительного периода, умноженную на длительность сезона отопления. Эти значения можно посмотреть в СНИП 23-01-99 и пособии «Строительная климатология».

Но проще найти нужное значение в таблице (не для всех городов):

Город Необходимое сопротивление передаче тепла, м2*°С/Вт
Москва 3,28
Пермь 3,64
Омск 3,82
Краснодар 2,44
Санкт-Петербург 3,23
Екатеринбург 3,65
Казань 3,45
Красноярск 4,84
Челябинск 3,64
Новосибирск 3,93
Волгоград 2,91
Якутск 5,28
Сочи 1,79
Магадан 4,33
Тверь 3,31
Уфа 3,48

Если использовать формулу, получится, что толщина блока для дома, расположенного в Москве, должна составлять минимум 44 см при применении газобетона D500. При использовании газоблоков D400 показатель составляет 37,5 см.

Для северных регионов расчетные значения толщины стен равны 74–77 см. При строительстве домов из газобетона в таких условиях рекомендуется сооружать многослойную конструкцию.

Толщина стены из газоблоков и звукоизоляция

За счет ячеистой структуры газоблоки прекрасно гасят звуковую энергию. Стены дома из этого материала хорошо ограждают от уличного шума. Разобраться, какой толщины должна быть стена из газобетона для комфортной тишины, помогут следующие нормы звукоизоляции:

                    • межквартирные стены и перегородки — от 52 дБ;
                    • стены между жилыми помещениями и магазинами — от 55 дБ;
                    • перегородки между комнатами — от 43 дБ;
                    • перегородки между комнатой и санузлом — от 47 дБ.

При возведении межкомнатных перегородок размером 100–150 мм рекомендуется использовать блоки D600. Покрытые гипсовой штукатуркой такие конструкции имеют индекс изоляции звука 43 дБ — в пределах нормы. Конструкции толщиной 300 мм обеспечивают изоляцию от шума в 52 дБ. Эффективно уменьшить уровень шума помогает внутренняя отделка гипсокартоном.

Факторы снижения энергоэффективности

Когда вычисляется толщина стены, строящейся из газобетонных блоков для дома или другого объекта, речь идет о цельном газоблоке. На практике при строительстве здания используют отдельные элементы, которые соединяют друг с другом бетонными или растворными швами. Получается большое количество стыков — возможных «мостиков холода». Кроме того, в стеновую конструкцию укладывают арматуру, формируют армирующий пояс — это приводит к повышению теплопроводности.

Чтобы сохранить высокие изоляционные характеристики газобетонной кладки, необходимо придерживаться следующих правил:

                    • Скрепляющие растворы нужно готовить из сухих клеевых составов, предназначенных специально для газобетона. Такие смеси состоят из цемента, минеральных компонентов и полимерных модифицирующих добавок. Если работы проводятся зимой, в составе смеси должны быть противоморозные добавки. Для минимизации потерь тепла рекомендуется делать слой клеящего шва толщиной 2–3 мм. Если в попытках сэкономить заменить специальный состав раствором цемента и песка, результаты будут не самыми приятными: увеличится размер шва, что приведет к проблемам с «мостиками холода».
                    • Через стены уходит до 25% тепла. Основная масса теплопотерь связана с окнами, крышей и фундаментом. Поэтому этим проблемным зонам требуется уделять особое внимание и тщательно обустроить теплоизоляцию.
                    • В населенных пунктах с холодным климатом желательно утеплять стены снаружи.

Многослойные конструкции — альтернатива увеличению толщины стен

Для комфортного проживания без больших затрат на отопление в доме из газобетонных блоков можно использовать не только метод увеличения толщины стен. Еще один эффективный способ — возводить конструкции из двух или трех слоев с применением утеплителя и отделочного материала.

Популярные способы создания таких конструкций

  • Облицовка кирпичом без утепления. При этом между слоями оставляют вентиляционный зазор. Кирпичная кладка осуществляется по стандартной технологии с применением гибких связей.
  • Оштукатуривание. В случае с двухслойной конструкции помимо слоя штукатурки используется утеплитель. Для утепления чаще всего используется полужесткая базальтовая вата. Ее толщину следует подбирать в соответствии с СП 23-101-2004.
  • Облицовка с утеплителем. В этом случае возводится 3-слойная конструкция. Используется вентфасад с утеплителем или отделка кирпичом с дополнительным утепляющим слоем между внутренней и внешней стеной.

Наружное утепление дома со стенами из газобетона необходимо выполнять комплексно. При этом важно учитывать изоляцию цоколя и фундамента, создание отмостки. При монтаже нескольких слоев следует обращать внимание на то, что коэффициент их паропроницаемости должен идти по нарастающей изнутри наружу. В таком случае пар не будет накапливаться в ячеистых блоках и беспрепятственно выйдет на улицу.

Вывод

При строительстве дома из газобетона следует придерживаться такой толщины стен, чтобы обеспечивалась низкая теплопередача при высокой прочности конструкции. Принять во внимание оба эти фактора позволяет учет таких показателей при выборе газоблоков, как класс прочности, плотность и коэффициент теплопроводности. Большое значение для правильного расчета толщины стены из блоков газобетона имеют и климатические условия региона.

Каких размеров должны быть газоблоки для несущих стен

Газобетонные сооружения все чаще встречаются на современном строительном рынке. Этот легкий надежный материал имеет ряд преимуществ по сравнению с обычным бетоном или кирпичом. Прежде всего стоит отметить отличные теплоизоляционные качества за счет добавления алюминиевой крошки, пластификаторов, насыщающих состав мельчайшими пузырьками воздуха. То же достоинство имеет обратную сторону – газоблоки обладают сравнительно меньшей прочностью. Отсюда необходим точный подбор оптимального размера газобетонных блоков с учетом не только теплопроводности, но и прочности.

Оглавление:

  1. Описание разных видов
  2. Габариты блоков из газобетона
  3. Необходимая толщина

Классификация газобетона

Выпускаемые размеры газобетонных блоков, как правило, стандартные: длинна – 60 см, высота – 20-30 см. А ширина может варьироваться в зависимости от потребностей в строительстве – от 7,5 до 50 см.

По плотности газоблоки классифицируют на марки – чем выше ее значение, тем менее пористая, но более прочная структура кирпича, а также увеличивается теплопроводность. Существуют марки D300-D1200.

Исходя из прочностных характеристик, кирпичи подразделяются на:

  • конструкционные – высокопрочный материал марки D900-D1200;
  • конструкционно-теплоизоляционные – прочные кирпичи марок D500-D900, используемые при строительстве домов не более трех этажей;
  • теплоизоляционные – плотностью D350-D500, более пригодны к устройству перегородок.

Различают газобетонные блоки по форме:

  • классические прямоугольные;
  • Т-образной формы, армированные газобетонные балки перекрытий;
  • U-образные – при построении дверных и оконных проемов;
  • различные вариации – дугообразной формы, с барельефами и прочие.

Стоит отметить некоторые разновидности газоблоков в зависимости от места их применения:

1. Перегородочные – тонкие блоки размером до 15 см в ширину, легко употребляются при возведении межкомнатных перегородок, обустройства коммуникаций. Просты в обращении и финишной обработке.

2. Ячеистые – обладают достаточной удельной прочностью для устройства несущих конструкций. Соответствуют СТО по всем показателям, сейсмоустойчивы.

3. Автоклавного твердения – прочные по своим характеристикам блоки, морозостойкие, с хорошими теплоизолирующими качествами. Благодаря автоклавной обработке, стоимость такого материала увеличивается.

Какой блок использовать для несущих конструкций?

Универсальные стеновые газоблоки для кладки несущих стен используют ячеистые, стандартной прямоугольной формы, размером 20х30х60 см.

Применительно к каркасным конструкциям, по величине прочности на сжатие, используются несколько классов газобетона для разной этажности здания:

  • В3,5 – пригоден для несущих стен 4-5-этажных домов;
  • В2,5 – применяется, если высота дома не превышает 3 этажа;
  • В2,0 – для строительства зданий не выше 2 этажей.

Что касается самонесущих стен и перегородок, здесь требования несколько иные: к стенам высотой более трех этажей – блок класса прочности В2,5, до 3-х этажей – В2.

Несущие перегородки жилых домов, как правило, возводят из автоклавного газобетона плотностью D400-D600. Такого показателя вполне достаточно, чтобы обеспечить необходимую прочность, теплозащиту и звукоизоляцию.

Нередко при строительстве используют неавтоклавные газоблоки любой марки. Их стоимость сравнительно ниже, чем у автоклавных, а также прочностные характеристики, из-за отсутствия специальной обработки, снижаются. Кроме того, имеют высокую удельную массу.

Неавтоклавный газобетон чаще употребляется в качестве строительного материала для внутренних перегородок, обозначения проемов, утеплителя по периметру с наружной стороны дома. Такие блоки допускаются к применению относительно несущих конструкций, но тогда строение должно быть величиной не более одного этажа.

Стены из газобетона получаются более легковесными, чем из аналогичных материалов, что поможет сэкономить на возведении тяжелого фундамента.

Поскольку газобетон не обладает высокой прочностью, многие строители рекомендуют между перекрытиями каждого этажа возводить укрепляющую конструкцию – армирующий пояс.

Оптимальная толщина

Основополагающий документ, определяющий правила строительства из ячеистого газобетона – это СТО 501-52-01-2007. Согласно этому нормативному документу размеры газобетонной конструкции рассчитывается с учетом несущей способности стен, их взаимодействия друг с другом. Не допускается сооружение строений из газоблоков выше пяти этажей или же 20 м.

Толщина стен зависит от требований прочности и теплосопротивления, предъявляемых к конструкции. Согласно принятым правилам и нормам, величина толщины подбирается с учетом типа строения, климатической зоны расположения:

1. Теплый климат, легковесные постройки типа гаража, летней кухни предполагают использование газоблоков 20 см шириной. Они же используются в качестве утеплителей.

2. Наиболее целесообразно относительно климата нашей полосы использование в жилых домах для несущего каркаса и перегородок блоков размером 30 см.

3. Межкомнатные перегородки возводятся из материала шириной 10-15 см, плотностью D300, так как здесь основополагающую роль играет звукоизоляция.

4. При межквартирном строительстве используются кирпичи толщиной 20-30 см.

Применительно к домам с круглогодичным проживанием, исходя из средней зимней температуры, упрощенным способом подбирается минимальная толщина стен, перегородок:

Плотность газобетона, кг/м3 Толщина, при средней зимней температуре воздуха, см
-20 °C-30 °C-40 °C-50 °C
50015202530
60020253540
70025304050

какая оптимальная, минимальная толщина, без утепления.

На строительном рынке присутствует огромное многообразие стеновых материалов. На их фоне выгодно отличается автоклавный газобетон – за счёт низкой теплопроводности, точности параметров, позволяющих вести тонкошовную кладку и экологичности. В первую очередь частные застройщики, которые планируют строительство без проекта (законом это не запрещено), стараются выяснить, какова оптимальная толщина стен из газобетона, если учесть его более низкую, чем у других материалов, прочность. Разберёмся, что по этому поводу говорится в нормативных документах.

На выбор толщины стены влияют не только теплоизоляционные качества материала, но и его прочностные характеристики. При этом каждый заказчик старается оставаться в рамках выделенного на строительство бюджета. С увеличением плотности блоков растёт и их прочность, и цена, но при этом возрастает и коэффициент теплопроводности, что делает стены менее тёплыми. И всё же, прочность на первом месте, ведь дом постоянного проживания – это капитальное строение с минимальным сроком службы 50-70 лет.

В продаже для малоэтажного строительства предлагаются блоки в трёх основных вариантах прочности:

  1. Класса В3,5 – могут применяться для возведения несущих стен в несколько этажей, с нагрузками в виде монолитных перекрытий или навесных фасадов.
  2. Класса В2,5 – можно построить трёхэтажный дом, но только не в сейсмоопасной зоне, и без дополнительных нагрузок.
  3. Класса В2,0 – из него можно строить дома максимум в два этажа, с деревянными перекрытиями.

Если блоки имеют прочность меньше В2, это уже теплоизоляционный материал, а не теплоизоляционно-конструкционный, и использоваться для несущих стен дома не может. Одному и тому же классу прочности могут соответствовать блоки с разной плотностью, что зависит от способа из твердения – гидратационного или синтезного. Если говорить о втором варианте, то прочность изделий может регулироваться за счёт времени выдержки в автоклаве.

Мнение эксперта
Виталий Кудряшов

строитель, начинающий автор

Выбирая материал для строительства дома, интересуйтесь в первую очередь классом прочности, а потом уже обращайте внимание на плотность. Например, прочность В3,5 могут иметь, как автоклавные блоки D 600 и 700, так и неавтоклавные D800. То есть, если вы выбираете для строительства блоки гидратационного твердения, их плотность должна быть выше.

Строительство с применением блоков из ячеистых бетонов осуществляется согласно стандарту 501*52-01*2007. Вот его основные требования, касающиеся прочностных характеристик стенового материала:

  1. В зданиях до 5 этажей для несущих стен должны применяться блоки только автоклавные, класса В3,5. Если для их кладки используется раствор, марка должна быть не менее М100.
  2. В зданиях до 3-х этажей следует использовать блоки В2,5, раствор М75.
  3. В одно- двухэтажных зданиях могут применяться блоки В2 на растворе М50.

В нормах, как видите, внимание уделяется только прочности, и ничего не говорится о том, какой должна быть толщина газобетонных блоков. А всё потому, что в каждом случае требуется индивидуальный расчет — без него цифры будут всего лишь приблизительными. Кроме среднезимних температур в расчёте должен учитываться ещё и конструктив стен, который тоже может быть разным. Варианты представлены в этом же нормативном документе, и о них пойдёт речь далее.

Перед тем, как рассчитать толщину стены из газобетона, проектировщики берут во внимание её конструктив. По типу кладки она может быть:

  1. В один блок. В таком случае, ширина блока соответствует толщине стены. Подбор зависит климатических условий строительства. Для юга это обычно 250-300 мм, для средней полосы 375-400 мм. Для северных регионов толщина однослойных стен составляет 500 мм и более.
  2. Толщиной в два блока, которые могут быть как одинаковыми, так и разнотипными. Такие стены проектируют в регионах, где максимальной толщины газоблока (500 мм) недостаточно, чтобы обеспечить надлежащее теплосопротивление ограждающих конструкций.
Мнение эксперта
Виталий Кудряшов

строитель, начинающий автор

На заметку: В таком случае, толщина стены 600 мм может складываться из двух блоков шириной 300 мм. Чтобы получилось 550 мм, толщина газобетонных блоков для наружных стен без утеплителя составляет 300 и 250 мм. Как вариант, стену 600 мм выкладывают из однотипного блока шириной 300 мм с перевязкой ложковых рядов тычковыми.

Газобетонные стены бывают и многослойными — в таком случае их толщина определяется совокупностью толщин всех слоёв. Несущие стены могут быть спроектированы с кирпичным слоем, который может находиться как снаружи, так и с внутренней стороны. В частных домах чаще всего встречается первый вариант, но второй тоже неплох, учитывая, что кирпичная кладка не только прекрасно защитит газобетон от проникновения паров из помещений, но ещё и позволит выполнить интересный дизайн интерьеров.

При использовании кирпича изнутри, толщина стены складывается из ширины блока (например, 300 мм) и ширины кирпича (120 мм). Когда кирпич монтируется снаружи, к этой сумме прибавляется ещё ширина вентилируемого зазора 40 мм. Итого 460 мм. Если между ними будет утеплитель, соответственно, нужно учесть и его толщину.

При использовании утеплителя, стена тоже считается многослойной. Теплоизоляция может закладываться как под кирпичную кладку, так и под навесные облицовочные материалы, монтируемые по обрешётке. В таких случаях общая толщина стены состоит из толщин кладки и утеплителя, вентзазора и высоты профиля каркаса.

Мнение эксперта
Виталий Кудряшов

строитель, начинающий автор

Примечание: Толщина облицовочного материала обычно исчисляется в миллиметрах, поэтому в расчёт не берётся.

Утеплитель может монтироваться на фасад без дополнительных конструкций. В этом случае он служит основанием под штукатурку, которая производится по предварительно усиленному стеклосеткой клеевому слою. Общая толщина такой стены составляет 360-510 мм, а её способность к сопротивлению передачи тепла рассчитывается исходя из суммарных характеристик каждого слоя – в том числе и штукатурного.

Несмотря на то, что дачный дом не используется круглый год, решать какой толщины выбрать газобетонный блок для наружной стены, нужно тоже исходя из климатических особенностей местности. Единственно, можно не предусматривать ни утепления, ни даже наружной облицовки, а просто оштукатурить или покрасить кладку снаружи.

Обратимся к типовым проектам дачных домов (обычно их ориентируют на среднюю полосу России), и посмотрим, какая необходимая толщина стены из газоблоков является комфортной для частного и дачного дома.

Находим на одном из сайтов проект AS-2148, и видим, что он в нём стены имеют толщину 400 мм. В другом проекте, под названием «Бернс», толщина заложена 300 мм. Третий вариант, под кодом id1165gcl, предусматривает для дачного дома толщину кладки 375 мм. Для сравнения: в проекте жилого дома id284ge (у этого же проектировщика), блок заложен шириной 400 мм. Так что разница невелика.

Меньше 300 мм (250 или даже 200) можно сделать только стены дачного дома в южных районах. На севере у стен должна быть толщина не менее 500, или же кладку придётся вести в два блока.

Мифы – вещь непредсказуемая, и немало их крутится вокруг газобетона. Один из них касается того, что если газоблочные стены не утеплить, ТР (точка росы) окажется в стене и она будет промерзать и разрушаться. Точкой росы в строительстве называется граница температур, на которой вода из газообразного состояния преобразуется в воду – то есть, происходит конденсация.

  • В отапливаемом здании тепловой контур формируется за счёт стен, задача которых – защищать дом от любых атмосферных воздействий. В помещениях вода присутствует всегда: только один человек испаряет около 4-х литров воды в сутки, не говоря уже о семье. А ещё готовка, стирка, банные процедуры.
  • Часть паров удаляется при помощи вентиляции и проветривания, а часть проникает в конструкции, стремясь выйти наружу. В том месте, где поток пара встречается с фронтом холода, он и начинает конденсацию. Что можно считать фронтом холода?
  • Прежде всего, это более плотные, чем газобетон, отделочные материалы (они всегда будут более холодными), которые смонтированы без отступа. Это может быть кирпичная или плиточная облицовка; цементная штукатурка не предназначенная для ячеистых бетонов; полимерные утеплители, не имеющие достаточной толщины.
  • Поэтому так важно, чтобы для выхода пара не было никаких препятствий, для чего материалы либо должны иметь более высокий коэффициент паропроницаемости, либо монтируются на относе (с отступом 4-5 см).
  • Во втором случае вентиляция осуществляется через зазор, но для этого обязательно предусматриваются технологические щели для обмена воздухом. В кирпичной облицовке для этого в каждом третьем ряду вертикальные швы оставляют незаполненными раствором, над финишным рядом оставляется зазор. Это позволяет не запереть влагу внутри, и в этом случае, стены никогда не будут промерзать.

Влажность вообще негативно влияет на теплоизолирующую способность газобетона, поэтому при строительстве домов из этого материала необходимо соблюдать несколько простых требований:

  1. Не забывать про устройство горизонтальной гидроизоляции на всех уровнях монтажа конструкций: под фундаментом; между фундаментом и цокольной стенкой; между цоколем и стеной дома.
  2. Избегать образования мостиков холода: стремиться к тому, чтобы материал был наиболее качественным, что позволит делать тонкие клеевые швы; заливать перемычки не по съёмной опалубке, а по U-блокам, или использовать готовые заводские изделия из газобетона.
  3. Начинать наружную отделку только после окончания внутренних работ, сопровождающихся «мокрыми» технологиями.
  4. Если для утепления используется пенопласт, подождать несколько месяцев, пока из кладки испарится начальная влага.
  5. Не оставлять фасад вообще без отделки.

Чем ниже зимой температура воздуха, тем ниже влажность как на улице, так и в помещении. Так что, зимой вероятность конденсирования пара невелика. Если в процессе возведения дома все вышеозвученные требования выполнены, по поводу промерзания стен точно переживать не придётся.

особенности кладки, толщина, армирование и отделка

Достоинства и недостатки стен из газосиликатных блоков

  • Крупные размеры блоков позволяют возводить стены из газосиликата гораздо быстрее по сравнению с, например, классическим кирпичом
  • Газосиликат имеет малый вес
  • Хорошо обрабатывается
  • Является негорючим материалом

Одним из важных недостатков газосиликата явлется его гидроскапичность, что влечет за собой необходимость в организации его защиты от влаги, как на этапе строительства, так и в дальнейшей эксплуатации.

Толщина стен из газобетона также считается одним из основных недостатков данного материала.

Необходимость в дополнительном армировании и перемычках над дверными и окнонными проемами

Толщина стен из газобетона

Перед началом работ по сооружению газобетонных конструкций необходимо произвести расчеты на прочность. Оптимальная толщина газобетонной стены определяется, исходя из необходимого уровня теплоизоляции и прочности сооружения.

Для определения толщины стены из газобетонных блоков приняты следующие нормы:

  • Минимальная толщина несущих стен для сооружений с сезонным проживанием — 200 мм (блок D300 – D400)
  • Для возведения подвала и цокольного этажа рекомендуется применять газобетон толщиной 400 мм (блок D600, класс B3,5)
  • Межкомнатные перегородки 100-200 мм (D300)

Исходя из формулы Т = Rreg*λ, для несущей конструкции, возводимой в Москве и области,  толщины стены из газобетона должна быть не менее 44 см (при использовании блока D500) и 37,5 см (для блока D400).

Толщина стены в зависимости от характера постройки:

  • Хозблок или гараж, дачный домик достаточно будет 20 см
  • Для круглогодичного проживания данный показатель увеличивается в 2 раза. Толщина несущих стен для сооружений, используемых для круглогодичного проживания, рассчитывается с учетом теплопроводности материала. Толщина может быть или увеличена, исходя из полученных расчетов, или быть аналогичной летнему варианту, но дополнительно утеплена.
  • При строительстве сооружения более 1 этажа, толщина стен может достигать 30-40 см
  • Несущие стены должны быть шире внутренних перегородок из газобетона на 10-15 см

Как выполнять возведение газобетонных стен своими руками

Как выкладывать первый ряд — особенности


Важно! Газобетон является гидроскапичным материалом и при повышенной влажности снижается качество его свойств. Поэтому важно на этапе подготовки к кладке произвести работы по отсечной горизонтальной гидроизоляции. Чаще всего для этого применяется рубероид или подобный рулонный материал, так же подойдет полимерный раствор.


Качество будущей конструкции зависит от того насколько хорошо выложен первый ряд кладки, поэтому важно произвести выравнивание поверхности при помощи цементного раствора и кельмы (или гребенки), оценить при помощи строительного уровня отсутствие каких-либо перекосов.

Кладка газобетона может производится в один или в два ряда. При двухрядной кладке можно использовать обычный цементный раствор, так как мостики холода будут перекрываться вторым рядом. При одноблочной кладке специалисты рекомендуют использовать специальный клеевой раствор, замесить его в соответствием с инструкцией производителя. Консистенция кладочного раствора должна быть похожа на густую сметану. Наносят его специальным ковшом или мастерком, после чего выравнивают гребенкой. Если клей выступает, его удаляют мастерком, но ни в коем случае не затирают.


Важно! Толщина шва между фундаментом или перекрытием и первым рядом кладки должна быть не менее 20 мм! Толщина шва между рядами должны быть не более 3 мм, иначе это ухудшит тепло- и звукоизоляционные качества кладки.


Каждый новый ряд кладки осуществляется с одного и того же угла. Ряды относительно друг друга должны укладываться с перевязкой (то есть со смещением 8-10 см). Торцы блоков бывают гладкими (бюджетный вариант) и с пазами. Во втором случае нет необходимости из промазывать раствором, если же блоки гладкие, на их стыки необходимо наносить клей.

В конце ряда укладывают доборный блок, края которого прмазывают клеевым раствором с двух сторон. Обрезка блоков производится специальной ножовкой. После кладки необходимо произвести обработку поверхности специальным рубанком. По окончании кладки ряда его ровность проверяют строительным уровнем.


Важно! Возведение стен последующих тажей недопустимо без установки междуэтажного перекрытия.


Для того, чтобы защитить блоки от дождя, распаковывать их рекомендуется по мере необходимости, выложенные ряды — прикрывать пленкой. Так же выжно соблюдать температурный режим, оптимальным считается диапазон от +5 до +35 С.

Кладка газосиликатного блока Ytong — видео

 

Инструменты , необходимые для кладки газосиликатных блоков:
  • штроборез
  • строительный уровень
  • мастерок
  • рубанок
  • каретка для клеевого раствора
  • молоток из резины
  • ножовка
  • терка с металлическими зубьями
  • угольник

Армирование газосиликатной кладки

Для укрепления кладки как правило используют арматуру не менее 8 мм, для повышения качества ее предварительно обрабатывают антикоррозийным составом.

Далее в блоках при помощи штробореза прорезают специальные канавки, глубина которых должны быть достаточной для полного погружения стержня. Перед укладкой арматуры штробу заполняют клеем, убирая излишки мастерком. По технологии в блокам до 200 мм проделывают штробу в 1 ряд, более 200 мм — в два ряда с одинковым расстоянием от краев блока.

Первый пояс арматуры рекомендуется укладывать в первом же ряду газосиликатной кладки, далее повторять его через каждые 3-4 ряда.

Обязательно усиливают арматурой:
  • верхний ряд кладки, на который будет опираться перекрытие
  • ряды под оконными проемами
  • дополнительно арматурой можно укрепить углы сооружения

Для однородности кладки дверные и оконные проемы устраивают при помощи  U-образные блоки, в которые укладыют армирующие конструкции, например ж/б балки.


Обратите внимание! Армирование газосиликата своими руками без расчета по СНиП применяется для уменьшения риска образования трещин, и не может увеличить несущую способность конструкции.


Наружняя и внутренняя отделка газосиликатных стен

Для того, чтобы стена из газобетонных блоков прослужила как можно больше, ее обязательно необходимо защитить от воздействий внешней среды, особенно от осадков. В качестве отделочного материала для газобетона с внешней стороны как правило применяют:

  • штукатурку с высокой адгезией
  • кирпич (важно знать, что при отделке кирпичом необходимо проделывать вентиляционные отверстия и защищать газобетон гидроизоляцинным материалом, чтобы избежать отсыревания блоков)
  • сайдинг
  • в условиях сурового климата дополнительно используют утеплитель
Схема внешней отделки отделки стены из газобетона кирпичом

Для внутренней отделки чаще всего применяют гипсокартон или штукатурку с последующей покраской или поклейкой обоев. Отделка газобетона должны быть осуществлена таким образом, чтобы не нарушить его главное преимущество — способность «дышать».

Поэтому внутреннюю отделку газобетонных стен производят паронепроницаемыми материалами, а внешнюю — наоборот (варианты отделки газобетона).

Толщина стен из газобетона в разных регионах России: расчет, формула

Благодаря небольшому по сравнению с силикатным или красным кирпичом весу, хорошим тепло- и звукоизолирующим свойствам, морозо- и пожароустойчивости, простоте механической обработки и монтажа, газобетонные блоки применяются в строительстве несущих элементов и перегородок жилых домов, гаражей, загородных коттеджей. Многие делают неправильную толщину стены из газобетона, что при малой ее мощности не позволяет препятствовать проникновению холода и требует дополнительного монтажа утеплителя, а при большой приводит к нецелесообразной трате лишнего материала, а следовательно и денег. Для того чтобы избежать такой ситуации, необходимо разобраться в том, что влияет на этот показатель и каким он должен быть согласно нормативам и в зависимости от внешних факторов.

Оглавление:

  1. Расчет необходимой толщины
  2. Что влияет на мощность конструкций?
  3. Резюме

В зависимости от плотности в кг/м3 данный материал бывает нескольких видов:

Легкие блоки с низкой плотностью и прекрасными теплоизоляционными свойствами. Применяются в основном в качестве утеплителя.

В отличие от предыдущих имеют достаточную прочность, весят больше и немного лучше проводят тепло. Прекрасно подходят в качестве основного материала для возведения стен.

Тяжелые газоблоки с самой высокой плотностью для строительства зданий, требующих прочности конструкций.

Какой толщины должна быть стена из газобетона?

Значение мощности рассчитывается в зависимости от следующих факторов:

Согласно требованиям такого норматива как СНиП 23-02-2003, минимальная толщина (H) рассчитывается по следующей формуле: H = Rreq × λ, где:

  • Rreq – сопротивление конструкции к теплопередаче, рассчитываемое для каждого региона;
  • λ – коэффициент теплопроводности газоблоков, (Вт/м∙°С) зависит от марки и влажности.
Марка газобетонных блоковКоэффициент теплопроводности, Вт/м∙°С
В сухом состоянииПри влажности 4%
D3000,0720,084
D4000,0960,113
D5000,120,141
D6000,140,16
D7000,1650,192
D8000,1820,215
D10000,230,29

Чем ниже значение λ, тем лучше его теплоизоляционные свойства – соответственно, самым оптимальным показателем обладают стены из газобетона марки D300, а самым худшим – D1000. У влажного материала вследствие наличия в полостях воды проводимость тепла выше, чем у сухих.

Величина Rreq характеризует сопротивляемость материала к прохождению через него общего количества тепла, накапливаемого внутри помещения, и равняется произведению градусо-суток (D) отопительного периода на поправочный коэффициент a и прибавлению к полученному результату константы b: Rreq = (D×a)+b.

Величина D равняется произведению разности температур внутри помещения в отопительный период и среднесуточной наружной на его продолжительность в днях: D=(tвн.пом-tнар)×Pот.периода.

Так, например, для Москвы этот показатель при 214 сутках со средней температурой воздуха снаружи и внутри помещения -3,1 и +20°С равен 4943 градусо-суток; южные регионы имеют самое низкое значение D, так, например, в Ростовской области оно составляет всего 3523 °С*сут, а в северных – Сибирь, Магадан, Урал – наиболее высокое. Значения переменных а и b зависят от типа используемого здания и для стен жилых домов, гаражей и коттеджей, равняются 0,00035 и 1,4 соответственно.

Употребив из справочных материалов значение градусо-суток отопительного периода, вышеуказанные коэффициенты и теплопроводность марок блоков, можно высчитать, какая толщина по нормативам должна быть у стен из газобетона в наиболее крупных городах различных частей России и прилегающих к ним областях.

Расчет мощности конструкций из ячеистого бетона для различных зон РФ:

ГородаD,°С*сут.Мощность ограждений в зависимости от марки газоблоков, см
3004005006007008001000
Москва393420253540505565
Санкт-Петербург479625304045556075
Новосибирск660130354555657090
Екатеринбург598030304550606585
Ростов-на-Дону352320253540455065
Уфа551725304050556580
Красноярск634130354555607085
Хабаровск647530354555657085
Мурманск638030354555607085
Якутск10394404565758595120
В среднем599430304550606585

График изменения толщины стеновых конструкций в зависимости от региона и марки газосиликатных блоков:

Наилучшими теплоизоляционными свойствами характеризуются стены из газобетона марок D300-D400. Толщина их колеблется от 20 до 40-45 см, несмотря на это, данные материалы содержат очень много пор с воздухом и мало несущего на себе нагрузку застывшего раствора. Самой же высокой прочностью, но при этом большой толщиной стен (до 100 и более см), необходимой для сохранения внутри помещения тепла, отличаются газоблоки марок D800, D1000. Чаще всего их используют в строительстве общественных зданий, торговых павильонов и других сооружений с большой нагрузкой и дополнительным утеплением.

«Золотой серединой» и наиболее оптимальным соотношением прочность-теплопроводность характеризуются блоки D500-D600, чаще всего применяемые в возведении как жилых домов и коттеджей, так и других построек.

Что учитывать при выборе мощности стеновых конструкций?

Кроме расчетных значений также выделяют еще несколько факторов, от которых зависит толщина.

1. Длительность нахождения в возводимом строении в течение календарного года. Для дачного домика, хозяйственной пристройки, гаража из газобетона, отапливаемых непродолжительное время, можно использовать тонкие стенки толщиной не более 20 см, способные выдерживать вес кровли и обеспечивать защиту от холодов в весенне-осенний период. Противоположная ситуация в жилых зданиях постоянного проживания – для того чтобы тепло не уходило из помещений, необходимы стены с расчетной мощностью 30-40 см.

2. Вид – несущие конструкции должны иметь толщину на 10-15 см больше, чем перегородки внутри помещения.

3. Количество и расположение этажей – при увеличении высоты здания используют газоблоки с большей прочностью. Толщина стен одноэтажного строения должна составлять не менее 25 см, двух и более – 30-40 см.

4. Климатические условия снаружи – продолжительность холодного периода и средние температурные показатели напрямую влияют на мощность ограждений здания. Стены в Сибири делают толще, чем в южных регионах.

5. Наличие или же отсутствие слоя утеплителя (пенополистирол с обязательным нанесением поверх него слоя фасадной штукатурки) – применение теплоизолирующих материалов позволяет использовать блоки меньшей толщины. Стена без утеплителя кроме того, что имеет неприглядный эстетический вид, из-за открытой пористой структуры быстрее впитывает влагу, способствующую увеличению теплопроводности конструкции.

Итоги

  • Ячеистый бетон в современном строительстве является одним из самых приемлемых как по цене, так и по качеству материалов для возведения всевозможных зданий.
  • Стены дома из газобетонных блоков обладают высокой прочностью, относительной долговечностью и хорошими теплоизолирующими свойствами.
  • Используя приведенные в нормативах формулы, можно рассчитать оптимальную мощность ограждающих конструкций с учетом условий конкретного региона, позволяя экономить материал и делать толщину стен в Московской области меньше, чем в северных.
  • Применение утеплителя для облицовки кладки из газоблоков увеличивает срок их эксплуатации и уменьшает расход.

Размеры газобетонных блоков для несущих стен, марки, советы по выбору

По своим характеристикам газобетон подходит как для кладки несущих конструкций, так и возведения изоляционных перегородок. При выборе конкретной марки и размеров изделия отталкиваются от назначения и условий эксплуатации объекта строительства. Толщину стен, разделяющих разные температурные зоны, определяет теплотехнический расчет. Но главным требованием является обеспечение соответствующей несущей способности, а именно выдержки весовой и механической нагрузки. Нормы, зависящие от типа перегородки или перекрытия, являются минимально допустимыми, уменьшать их нельзя.

Оглавление:

  1. Разновидности газоблоков
  2. Особенности выбора изделий для разных конструкций
  3. Полезные рекомендации

Виды газобетонных блоков

В зависимости от формата и типа поверхности различают обычные прямоугольные варианты с гладкими стенками, аналогичные с системами захвата или «шип-паз», Т-образные для монтажа перекрытий, U-образные для закладки армопояса, дверных или оконных проемов. Прочностные характеристики газобетона определяются его плотностью и пористостью, как и теплоизоляционные свойства. Выделяют следующие марки:

1. От D350 до D500 – теплоизоляционные, оптимальные для возведения газобетонных перегородок или внутренней утепляющей прослойки. Выделяются высокой пористостью и имеют самый низкий коэффициент теплопроводности из всех разновидностей.

2. D500-D900 – конструкционно-теплоизоляционные, востребованные в частном строительстве, в том числе для кладки наружных стен и несущих перегородок. На практике для легких построек используют газоблоки от М400, но лишь при условии их качественной автоклавной обработки и надежной защиты от внешней влаги.

3. D900-D1200 – конструкционные, с повышенной прочностью.

Типовой размер газобетонного блока для несущей стены: 600 мм по длине (у некоторых производителей – 625), в пределах 200-300 по высоте, и от 75 до 500 по ширине. Данные значения приведены для прямых и пазогребневых изделий, к стеновым обычно относят превышающие 300 мм в ширину, остальные – к перегородочным, хотя встречаются и исключения. Самыми востребованными считаются 600×300×200 и 625×300×250 мм, вес варьируется в пределах 17-40 кг, одна штука замещает не менее 17 кирпичей.

Выбор газоблоков для кладки несущих стен

Рекомендуемый минимум:

Назначение конструкции, дополнительные условияОптимальная марка газоблоковТолщина стены из газобетона, мм
Несущие наружные стены и внутренние перегородки в частных домахD600300
Нежилые помещения: хозпостройки, гаражи, летние кухниD400 и D500200
Несущие наружные в домах без внешнего утепленияD500360
Цокольные этажи и подвалы, при условии обязательной и качественной гидроизоляции

 

D600

 

300-400

(меньше – для внутренних подвальных ненесущих стен)

Межквартирные перегородкиD500 и D600200-300
Утепляющие прослойкиD300От 300
Внутренние ненесущие перегородки, возводимые с целью разделения жилых зон и звукоизоляции100-150

Требуемый класс (и, соответственно, марка) газобетона также зависит от этажности. Допустимый минимум для одноэтажных легких построек составляет В2,0, в пределах 3-х этажей – В2,5, В3,5. Чем выше здание, тем жестче нормативы к прочности блоков, при строительстве частного дома выше двух армирование (закладка монолитной ленты по всему периметру) в верхней части стены из газобетона обязательно. Самонесущие перегородки разрешается строить из В2,0. В целях экономии их обычно выкладывают толщиной в пределах 100-150 мм. Рост ширины перегородки возможен в двух случаях: при повышенных требованиях к шумозащите и при планировании размещения на них подвесных конструкций: полок, мебели, пролетов или тяжелой техники. Допустимый минимальный предел – 200 мм.

Дополнительные учитываемые факторы при выборе толщины стен из газобетона

Указанные размеры актуальны исключительно при использовании материла автоклавной обработки, изготовленного в заводских условиях. Их качество можно и нужно проверять визуально и на ощупь: правильные изделия имеют гладкие стенки без сколов и внешних дефектов, они ни в коем случае не раскрашиваются. Блоки, не прошедшие пропаривание под давлением, уступают в прочности и не обеспечат требуемую несущую способность. Также по умолчанию они используются при строительстве домов в средней полосе, для конструкций, эксплуатируемых при нормальной влажности. При необходимости возведения в бассейнах, ванных, банях, подвалах применяются усиленные меры гидроизоляции.

Для исключения ошибок на стадии составления проекта следует провести прочностной и теплотехнический расчет размеров несущих конструкций с учетом их ожидаемой нагрузки и климатических условий. Коэффициент теплопроводности газобетона зависит от марки: от 0,072 Вт/м·°C у блоков D300, до 0,12 и выше у D600.

Взаимосвязь очевидна: чем плотнее и прочнее изделия, тем хуже их изоляционные способности. При равной средней температуре окружающего воздуха зимой разница между требуемым минимумом толщины стен, способных обеспечить нужное сопротивление потерям тепла, у марок с отличием в удельном весе от 100 кг/м3 достигает 1/3.

Требования к несущим конструкциям повышаются при строительстве домов в оконными проемами с большой площадью, эксплуатируемыми кровлями, высокой этажностью. В этом случае возможны несколько вариантов: использование конструктивных блоков с повышенной прочностью (более дорогих, что не всегда выгодно) или вертикальное армирование. Задействование монолитного ж/б каркаса с закладкой менее прочных, но хорошо держащих тепло элементов, считается разумной альтернативой. Но такие проекты требуют привлечения специалистов, они более сложны в реализации.

Какой толщины должна быть стена из газобетона

Газобетон является самым популярным строительным материалом, благодаря своим теплотехническим характеристикам, низкой стоимости и высокой скорости возведения стен.

Одним из самых главных вопросов при строительстве дома является следующий – «какой толщины должна быть стена из газобетона». Ведь вопрос об экономии денег на отопление актуален как никогда. Если ответить быстро, то чем стена толще, тем она прочнее, и тем лучше сохраняет тепло. Но не все так просто, важна экономическая целесообразность.

На теплотехнику стены, помимо ее толщины, влияет еще и плотность газобетона. Чем плотность ниже, тем лучше сохраняется тепло. Скорее всего, вы бы хотели просто узнать, какой толщины должна быть газобетонная стена, но помимо всего перечисленного, на выбор толщины стены влияет еще и регион, в котором вы проживаете, так как разница в температурах Сибири и Сочи огромная.

Для средней полосы России считается, что сопротивление стены теплопередаче (по СНИП) должна быть около 3,2 Вт/м•С°. Для более холодных регионов страны, этот показатель должен быть выше. Отметим, что для частного строительства, соблюдать данные нормы не обязательно.

Такую теплозащиту (3,2 м2 С°/Вт) обеспечивают следующие варианты однослойных газобетонных стен.

  • D300 – 300 мм.
  • D400 – 400 мм.
  • D500 – 500 мм.

Стоит отметить, что на общую тепловую эффективность здания влияют не только стены, но и утепление пола, крыши, перекрытий, армопоясов, перемычек, и окон. Из этого следует, что тепловые потери здания через стены составляют от 30 до 40%. То есть, делать слишком толстые стены не рационально. Нужен некоторый баланс между затратами на толщину стены, и на отопление дома.

Если речь идет о доме постоянного проживания, то при текущих затратах на отопление, оптимальная толщина однослойной стены из газобетона составляет: D400 – 400мм, D500 – 500 мм.

Для дачного дома, который посещают довольно редко, будет достаточно стены толщиной 250-300 мм из газобетона D400.

Толщина газобетона с утеплителем

Теперь что касается многослойных стен, то есть, утепленных. В качестве утеплителей обычно применяют каменную вату, пенопласт и газобетон низкой плотности.

Применяя утеплитель, толщину несущих стен можно уменьшить, добиваясь определенного значения теплового сопротивления. То есть, затраты на газобетон уменьшаться, а на утеплитель повысятся. Таким образом, нужно искать баланс между толщиной газобетона и стоимостью материалов на утепление.

Чтобы вам было проще определиться с толщиной газобетона и утеплителем, мы нашли таблицы по теплотехническим параметрам стеновых материалов.

Сопротивление теплопередаче (R0) газобетона в зависимости от толщины кладки.

Чем значение выше, тем лучше.

Таблица (коэффициент теплопроводности газобетона)

Чем значение ниже, тем лучше.

Для большей наглядности произведем расчеты.

К примеру, вы хотите построить дом в Московской области. Требуемое значение по тепловому сопротивлению в Москве R=3.28. Дом у вас из автоклавного газобетона D500 толщиной 300 мм, и вам нужно определиться с толщиной утеплителя.  

Толщину газобетонной стены (0.3 м) делим на коэффициент теплопроводности газобетона D500 (0.14).  

Тепловая сопротивляемость стены R = 0.3/0.14=2.14 м2·°C/Вт.

Далее от требуемого значения R(3.28) отнимаем полученное тепловое сопротивление R (2.14). 

3.28-2.14=1.14.

Значит тепловая сопротивляемость утеплителя должен быть 1.14 м2·°C/Вт.

Коэффициент теплопроводности минваты = 0.04.

Умножаем 1.14 на 0.04 = 0.0456 метра, то есть 45 мм.

То есть, нужная толщина утеплителя у нас получилась 50 мм.

Таким образом, вы можете рассчитать требуемое утепление для любой стены.

Нужно ли утеплять газобетон?

Пример расчета затрат на отопление дома

  • Дом 10 x 10 метров из газобетона D400, толщиной 400 мм.
  • Высота потолков – 2.5 м.
  • Площадь стен – 230 м2.
  • Площадь пола, потолков и окон — 220 м2.
  • На улице -20, в доме + 20.
  • Разница температур составляет 40 градусов.
  • Тепловое сопротивление газобетонных стен – 3.4 м2·°C/Вт
  • Среднее тепловое сопротивление пола, потолков и окон – 3 м2·°C/Вт.
  • 230/3.4 * 40 = 2700 Вт/час.
  • 220/3*40 = 3000 Вт/час.
  • То есть за один час, на отопление дома будет потребляться почти 6 Квт энергии.
  • За сутки – 144 кВт. 
  • 1 Квт энергии стоит в среднем 3 рубля.
  • За месяц на отопление уйдет 144*30= 4320 кВт. 
  • Месячные зимние расходы на электрическое отопление примерно 10-15 т.р.

Но это, если температура будет постоянно стабильной, в реальности же, температура постоянно меняется. Весной и осенью затраты на отопление сократятся в несколько раз. В любом случае, такие расчеты покажут вам примерную картину по стоимости отопления дома электричеством.

Автоклавный газобетон

Автоклавный газобетон (AAC) состоит из мелких заполнителей, цемента и расширителя, который заставляет свежую смесь подниматься, как тесто для хлеба. Фактически, этот вид бетона на 80 процентов содержит воздух. На заводе, где он изготавливается, материал формуют и разрезают на детали с точными размерами.

Затвердевшие блоки или панели из автоклавного газобетона соединяются тонким слоем раствора. Компоненты можно использовать для стен, полов и крыш. Легкий материал обеспечивает отличную звуко- и теплоизоляцию и, как и все материалы на основе цемента, является прочным и огнестойким.Для того, чтобы AAC был долговечным, он требует определенного вида отделки, например, модифицированной полимером штукатурки, природного или искусственного камня или сайдинга.

Ключевые аспекты AAC, будь то проектирование или строительство с его помощью, описаны ниже:

Преимущества

  • Автоклавный газобетон сочетает в себе изоляционные и структурные возможности в одном материале для стен, полов и крыш. Его легкий вес / ячеистые свойства позволяют легко резать, брить и придавать форму, легко принимать гвозди и винты, а также позволяют направлять его для создания пазов для электрических каналов и трубопроводов меньшего диаметра.Это дает ему гибкость при проектировании и изготовлении, а также дает возможность легко регулировать в полевых условиях.
  • Прочность и стабильность размеров. Материал на основе цемента, AAC устойчив к воде, гниению, плесени, плесени и насекомым. Установки имеют точную форму и соответствуют жестким допускам.
  • Огнестойкость отличная, AAC толщиной восемь дюймов достигает четырехчасового рейтинга (фактическая производительность превышает это значение и соответствует требованиям испытаний до восьми часов).А поскольку он негорючий, он не горит и не выделяет токсичных паров.
  • Малый вес означает, что значения R для AAC сопоставимы с обычными каркасными стенами, но они имеют более высокую тепловую массу, обеспечивают герметичность и, как только что было отмечено, не горючие. Этот легкий вес также обеспечивает значительное снижение уровня шума для уединения, как от внешнего шума, так и от других помещений при использовании в качестве внутренних перегородок.

Но у материала есть некоторые ограничения.Он не так широко доступен, как большинство изделий из бетона, хотя его можно доставить куда угодно. Если он должен быть отправлен, его легкий вес является преимуществом. Поскольку его прочность ниже, чем у большинства бетонных изделий или систем, в несущих приложениях его обычно необходимо армировать. Он также требует защитной отделки, поскольку материал пористый и будет разрушаться, если оставить его незащищенным.

Размеры

Доступны как блоки, так и панели. Блоки укладываются так же, как и обычная кладка, но с тонким слоем раствора, а панели устанавливаются вертикально на всю высоту этажа.Для структурных нужд внутри стеновой секции размещаются залитые, армированные ячейки и балки. (Вогнутые углубления вдоль вертикальных краев могут создать цилиндрический стержень между двумя соседними панелями.) Для обычных применений вертикальная ячейка размещается по углам, по обе стороны от проемов и на расстоянии от 6 до 8 футов вдоль стены. AAC в среднем составляет около 37 фунтов на кубический фут (pcf), поэтому блоки можно размещать вручную, но панели из-за их размера обычно требуют небольшого крана или другого оборудования.

Панели простираются от пола до верха стены:

  • Высота: до 20 футов
  • Ширина: 24 дюйма
  • Толщина: 6, 8, 10 или 12 дюймов (внутренняя толщина 4 дюйма

Блоки больше и легче традиционной бетонной кладки:

  • Высота: обычно 8 дюймов
  • Ширина: 24 дюйма в длину
  • Толщина: 4, 6, 8, 10 и 12 дюймов
  • Стандартный размер 8 на Блок размером 8 на 24 дюйма весит около 33 фунтов;

Специальные формы:

  • U-образная соединительная балка или блоки перемычки доступны толщиной 8, 10 и 12 дюймов.
  • Блоки для язычков и пазов доступны от некоторых производителей, и они соединяются с соседними блоками без раствора по вертикальным краям.
  • Порошковые блоки для создания вертикальных ячеек с армированным раствором.

Установка, соединения и отделка

Благодаря схожести с традиционной бетонной кладкой, блоки (блоки) из автоклавного газобетона могут быть легко установлены каменщиками. Иногда к монтажу подключаются плотники. Панели тяжелее из-за своего размера и требуют использования крана для установки.Производители предлагают обучающие семинары, и обычно для небольших проектов достаточно иметь одного или двух опытных установщиков. В зависимости от выбранного типа отделки они могут быть приклеены непосредственно или механически к поверхности AAC.

Блок

  • Уложен и выровнен первый слой. Блоки укладываются вместе с тонким слоем строительного раствора непрерывным соединением с перекрытием не менее 6 дюймов.
  • Стены выровнены, выровнены и выровнены резиновым молотком.
  • Отверстия и нестандартные углы вырезаются ножовкой или ленточной пилой.
  • Определены места армирования, размещена арматура и выполняется заливка раствора. Затирку необходимо подвергнуть механической вибрации для ее уплотнения.
  • Связующие балки размещаются в верхней части стены и могут использоваться для крепления тяжелых приспособлений.

Панели

  • Панели размещаются по одной, начиная с угла. Панели укладываются в слой тонкослойного раствора, а вертикальная арматура прикрепляется к дюбелям, выступающим от пола, до того, как будет установлена ​​соседняя панель.
  • Сплошная соединительная балка создается наверху либо из фанеры и материала AAC, либо с помощью соединительной балки.
  • Отверстия можно вырезать предварительно или в полевых условиях.

Соединения

  • Каркас / каркас крыши соединяется с обычной верхней пластиной или ураганными ремнями, встроенными в соединительную балку.
  • Каркас пола прикреплен с помощью стандартных ригелей, закрепленных на стороне узла AAC, рядом с соединительной балкой.
  • Напольные системы AAC опираются непосредственно на стены AAC.
  • Более крупные конструкционные стальные элементы устанавливаются на приварные пластины или пластины с болтами, устанавливаемые в соединительную балку.

Отделка

  • Отделка типа Stucco изготавливается специально для AAC. Эти модифицированные полимером штукатурки герметизируют от проникновения воды, но при этом пропускают пары влаги для воздухопроницаемости.
  • Обычные сайдинговые материалы крепятся к поверхности стены механически. Если желательна обратная вентиляция сайдингового материала, следует использовать опушку.
  • Кладочный шпон можно наклеивать непосредственно на поверхность стены или строить как полые стены. Виниры для прямого наложения обычно представляют собой легкие материалы, такие как искусственный камень.

Соображения по вопросам устойчивого развития и энергетики

Автоклавный газобетон с точки зрения устойчивости предлагает как материалы, так и характеристики. Что касается материала, он может содержать переработанные материалы, такие как летучая зола и арматура, которые могут способствовать получению баллов в системе LEED® или других экологических рейтинговых системах.Кроме того, он содержит такое большое количество воздуха, что содержит меньше сырья на единицу объема, чем многие другие строительные продукты. С точки зрения производительности система ведет к ограничению ограждающих конструкций. Это создает энергоэффективную оболочку и защищает от нежелательных потерь воздуха. Физические испытания демонстрируют экономию на нагреве и охлаждении примерно от 10 до 20 процентов по сравнению с традиционной конструкцией рамы. В постоянно холодном климате экономия может быть несколько меньше, потому что этот материал имеет меньшую тепловую массу, чем другие типы бетона.В зависимости от расположения производства по отношению к объекту проекта, AAC может также вносить вклад в местные кредиты на материалы в некоторых системах рейтинга экологичного строительства.

Производственные и физические свойства

Сначала в суспензию смешивают несколько ингредиентов: цемент, известь, воду, мелкоизмельченный песок и часто летучую золу. Добавляется расширительный агент, такой как алюминиевый порошок, и жидкая смесь отливается в большую заготовку. Когда суспензия реагирует с расширителем с образованием пузырьков воздуха, смесь расширяется.После первоначального застывания полученный «пирог» разрезается проволокой на блоки или панели точного размера, а затем запекается (автоклавируется). Тепло способствует более быстрому отверждению материала, благодаря чему блоки и панели сохраняют свои размеры. Армирование помещается в панели перед отверждением.

В ходе этого производственного процесса производится легкий негорючий материал со следующими свойствами:

Плотность: от 20 до 50 фунтов на кубический фут (pcf) — он достаточно легкий, чтобы плавать в воде

Прочность на сжатие: 300 до 900 фунтов на квадратный дюйм (psi)

Допустимое напряжение сдвига: от 8 до 22 psi

Термическое сопротивление: 0.От 8 до 1,25 на дюйм. толщиной

Класс звукопередачи (STC): 40 для толщины 4 дюйма; 45 для толщины 8 дюймов

Автоклавный газобетон

В настоящее время нет торговой ассоциации, представляющей отрасль автоклавного газобетона. Производство AAC все еще существует в Северной Америке. Мы предлагаем вам поискать в Интернете представителей дилеров, которые могут помочь вам с потенциальной доступностью продукта в вашем регионе.

AAC Projects

История трех городов: универсальность AAC

для жилых помещений. Использование газобетона в автоклаве (AAC) дает множество преимуществ.Возможно, в подтверждение универсальности AAC, три описанных здесь жилых проекта совершенно разные, но имеют общую тему безопасности. Большой дом на одну семью в лесу, строительство которого ведет сам хозяин; скромный дом на одну семью на лесистой местности, спроектированный архитектором, стремящимся к экологически безопасному и здоровому образу жизни; и крупная застройка вдоль побережья залива Луизиана, требующая превосходной погодоустойчивости.

Handal Home, Мэриленд: простота и безопасность

Эта большая резиденция (6800 квадратных футов), расположенная в лесу на юге Мэриленда, столкнулась с рядом строительных проблем.Таким образом, владелец, который сам управляет строительством, хотел простую систему. Оказалось, что это 12-дюймовые блоки AAC. Ему нужны были их теплоизоляционные и негорючие свойства, чтобы противостоять лесным условиям дома, которые включали низкие температуры и, возможно, опасность пожара. По его словам, простота AAC позволяет ему за один шаг построить конструктивную стену, которая будет изолирована, устойчива к термитам и готова к отделке. Он не хотел прикреплять сайдинг, предпочитая вместо этого прямую отделку: гипсовую штукатурку для интерьера и лепнину для экстерьера.

Дом Додсона: здоровый и безмятежный

Несколько лет назад, когда архитектор Элис Додсон выбрала компанию AAC для строительства собственного дома, это было отчасти из соображений здоровья и окружающей среды. Давний сторонник устойчивого развития, она также уже следила за Bau-biologie. Относительно неизвестный в Соединенных Штатах, но хорошо известный в Европе среди архитекторов и медицинских работников, Bau-biologie занимается биологией строительства или строительством для жизни. Это произошло после того, как быстрое строительство в послевоенной Германии привело к тому, что мы теперь называем синдромом больного здания.Тогда, как и сейчас, она искала здоровые строительные решения. С этой целью она выбрала блоки и панели AAC для создания воздухопроницаемых стен из кирпича, которые не выделяют летучие органические соединения (ЛОС). Это создает экологически чистое здание со спокойным и тихим интерьером. А поскольку в процессе строительства участвовал ее муж-пожарный, негорючие материалы были необходимы.

Оболочка из AAC также обеспечивает хорошую теплоемкость и изоляцию. Благодаря энергоэффективной оболочке, дополненной солнечными батареями и дровяной печью, счета за газ в течение первого года составляли всего 100 долларов для дома площадью 4000 квадратных футов.В доме может оставаться тепло в течение двух-трех дней даже после отключения электроэнергии. Додсону нравится, как из материала можно вылепить с помощью деревообрабатывающих инструментов различные формы и элементы, такие как колонны и камины, и он продолжает поддерживать AAC с клиентами, которые ценят его универсальность и эстетический потенциал.

Роща на пляже Инлет: безопасность и устойчивость к погодным условиям

Эта история успеха произошла в результате разрушений, вызванных ураганом Катрина. The Grove at Inlet Beach — это первый жилой комплекс с высокой плотностью застройки, построенный компанией Florida Panhandle. Он предназначен для противостояния погодным условиям и безопасности в окружающей среде побережья Мексиканского залива.Все стены, полы и потолки в этих домах для одной семьи сделаны из панелей и блоков AAC. Превосходная огнестойкость (четыре часа на четыре дюйма) была ключом к утверждению местного зонирования, и в результате не возникло никаких проблем с возгоранием конструкции. Когда прибывают ураганы, эти конструкции готовы противостоять ветру со скоростью 150 миль в час (миль в час) (Категория 4) и с надлежащим усилением могут быть спроектированы так, чтобы противостоять ветру со скоростью 200 миль в час или более (Категория 5). Дома AAC также не разрушаются наводнениями: они противостоят поднимающимся водам, гниению, плесени и плесени, их можно чистить, перекрашивать и снова открывать для жителей — в восстановлении не требуется.

Как будто безопасность и устойчивость к погодным условиям не были достаточной причиной для выбора AAC для своего дома, застройщик рассчитывает сэкономить 35 процентов на счетах за коммунальные услуги и 65 процентов на страховых взносах.

Комфорт бетона

Некоторые гости в отеле Джорджии сегодня спят лучше благодаря автоклавному газобетону (AAC). Примерно в часе езды от Атланты, на месте Форсайта, штат Джорджия, Comfort Suites, небольшой участок, прилегающий к межштатной автомагистрали, возник несколько проблем.А высокая стоимость земли делает все более распространенным строить на участках, которым присущи такие проблемы, как шум, неровная местность или минимальные препятствия. Поэтому разработчики обратились к бетонной системе, чтобы удовлетворить свои потребности в реализации качественного проекта — в данном случае — в прочном, тихом четырехэтажном здании рядом с оживленным шоссе.

Подробнее о AAC.

Заявление об ограничении ответственности

Список организаций и информационных ресурсов не является ни одобрением, ни рекомендацией Portland Cement Association (PCA).PCA не несет никакой ответственности за выбор перечисленных организаций и продуктов, которые они представляют. PCA также не несет ответственности за ошибки и упущения в этом списке.

Все об автоклавном ячеистом бетоне (AAC)

Автоклавный газобетон (AAC) — это сборный железобетон, состоящий из природного сырья. Впервые он был разработан в Швеции в 1920-х годах, когда архитектор впервые объединил обычную бетонную смесь из цемента, извести, воды и песка с небольшим количеством алюминиевой пудры.Алюминиевая пудра служит расширителем, который заставляет бетон подниматься, как тесто для хлеба. В результате получается бетон, который почти на 80 процентов состоит из воздуха. Бетон AAC обычно превращается в блоки или плиты и используется для строительства стен из цементного раствора, аналогично тому, как это используется для строительства стандартных бетонных блоков.

Как производится газобетон

Автоклавный газобетон начинается с того же процесса, который используется для смешивания всего бетона: портландцемент, заполнитель и вода смешиваются вместе, образуя суспензию.При введении алюминия в качестве расширительного агента пузырьки воздуха проникают по всему материалу, образуя легкий материал низкой плотности. Влажному бетону придают форму с помощью форм, а затем после его частичного высыхания разрезают на плиты и блоки. Затем блоки перемещаются в автоклав для полного отверждения под действием тепла и давления, что занимает всего от 8 до 12 часов.

Бетонные блоки AAC очень удобны в обработке, их можно резать и сверлить с помощью обычных деревообрабатывающих инструментов, таких как ленточные пилы и обычные дрели.Поскольку бетон легкий и имеет относительно низкую плотность, его необходимо испытывать на прочность на сжатие, содержание влаги, объемную плотность и усадку.

Здание из бетона AAC

Бетон AAC можно использовать на стенах, полу, кровельных панелях, блоках и перемычках.

  • Панели доступны толщиной от 8 дюймов до 12 дюймов и 24 дюймов в ширину и длиной до 20 футов.
  • Блоки бывают длиной 24, 32 и 48 дюймов и толщиной от 4 до 16 дюймов; высота 8 дюймов.

Затвердевшие блоки или панели из газобетона в автоклаве соединяются с помощью раствора с тонким слоем, используя методы, идентичные тем, которые используются со стандартными бетонными блоками. Для дополнительной прочности стены могут быть усилены сталью или другими конструктивными элементами, проходящими вертикально через пространства в блоках.

Бетон AAC можно использовать для стен, полов и крыш, а его легкий вес делает его более универсальным, чем стандартный бетон. Материал обеспечивает отличную звуко- и теплоизоляцию, а также прочность и огнестойкость.Однако, чтобы быть долговечным, AAC должен быть покрыт нанесенной отделкой, такой как модифицированная полимером штукатурка, натуральный или искусственный камень или сайдинг. Если они используются для подвалов, внешняя поверхность стен из автоклава должна быть покрыта толстым слоем водонепроницаемого материала или мембраны. Поверхности AAC, подверженные воздействию погодных условий или влаги почвы, будут разрушаться. Внутренние поверхности можно отделать гипсокартоном, штукатуркой, плиткой или краской или оставить незащищенными.

Свойства газобетона

По сути, AAC предлагает только умеренные значения изоляции — около R-10 для стены толщиной 8 дюймов и R-12.5 для стены толщиной 10 дюймов. AAC предлагает значение R около 1,25 на каждый дюйм толщины материала. Но AAC имеет высокую тепловую массу, что замедляет передачу тепловой энергии и может значительно снизить затраты на нагрев и охлаждение. А конструкции AAC можно сделать очень герметичными, чтобы уменьшить потери энергии из-за утечек воздуха. AAC также создает отличный звукоизоляционный барьер.

Недвижимость Газобетон Традиционный бетон
Плотность (PCF) 25–50 80–150
Прочность на сжатие (PSI) 360–1090 1000–10000
Огнестойкость (часы) ≤ 8 ≤ 6
Теплопроводность (Btuin / ft2-hr-F) 0.75–1,20 6,0–10

Преимущества и приложения

Некоторые из преимуществ использования автоклавного газобетона включают:

  • Отличный материал для звукоизоляции и звукоизоляции
  • Огнестойкий и термитостойкий
  • Доступны в различных формах и размерах
  • Высокая тепловая масса накапливает и выделяет энергию с течением времени
  • Вторичный материал
  • Простота в обращении и установке благодаря малому весу
  • Легко режется для пазов и отверстий для электрических и сантехнических линий
  • Экономичность при транспортировке и транспортировке по сравнению с заливным бетоном или бетонным блоком

Недостатки

Как и все строительные материалы, у AAC есть ряд недостатков:

  • Товары часто отличаются по качеству и цвету.
  • Необработанные внешние стены требуют внешней облицовки для защиты от погодных условий.
  • При установке в среде с высокой влажностью внутренняя отделка требует низкой паропроницаемости, а внешняя отделка требует высокой проницаемости.
  • Показатель R
  • относительно низок по сравнению с энергоэффективной изолированной стеновой конструкцией.
  • Стоимость выше обычной бетонно-блочной и каркасной конструкции.
  • Прочность AAC составляет от 1/6 до 1/3 прочности традиционного бетонного блока.

Цены на блоки AAC

Базовый блок AAC стандартного размера 8 x 8 x 24 дюйма стоит от 2,20 до 2,50 доллара за квадратный фут по состоянию на июль 2018 года, что немного больше, чем стандартный бетонный блок, который стоит около 2 долларов за квадратный фут. Однако затраты на рабочую силу для AAC могут быть ниже, поскольку его меньший вес упрощает транспортировку и установку. Стоимость будет варьироваться от региона к региону и зависит от местных ставок оплаты труда и требований строительных норм.

Автоклавный прямоугольный блок из пенобетона AAC, толщина: 150 мм, прочность на сжатие: более 4 кн, 51 рупий / штука

Прямоугольный блок из пенобетона в автоклаве, толщина: 150 мм, прочность на сжатие: более 4 кн, 51 рупий / штука | ID: 19246081473

Спецификация продукта

9021 Страна происхождения: Индия

Описание продукта

Водонепроницаемость, термостойкость, легкий вес, меньше расходов на раствор.и меньшая толщина штукатурки. Экономия на конструкции и возведении стен.


Заинтересовал этот товар? Получите последнюю цену у продавца

Связаться с продавцом

Изображение продукта


О компании

Год основания 2018

Юридический статус компании с ограниченной ответственностью (Ltd./Pvt.Ltd.)

Характер бизнеса Производитель

Количество сотрудников От 101 до 500 человек

Годовой оборот 25-50 крор

Участник IndiaMART с февраля 2011 г.

GST36AAQCA9632F1ZD

Основанная в 2018, Хайдарабад, Телангана, , мы « Arugonda Infratech » — это основанная компания P rivate Limited , ведущая производитель блоков AAC и бетонных блоков .Наша продукция пользуется большим спросом благодаря первоклассному качеству и доступной цене. Кроме того, мы гарантируем своевременную доставку этих продуктов нашим клиентам, благодаря чему мы приобрели огромную клиентскую базу на рынке.

Видео компании

Вернуться к началу 1

Есть потребность?
Получите лучшую цену

1

Есть потребность?
Получите лучшую цену

Газобетон — обзор

10.3 Материалы и обработка

Панель FRP / AAC, обсуждаемая в этой главе, состоит из ламинатов CFRP в качестве лицевой панели (кожи) и AAC в качестве основы. Композиты, армированные волокном, обладают высокой устойчивостью к коррозии и изгибу. Соответственно, поскольку AAC является сверхлегким материалом по своей природе, а углепластик является жестким с высокой удельной прочностью, их можно использовать вместе для образования прочных гибридных структурных панелей. В Университете Алабамы в Бирмингеме (UAB) было проведено несколько исследований для изучения поведения структурных панелей CFRP / AAC при осевой и внеплоскостной нагрузке.Khotpal (2004) исследовал прочность на сжатие простого AAC, обернутого углепластиком. Цели состояли в том, чтобы оценить несущую способность ограниченного куба AAC и наблюдать режим разрушения панелей CFRP / AAC. Результаты показали, что обертки из углепластика значительно увеличили прочность на сжатие панелей из углепластика / AAC примерно на 80% по сравнению с обычными панелями из AAC. Уддин и Фуад (2007) исследовали поведение панелей CFRP / AAC, используя образцы небольшого размера при испытании на четырехточечную нагрузку. Экспериментальные результаты этого исследования показали значительное влияние FRP на прочность на изгиб и жесткость гибридных панелей.Муса (2007) также использовал моделирование методом конечных элементов для анализа и проектирования структурных панелей из углепластика / AAC, которые будут использоваться в качестве напольных и стеновых панелей. Муса и Уддин (2009) разработали теоретические формулы для прогнозирования прочности на сдвиг и изгиб панелей CFRP / AAC, и полученные результаты хорошо согласуются с экспериментальными. Кроме того, Mousa (2007) провел сравнительное исследование гибридной панели CFRP / AAC и используемых в настоящее время усиленных панелей AAC. Сравнительное исследование показало, насколько предлагаемые панели экономичны по сравнению с усиленными панелями AAC, которые в настоящее время используются на рынке жилья.Из-за более высокой прочности, получаемой в результате этой комбинации, прочность не является критерием, определяющим конструкцию панели, но прогиб является тем критерием, который определяет конструкцию предлагаемых гибридных панелей (Mousa, 2007).

Как упоминалось ранее, панель CFRP / AAC изготавливается из ламинатов CFRP в виде лицевых листов, приклеенных к сердцевине из AAC с использованием термореактивных эпоксидных полимеров, образующих жесткую панель. В целом, газобетон в автоклаве (AAC) — это сверхлегкий бетон с ярко выраженной ячеистой структурой.Это примерно одна пятая веса обычного бетона с насыпной плотностью в сухом состоянии в диапазоне от 400-800 кг / м 3 (25-50 фунтов на фут) и прочностью на сжатие в диапазоне от 2 до 7 МПа (300-1000 фунтов на квадратный дюйм) ( Ши и Фуад, 2005). Низкая плотность и пористая структура придают AAC отличные тепло- и звукоизоляционные свойства, что делает его отличным выбором для использования в качестве основного материала в строительстве. Благодаря ячеистой структуре и уменьшенному весу этот материал обладает высокой огнестойкостью и очень прочным по сравнению с обычным строительным материалом, а также обладает уникальными теплоизоляционными свойствами.

AAC в настоящее время используется в виде армированных сталью панелей с использованием предварительно обработанных арматурных стержней в качестве внутреннего армирования. Эта арматура будет подвергаться коррозии в течение длительного времени, а также является дорогостоящей по сравнению с арматурой, используемой для обычного железобетона. Кроме того, эта арматура не играет никакой роли в прочности панелей на сдвиг. Следовательно, панели должны быть толстыми, чтобы преодолеть проблемы сдвига и более низкой прочности на изгиб. Mousa (2007) продемонстрировал, что прочность на сдвиг углепластика / AAC можно значительно улучшить, обернув простой AAC ламинатом из углепластика.Следовательно, общая стоимость армированных панелей AAC может быть снижена за счет использования ламинатов FRP в качестве внешнего армирования (по сравнению с сэндвич-панелями CFRP / AAC) вместо внутренней стальной арматуры в сочетании с низкозатратными методами обработки, которые будут объяснены в этой главе. В таблице 10.1 перечислены механические свойства AAC, которые используются в текущих исследованиях. В настоящем исследовании использовались однонаправленные углеродные волокна SIKA WRAP HEX 103C и смола SIKADUR HEX 300. Механические свойства смолы, а также ламината, предоставленные производителем (Sika Corporation, 2002), перечислены в таблице 10.2.

Таблица 10.1. Механические свойства простого автоклавного газобетона (AAC)

Форма Прямоугольная
Размер 150 x 200 x 600 мм
Плотность, кг на куб M 700 кг на куб.
Толщина 150 мм
Использование / применение Боковая стенка, перегородка
Прочность на сжатие Более 4 узлов
Страна происхождения Страна происхождения
Свойство Значение
Плотность 40 pcf (640 кг / м 3 )
psi (Прочность на сжатие) 3,2 МПа)
Модуль упругости 1800 МПа (256000 фунтов на кв. Дюйм)
Прочность на сдвиг 17 фунтов на кв. Дюйм (0,12 МПа)
Коэффициент Пуассона 0.25

Таблица 10.2. Механические свойства углеродного волокнистого композита SIKA

9023 МПа упругости, E y 00 фунтов на кв.
Свойство SIKA HEX 300 Однонаправленный ламинат
Прочность на растяжение 10500 фунтов на кв. Прочность на растяжение 90 ° 3500 фунтов на кв. Дюйм (24 МПа)
Модуль упругости, E x 459000 фунтов на квадратный дюйм (3170 МПа) 10 239 800 фунтов на квадратный дюйм (70,532 9023 МПа)
3170 МПа (459000 фунтов на кв. дюйм) 705 500 фунтов на кв. дюйм (4861 МПа)
Модуль упругости при сдвиге, G xy
Относительное удлинение при растяжении 4.8% 1,12%
Толщина слоя 0,04 дюйма (1,016 мм)

В этом исследовании были подготовлены и испытаны три группы панелей при ударе с низкой скоростью. Первый — это простые образцы AAC, которые считаются панелями управления. Второй — панели CFRP / AAC, обработанные методом ручной укладки; Панели были зажаты между верхней и нижней однонаправленной пластиной из углеродного волокна (то есть ориентация волокон 0 °) для усиления изгиба, а затем обернуты другой однонаправленной пластиной из углеродного волокна (ориентация волокон 90 °, рис.10.1) для поперечной арматуры. Третий — это панели CFRP / AAC, имеющие те же характеристики, что и вторая группа, но обработанные с использованием технологии вакуумного литья под давлением (VARTM). В качестве альтернативы трудоемкому процессу ручной укладки VARTM представляет собой привлекательный процесс, поскольку он экономит время обработки, особенно при нанесении нескольких слоев углепластика. VARTM — это процесс формования армированных волокном композитных структур, в котором лист гибкого прозрачного материала, такого как нейлон или майларовый пластик, помещается поверх преформы и затем герметизируется, чтобы предотвратить попадание воздуха внутрь преформы (Perez, 2003).Между листом и преформой создается вакуум для удаления захваченного воздуха. VARTM обеспечивает полное смачивание волокна, гарантирует, что волокно полностью пропитано смолой, и не так утомительно, как метод ручной укладки. VARTM обычно представляет собой трехэтапный процесс, состоящий из укладки волокнистой преформы, пропитки преформы смолой и отверждения пропитанной преформы. Полная процедура обработки панели FRP / AAC с использованием техники VARTM не включена в эту главу для краткости и описана в другом месте (Uddin and Fouad, 2007).Чтобы избежать чрезмерного поглощения смолы ААС из-за поверхности пор, поверхность ААС окрашивают блочным наполнителем. Наполнитель блока состоит из воды, карбоната кальция, винилакрилового латекса, аморфного диоксида кремния, диоксида титана, этиленгиклона и кристаллического кремнезема. Назначение блочного наполнителя — заполнить поверхностные поры, присутствующие на поверхностях панелей AAC, и минимизировать чрезмерное поглощение смолы панелями AAC. Имеет плотность 1461 кг / м 3 . Обычно используется для заполнения пор кирпичной кладки или стен из блоков.Его необходимо наносить на чистые, сухие поверхности, полностью очищенные от грязи, пыли, мела, ржавчины, жира и воска. Его можно наносить с помощью нейлоновой или полиэфирной кисти высшего качества или распылительного оборудования. Время высыхания блочного наполнителя — 2-3 часа. Перед нанесением слоя FRP необходимо выждать 4-6 часов.

10.1. Принципиальная схема сэндвич-панели CFRP / AAC.

В таблице 10.3 показаны типы образцов, использованных в этом исследовании, с кратким описанием каждого из них. Все образцы, протестированные в этом исследовании, были 609.8 мм (24,0 дюйма) в длину и 203,3 мм (8,0 дюйма) в ширину. В обозначении образца первая буква указывает тип производственного процесса, используемого для подготовки образца, а вторая буква указывает толщину образца в дюймах. Например, в образце P-1 «P» представляет собой простой образец AAC, а «1» представляет собой толщину образца, 25,4 мм (1,0 дюйма). Аналогично, «H» представляет образец, обработанный вручную, а «V» представляет образец, обработанный VARTM. Точность размеров всех образцов была близка к ± 2.5 мм (0,1 дюйма). Образцы AAC были высушены в печи при 70 ° C (158 ° F) для достижения содержания влаги, указанного в стандарте ASTM C 1386 (2007), которое составляет 5-15% по весу.

Таблица 10.3. Подробная информация об испытательных образцах

2 9044 9045 9044 9044 Сердечник 904 24)ik 9023ik Carbon Fiber 103C 9023ikaw23 Углеродное волокно Шестнадцатеричный-103C
Длина, Ширина, Глубина,
Образец мм мм мм
(дюйм) (дюйм.) (дюймы) материал Лицевая панель процесс
P-1 609,8 (24) 203,2 (8) 25,4 (1) A
P-2 609,8 (24) 203,2 (8) 50,8 (2) AAC Нет
203,2 (8) 76.2 (3) AAC Нет
H-1 609,8 (24) 203,2 (8) 25,4 (1) AAC Ручная укладка
H-2 609,8 (24) 203,2 (8) 50,8 (2) AAC Углеродное волокно Sikawrap
Hex-103C
21 Ручная укладка Н-3 609,8 (24) 203.2 (8) 76,2 (3) AAC Углеродное волокно Sikawrap
Hex-103C
Ручная укладка
V-1 609,8 (24) 203,2 (8) ) AAC Углеродное волокно Sikawrap
Hex-103C
VARTM
V-2 609,8 (24) 203,2 (8) 50,8 (2) VARTM
V-3 609.8 (24) 203,2 (8) 76,2 (3) AAC Углеродное волокно Sikawrap Hex-103C VARTM

Идеальный материал для устойчивых зданий — Институт устойчивого проектирования

Пассивный дом Дэна Леви с нулевым потреблением энергии в Вудстоке, Нью-Йорк, построен из AAC. Фото: Alex Wilson

Не секрет, что автоклавный газобетон (AAC) изо всех сил пытался закрепиться в Северной Америке. AAC широко используется в Европе, Мексике и большей части мира, но у него возникли проблемы с конкуренцией с деревянным каркасом здесь, в Соединенных Штатах и ​​Канаде.Лесные пожары в Калифорнии, наводнения вдоль наших берегов и рек, более сильные ураганы, расширение ареалов термитов и растущий интерес к пассивной выживаемости могут изменить это.

AAC предлагает ряд существенных преимуществ в эпоху изменения климата, когда нам необходимо строить более устойчивые здания. В этой статье рассматривается этот легкий строительный материал и описывается, как призыв к устойчивости может, наконец, сделать AAC основным строительным материалом в Северной Америке.

Чтобы лучше понять AAC как строительный материал и потенциал использования AAC в энергоэффективных зданиях, мы с Джерелином просто провели выходные в сертифицированном для пассивного дома доме AAC в Вудстоке, штат Нью-Йорк, который был построен и принадлежит мой друг Дэн Леви.

Укладываемые блоки АКБ, в том числе сборные, армированные перемычки. Фото: Дэн Леви

Фон

Автоклавный газобетон, или AAC, был изобретен в Швеции в начале 1900-х годов и запатентован в 1924 году. Он изготавливается путем создания суспензии из мелкоизмельченного кварцевого песка, кальцинированного гипса, извести и / или портландцемента, воды и небольшого количества алюминиевой пудры. Жидкий раствор заливают в прямоугольные емкости, наполняя их лишь частично. Алюминий реагирует с гидроксидом кальция с образованием пузырьков водорода, из-за которых объем материала увеличивается примерно вдвое.После частичного затвердевания заготовки резервуар снимается, и AAC разрезается на блоки или панели стандартного размера с помощью тонкой проволоки. Затем он отверждается путем нагревания под давлением (процесс автоклавирования).

Полученные блоки имеют плотность примерно в четверть плотности бетона и достаточно легкие, чтобы плавать в воде. AAC стандартной плотности (37 фунтов на кубический фут) изолирует примерно до R-1 на дюйм, согласно AERCON, единственному производителю AAC в США на сегодняшний день, поэтому стандартная стена из AAC толщиной 8 дюймов без дополнительной изоляции обеспечивает около R-8.Этот материал имеет прочность на сжатие 580 фунтов на квадратный дюйм (psi), что примерно в пять раз меньше, чем у стандартного бытового бетона (2500 psi). Благодаря этой прочности на сжатие 8-дюймовые блоки подходят для строительства пяти-шестиэтажных зданий.

В середине 1990-х годов два ведущих производителя кондиционеров в Европе, Hebel и Ytong, построили заводы в США, надеясь расширить рынок здесь. Компании изо всех сил пытались проникнуть в отрасль, в которой доминировало строительство деревянного каркаса, однако их делу не помогло то, что эти компании сосредоточили хотя бы часть своих маркетинговых усилий на недостатках своего конкурента, а не на рекламировании преимуществ AAC. в целом.

Были предприняты другие попытки создать AAC с использованием летучей золы, отходов электростанций, но эти инициативы провалились. В 2002 году Aercon Industries, LLC приобрела завод Ytong в Хейнс-Сити, штат Флорида, и теперь компания является единственным производителем сборных железобетонных конструкций в США, хотя я слышал, что на этот рынок может выйти другая компания.

U-образный верхний ряд блоков AAC с арматурой будет образовывать несущую балку после заполнения бетоном. Фото: Дэн Леви

Совершенно другая строительная система

В строительстве с AAC большинство блоков сплошные и однородные, но некоторые обычно заказываются с круглыми ядрами примерно 3.5 дюймов в диаметре. Выравнивая эти стержни по углам здания, а также у оконных и дверных проемов, создаются непрерывные вертикальные каналы, в которые укладывается стальная арматура и заливается бетонный раствор. В верхней части стены используются специализированные блоки U-образной формы, которые создают непрерывный канал или желоб, в который помещается арматура и заливается бетон, создавая структурную связующую балку.

Строительство из блоков AAC существенно отличается от строительства из стандартных пустотных бетонных блоков.Начиная с ровного основания, тонко затвердевающий раствор укладывается с помощью специального зубчатого шпателя, в который помещается совок раствора. Конец примыкающего блока также промазывается раствором. Затем блок устанавливают и ударяют по месту резиновым молотком. Интересно, что Леви сказал мне, что каменщикам очень тяжело с AAC, потому что он сильно отличается от установки бетонных блоков. «С ним намного легче работать, — сказал он, — но у каменщиков есть проблемы с адаптацией». Леви, который построил два дома с помощью AAC, сказал, что плотникам часто бывает легче с этим, чем каменщикам.

Специализированные мастерки, используемые для укладки тонкозадирного раствора для AAC. Фото: Alex Wilson

Типичные блоки AAC больше, чем бетонные блоки — 8 дюймов x 8 дюймов x 24 дюйма довольно стандартны, хотя блоки также доступны от AERCON шириной 4, 6, 9,5 и 12 дюймов. Хотя блоки AAC больше, чем бетонные, они легче, хотя строители не могут держать или переносить их одной рукой, что может быть недостатком.

Поскольку AAC довольно мягкий и хрупкий, его необходимо защищать как внутри, так и снаружи.Можно использовать широкий спектр внешней отделки, включая обычную цементную штукатурку, акриловую штукатурку (Система наружной изоляции и отделки — EIFS), кирпич, а также деревянный или фиброцементный сайдинг поверх обрешетки для создания защиты от дождя. Если добавить внешнюю изоляцию (см. Ниже), детализация будет несколько сложнее.

В интерьере одни строители используют штукатурку (цемент, гипс или известь), а другие создают раму для проводки с каркасом и устанавливают обычный гипсокартон.

В дополнение к блокам стандартных размеров, AAC доступен в широком диапазоне сборных панелей, которые производятся со стальной арматурой для удовлетворения конкретных потребностей.AERCON производит структурные перемычки, которые могут перекрывать дверные и оконные проемы шириной до 18 футов. Усиленные, взаимосвязанные панели стен, пола и крыши обычно имеют ширину 24 дюйма и доступны длиной до 20 футов.

Гостиная Дэна Леви. Толстые стены из AAC, изолированные снаружи минеральной ватой, обеспечивают высокую изоляцию оболочки здания. Фото: Алекс Уилсон

Почему AAC может быть идеальным материалом для упругих зданий

Уязвимости, с которыми мы сталкиваемся сегодня, значительны, и с изменением климата эти уязвимости почти наверняка возрастут.Штормы становятся все более суровыми, наводнения — более частыми, лесные пожары — участившимися, термиты — более распространенными. Во многих местах стандартная конструкция из деревянного каркаса больше не имеет смысла.

AAC не может решить все наши проблемы, но может помочь. Ниже я описываю, как свойства и характеристики AAC делают его таким хорошим материалом для устойчивого строительства.

Спальня на нижнем этаже в доме Дэна Леви AAC. Фото: Alex Wilson

AAC огнестойкий

Вряд ли нам нужно напоминание о том, что лесные пожары вызывают растущую озабоченность сегодня.В Калифорнии 2017 год стал самым разрушительным сезоном лесных пожаров в истории штата: в Санта-Розе и десятках других муниципалитетов было разрушено более 10 000 домов. Затем в 2018 году в штате было разрушено более 18000 строений, что почти вдвое превышает рекорд разрушений, установленный всего годом ранее.

AAC — негорючий материал. Если снаружи отделана цементной штукатуркой или фиброцементным сайдингом, система может помочь предотвратить возгорание конструкции. Стандартные стены из блоков AAC толщиной четыре дюйма и более, а также стеновые, половые и кровельные панели толщиной шесть дюймов и более обеспечивают минимальную 4-часовую огнестойкость, основанную на стандартах испытаний UL-U919, U920 и K909.

Согласно AERCON, уникальным свойством AAC является то, что он содержит воду в кристаллической форме, которая действует как теплоотвод; при нагревании эта вода производит пар, который выходит через пористую структуру AAC, не вызывая растрескивания поверхности. Даже когда AAC не используется в качестве структурной системы здания, этот материал часто используется в качестве противопожарных перегородок внутренних в таунхаусах, квартирах и других многоквартирных домах. Компания предлагает подробные спецификации на огнестойкие соединительные системы, проходки и другие детали сборки.

Короче говоря, если бы я строил сегодня в Калифорнии или других пожароопасных местах, я бы предпочел систему AAC.

AAC плавает в воде и может высохнуть после намокания. Фото: Alex Wilson

AAC как строительная система для зон, подверженных наводнениям

Ни для кого не секрет, что риск наводнений возрастает по мере потепления климата. В прибрежных районах повышение уровня моря увеличивает частоту штормовых наводнений. Более интенсивные осадки выпадают почти во всех частях США.С. приводит к более частым наводнениям — как в прибрежных районах, как мы видели во время урагана Майкл в Хьюстоне в 2017 году, так и во внутренних районах, как мы видели в моем родном штате Вермонт во время тропического шторма Айрин в 2011 году.

Первым приоритетом должно быть недопущение строительства в районах, подверженных затоплению или ожидаемых риску из-за повышения уровня моря. Избегать строительных площадок в 500-летней зоне затопления теперь имеет смысл — выйти за пределы 100-летней зоны затопления, которую FEMA обычно рекомендует избегать.Поскольку прогнозы повышения уровня моря увеличиваются, становится все более целесообразным выходить даже за пределы 500-летней высоты наводнения.

Тем не менее, неплохо было бы строить из материала, который может намокнуть и высохнуть. В этом еще одна прелесть AAC. Материал впитывает влагу, но, если следовать рекомендациям производителя по обработке поверхности, он высыхает без длительного повреждения. Фактически, монолитный материал может выступать в качестве сезонного буфера влаги, поглощая влагу летом с более высокой относительной влажностью, а затем высвобождая эту влагу в более сухие зимние месяцы.

Согласно информации о продукте от AERCON, «материал AAC не имеет взаимосвязанной пористости, поэтому капиллярное действие быстро разрушается, и влага не может продолжать« втягивать »очень глубоко в материал. Воздействует только тот материал, который находится у поверхности, непосредственно контактирующей с водой ».

Немецкая ручная пила с твердосплавными зубьями, специально предназначенная для резки AAC. Фото: Alex Wilson

Кроме того, AAC полностью неорганический, поэтому нет ничего, что могло бы разложиться от влаги, и нет источника пищи для плесени и грибка, хотя при намокании AAC важно, чтобы он мог высохнуть.Это включает в себя проектирование сборок AAC с возможностью высыхания снаружи, внутри или и того, и другого. В некоторых ситуациях, когда ожидается внешний контакт с влагой, например, в местах, подверженных наводнениям, может иметь смысл использовать гидроизоляционный или гидроизоляционный слой снаружи, но в таких случаях чрезвычайно важно, чтобы сборка могла высохнуть до интерьер. Следует проконсультироваться со специалистом по строительной науке, чтобы обеспечить надлежащую детализацию.

В качестве внутренней отделки рекомендуется использовать минеральную или гипсовую штукатурку — избегайте гипсокартона с бумажной облицовкой, когда возможно затопление.На внешней стороне используйте либо неорганическую штукатурку, либо деталь от дождя с обвязкой и накладным сайдингом, например фиброцементом, деревом или терракотой. (Для пожаробезопасных сборок следует избегать деревянного сайдинга.) При штукатурных и штукатурных покрытиях можно использовать интегральные пигменты для удовлетворения архитектурных потребностей.

AAC можно резать стандартными деревообрабатывающими инструментами, хотя здесь используется ленточная пила для резки камня, которая включает в себя скользящий стол. Фото: Дэн Леви

AAC и ветровая нагрузка

При правильном армировании AAC может обеспечить высокую степень ветроустойчивости.Большая часть этой прочности обеспечивается усиленными вертикальными заполненными цементным раствором сердцевинами и связующими балками. Блок с сердечником должен быть указан при заказе AAC, поэтому важно заранее определить структурные требования, с которыми производитель должен быть в состоянии помочь.

Стеновые, кровельные и напольные панели с блокировкой AAC имеют соответствующую толщину и имеют стальную арматуру в соответствии с конкретными требованиями к конструктивному проектированию. Работая с производителем и / или инженером-строителем, можно достичь практически любого уровня требований к конструкции.Учитывая прогнозы более сильных штормов в будущем, может иметь смысл выйти за рамки минимально рекомендованных конструктивных решений с помощью AAC или любой другой строительной системы, если на то пошло.

AAC и насекомые

Мы мало что слышим о насекомых в обсуждениях воздействия изменения климата, но это, скорее всего, изменится. Ареалы термитов расширяются на север. Во многих тропических регионах, таких как Гавайи, строительство из стандартной древесины сегодня становится все более редким явлением, особенно из-за термитов Формозы.Если используется деревянный каркас, это должно быть обработанное дерево для защиты от повреждений термитами, а обработанное дерево несет в себе собственный набор опасностей для окружающей среды и здоровья. Ограничения для строительства деревянных каркасов, встречающиеся в тропических регионах, будут все больше и больше проявляться во всей континентальной части США по мере потепления климата.

AAC обеспечивает альтернативу деревянному каркасу в районах, где ожидается или может ожидаться повреждение термитами в будущем. В то время как Дэн Леви использовал деревянный каркас для внутренних перегородок в северной части штата Нью-Йорк, в местах, где риск термитов высок, можно использовать более тонкий блок или панели из AAC для интерьера , а также внешних стен.

Окна с тройным остеклением помогают дому Дэна Леви получить сертификат пассивного дома. Фото: Alex Wilson

AAC и пассивная живучесть

Пассивная живучесть стала критерием проектирования после урагана «Катрина», когда ураган вызвал длительные перебои в подаче электроэнергии. Идея состоит в том, что здания должны быть спроектированы с хорошо изолированными внешними оболочками и пассивными конструктивными элементами, чтобы они сохраняли пригодные для жизни условия в случае потери энергии. Сам по себе AAC не обеспечивает достаточно высокий уровень изоляции в большей части Северной Америки, чтобы удовлетворить этому критерию, хотя сборки AAC имеют тенденцию быть очень герметичными.

Для удовлетворения требований пассивной живучести рекомендуется добавить внешнюю изоляцию. Для дома AAC в Вудстоке, штат Нью-Йорк, в котором мы остановились, Леви установил шесть дюймов жесткой минеральной ваты (материал Rockwool ComfortBoard, плотность которого составляет 8 фунтов на кубический фут). Благодаря монолитным стенам из AAC толщиной 8 дюймов и шести дюймам жесткой минеральной ваты стены Леви обеспечивают около R-35 с минимальным тепловым мостиком.

Кроме того, AAC с внешней изоляцией обеспечивает большую тепловую массу внутри изолированной оболочки.Это помогает поддерживать приемлемую температуру во время перебоев в подаче электроэнергии или потери топлива для обогрева. В сочетании с пассивным солнечным дизайном (например, окнами, выходящими на юг, затенением и естественной вентиляцией), эта тепловая масса может обеспечить безопасность такого здания в течение длительного времени без дополнительной энергии.

Другие особенности AAC

Наряду с описанными выше преимуществами упругости AAC, этот материал также обеспечивает отличные акустические характеристики — особенно сборки, которые включают другие компоненты, такие как изоляционный слой или кирпичная обшивка.

Материал подходит для людей с химической чувствительностью. У Леви есть арендатор в квартире над гаражом, который не мог оставаться здоровым в обычных домах; она продается на преимуществах материала. Для применений, где существует острая химическая чувствительность, может потребоваться внутренняя отделка цементной, известковой или гипсовой штукатуркой, а не акриловые покрытия.

Леви установил 6 дюймов жесткой минеральной ваты на внешней стороне стен AAC, а затем фиброцементный сайдинг поверх вертикальной обвязки на своих стенах.Фото: Дэн Леви

С экологической точки зрения AAC представляет собой неоднозначную картину. Один из ключевых ингредиентов, портландцемент, имеет значительный углеродный след, хотя более низкая плотность ACC делает его лучше, чем стандартный бетон или бетонный блок. Согласно некоторым источникам, в некоторых районах песка становится мало, но это не похоже на проблему с AAC AERCON; их кварцевый песок добывается за две мили и измельчается в мелкий порошок на шаровой мельнице компании. Производство алюминиевого порошка энергоемко, но его используют в очень небольших количествах: обычно 0.05 до 0,08% об. Когда и если появятся методы сокращения выбросов углекислого газа при производстве цемента, воздействие AAC на окружающую среду улучшится.

Самым большим недостатком AAC может быть незнание его в строительной индустрии Северной Америки. Строители и подрядчики очень консервативны и устойчивы к новым или незнакомым материалам. Еще одним недостатком является необходимость в слое изоляции в большинстве климатических условий Северной Америки, хотя здесь может стать доступным немецкий продукт AAC с прослоенным слоем AAC с более низкой плотностью (с более высоким значением R) в центре.

Пассивный дом Дэна Леви в Вудстоке на улице. Солнечная батарея питает полностью электрический дом с нулевым потреблением энергии, тепловым насосом с воздушным источником, водонагревателем с тепловым насосом, вентилятором с рекуперацией тепла и светодиодным освещением. Фото: Алекс Уилсон

Заключительные мысли

Впервые я написал об AAC в середине 1990-х годов в журнале Environmental Building News . Многие из нас тогда, в том числе европейские производители, построившие заводы AAC, думали, что это завоюет популярность и завоюет значительную долю рынка, но этого не произошло.Учитывая растущий сегодня интерес к устойчивости, я считаю, что перспективы AAC открываются многообещающе; он мог, наконец, стать здесь обычным строительным материалом.

Дэн Леви, который консультирует по вопросам строительства AAC и пассивного дома, поделился со мной своим энтузиазмом по поводу AAC. «Я видел слишком много деревянных каркасных зданий, поврежденных влагой, термитами или другими насекомыми, сверлящими древесину, огнем, гнилью и плесенью», — сказал он мне. «AAC выглядит как бетон, но его легко резать с помощью деревообрабатывающих инструментов, поэтому я считаю, что он предлагает лучшее из всех возможных.Между прочим, если вы хотите испытать этот дом на себе, в этом доме через Airbnb доступны две комнаты (хотя, если вы хотите это сделать, скорее всего, будет лучше, чем позже, так как Дэн может продать дом и переехать в его следующий проект AAC).

# # # # #

Наряду с основанием Resilient Design Institute в 2012 году Алекс является основателем BuildingGreen, Inc. Чтобы быть в курсе его последних статей и размышлений, вы можете подписаться на его ленту в Twitter .Чтобы получать уведомления о новых блогах по электронной почте, зарегистрируйтесь в верхней части страницы.

Нравится:

Нравится Загрузка …

Строительство с AAC | Журнал Concrete Construction

В некоторых европейских странах 60% строительства новых домов используют блоки или панели из автоклавного ячеистого бетона (AAC) для возведения наружных стен. AAC также является распространенным строительным материалом на Ближнем Востоке, Дальнем Востоке, в Австралии и Южной Америке, но большинство домовладельцев, строителей и подрядчиков по бетону в Соединенных Штатах никогда не слышали о нем.Дэвид Напье, директор по маркетингу TruStone America, Провиденс, Род-Айленд, говорит, что AAC является одним из самых производимых строительных материалов в мире после бетона. Наконец, AAC начинает завоевывать популярность в Соединенных Штатах, где сейчас есть три завода по производству AAC, и еще несколько запланировано. Это серьезное обязательство, поскольку стоимость завода по производству блоков и панелей из AAC составляет от 30 до 40 миллионов долларов.

Блоки для возведения стен — сплошные, за исключением отверстий для размещения вертикальной арматуры.Затем их заливают высокопрочным раствором. Рабочие наносят раствор тонким слоем зубчатым шпателем, чтобы соединить блоки.

AAC был изобретен в Швеции в 1920-х годах архитектором Йоханом Акселем Эрикссоном, который искал альтернативу изделиям из дерева, которых после Первой мировой войны было мало. пудра. Измельченный кремнезем смешивают с водой до образования суспензии. Затем добавляют известняковый порошок, портландцемент и небольшое количество алюминиевого порошка, и смесь быстро заливают в форму.В течение нескольких секунд алюминий вступает в реакцию с известью и цементом, инициируя химическую реакцию с выделением газообразного водорода. Газ образует пузырьки диаметром до 1/32 дюйма, заставляя смесь подниматься, как буханка хлеба. В результате получается материал, который на 80% состоит из пустот по объему.

После того, как смесь частично застынет, она все еще достаточно мягкая, чтобы ее можно было разрезать проволокой для придания окончательной формы в виде блоков или панелей. Затем детали помещают в автоклавную печь, нагретую паром, при температуре 400 ° F и давлении 13 атмосфер.В автоклаве материал преобразуется в тоберморит, природный минерал, обнаруженный в месторождениях известняка, чья кристаллическая структура имеет некоторые свойства, аналогичные свойствам стекла. Когда продукт появляется через 8–12 часов, он сохраняет все свои готовые свойства. AAC может выдерживать нагрузки до 1100 фунтов на квадратный дюйм, но при этом его вес составляет 1/5 веса бетона.

ПРЕИМУЩЕСТВА СТРОИТЕЛЬСТВА С AAC

Автоклавный газобетон изготавливают в виде блоков или панелей.Здесь показаны панели, устанавливаемые на стены жилых домов.

В отличие от бетонных блоков, блоки AAC твердые, без формованных отверстий под сердечник. Стандартные блоки имеют высоту 8 дюймов, длину 24 дюйма и толщину от 4 до 12 дюймов. Блок 8x8x24 дюймов весит всего 35 фунтов, поэтому с ним легче обращаться, чем с обычным бетонным блоком. AAC также легко обрабатывать и даже резать, просверливать и формировать с помощью деревообрабатывающих инструментов. Напье говорит, что на рынке нет другого материала, который мог бы сравниться с AAC по огнестойкости.Четыре дюйма AAC имеют 4-часовую огнестойкость, что делает его идеальным в коммерческих зданиях для ограждения стальных колонн, окружающих шахт лифтов и для других требований пожаротушения.

Одна из важных причин, по которой владельцы выбирают AAC для строительства дома, — это экономия денег на энергии. Напье называет это «структурной изоляцией» и утверждает, что стена из AAC толщиной 8 дюймов более энергоэффективна, чем стена из 6-дюймовых стоек с изоляцией R-19. Энергоэффективность строительного продукта определяется его значением R, тепловым КПД и влиянием тепловой массы.R-значение материала является мерой его сопротивления кондуктивной теплопередаче, то есть энергии, которая движется от молекулы к молекуле. R-значение типичной стены AAC толщиной 8 дюймов составляет R-10; 10-дюймовая стена — R-12,5, а 12-дюймовая стена — R-15.

Но R-значение AAC — только один из способов экономии энергии. Как и в случае с бетонной стеной, масса стены AAC сохраняет тепловую энергию, когда температура окружающей среды выше, чем температура стены. Эта энергия высвобождается, когда температура окружающей среды опускается ниже температуры стены.Этот смягчающий эффект может привести к значительной экономии, особенно в климате, где температура сильно меняется в течение 24 часов. А в типичном деревянном каркасном доме наружный воздух, проходящий через стену, может составлять до 30% затрат на отопление или охлаждение. Напье говорит, что TruStone проверила скорость утечки воздуха для стеновой сборки AAC, что привело к скорости утечки 0,002 фут 3 / мин / фут 2 при давлении воздуха 1,57 фунта / фут 2, что значительно ниже, чем у гипсокартона. Проникновение воздуха вокруг окон и дверей также может быть важным фактором тепловой эффективности дома.

Другие причины, по которым людям нравится жить в домах AAC:

  • Они тише, потому что стены из AAC обладают хорошими звукоизоляционными свойствами
  • Дома
  • AAC устойчивы к ветру и воде, а грызуны или термиты не могут строить дома или туннели в стенах (мягкие стены могут даже остановить пули и осколки).
  • Стоимость и время изготовления корпусов из AAC может быть значительно меньше, чем для строительства деревянных каркасов.

кирпичей в блоки — изменение парадигмы строительства: The Tribune India

ROBINSINGH @ TRIBUNE.COM

Джагвир Гоял.

Появление множества новых материалов внесло значительные изменения в концепцию жилых домов в Индии. Архитекторы предлагают новые проекты. Самый основной строительный материал, кирпич, тоже претерпел изменения.

Сейчас, когда растет осведомленность о строительстве сейсмостойких домов, люди, строящие дома на больших участках, отдают предпочтение каркасным конструкциям RCC.Для таких структурных каркасов блоки AAC предпочтительнее кирпичей для поднятия стен.

AAC — это сокращенная форма автоклавного газобетона. Блоки из автоклавного газобетона, которые производятся в Индии в течение последних трех десятилетий, не нашли широкого применения в жилищном секторе на индивидуальном уровне. Но теперь даже люди используют их всякий раз, когда выбирают каркасную конструкцию RCC для своего дома.

Размер блоков AAC

Блоки

AAC намного больше по размеру, чем обычные блоки.Нормальная длина этих блоков составляет 600 мм, что составляет около 2 футов, хотя они также производятся длиной 400 мм и 300 мм. Ширина составляет 200 мм, то есть 8 дюймов. Также производятся блоки AAC толщиной 4, 6 и 10 дюймов. Высота блоков AAC составляет от 75 мм до 300 мм, то есть от 3 дюймов до 1 фута. Таким образом производятся блоки всех размеров, и можно выбрать блоки размеров в соответствии с требованиями объекта. Обычно используемые размеры блоков AAC: 16 дюймов x 8 дюймов x 8 дюймов, 16 дюймов x 8 дюймов x 6 дюймов и 16 дюймов x 8 дюймов x 4 дюйма.

Блоки цельные и пустотелые

Могут изготавливаться и используются как цельные, так и полые блоки AAC. Полые блоки имеют полые прорези в корпусе, что делает их еще легче и устойчивее к теплу и звуку из-за воздушной полости. Однако они требуют более осторожного обращения на месте, и нужно быть осторожным при выполнении врезки в них, чтобы скрыть любые световоды в них. Твердые блоки AAC используются чаще, поскольку пользователи считают их более безопасными, чем пустотелые блоки.

Преимущества перед кирпичом

Самым большим преимуществом использования блоков AAC вместо кирпича в стенах является их теплоизоляционные свойства.Газобетон из-за низкой теплопроводности пропускает меньше тепла, чем обычный бетон. Значение R блоков AAC проверяется перед их выбором. Значение R является мерой термического сопротивления материалов. Чем выше значение R, тем больше термическое сопротивление блоков. Это приводит к более прохладным домам и меньшей нагрузке на кондиционирование воздуха. Еще одним преимуществом блоков AAC является их легкий вес, что снижает нагрузку на фундамент, что приводит к экономичному проектированию фундамента за счет уменьшения статической нагрузки. Большой размер блоков также приводит к меньшему количеству швов и меньшему расходу раствора при кладке блоков AAC.Их обработка поверхности намного лучше, чем у кирпича, есть экономия и на штукатурных работах. Сейсмостойкая конструкция требует, чтобы здание было легким. Этой цели также служат блоки AAC.

Звукоизоляция

Блоки

AAC обеспечивают хорошую звукоизоляцию. Они оцениваются на основе класса передачи звука (STC). Можно посмотреть значение STC блоков AAC, если звукоизоляция является особым требованием. Рейтинг STC рассчитывается путем усреднения звуков 16 различных частот, измеренных в децибелах, остановленных блоками.Блоки AAC могут обеспечивать STC от 40 и выше.

Выцветание

Еще одним важным преимуществом использования блоков AAC в стенах является устранение проблемы высолов в стенах. Выцветание, широко известное как проблема «шора», настолько распространено в кирпичных стенах, что люди часто просят альтернативу кирпичу, поскольку проблема выцветания постоянно повторяется.

Ниже DPC

Следует избегать использования блоков AAC в фундаментах и ​​ниже уровня DPC. В каркасных конструкциях ПКК закладываются фундаменты ПКК и на них возводятся колонны ПКК.Балки цоколя укладываются на уровне цоколя и над ними возводится кладка из блоков AAC. Сами фундамент из колонн рассчитан на то, чтобы выдерживать нагрузку на здание, и кладка из блоков AAC между колоннами под балкой цоколя уровня DPC не требуется.

Меры предосторожности при использовании

При использовании блоков AAC в стеновых панелях каркасных конструкций RCC, кладку блоков AAC следует отложить как можно дольше после завершения каркаса колонн-балок. Этот шаг позволит бетонной конструкции претерпеть изменения, если таковые имеются, из-за структурных сдвигов и первоначальной осадки земли под фундаментом колонн и поможет избежать любых трещин в стенах блоков AAC.В окнах на уровне подоконника должна быть предусмотрена соединительная балка с номинальным усилением. Аналогичным образом должны быть предусмотрены вертикальные стойки RCC с обеих сторон оконных рам. Перемычка всегда будет в верхней части окна. Армирование в соединительной балке может быть простым стержнем толщиной 8 мм. Вертикальные стойки также помогут в обеспечении надлежащего крепления оконных рам.

Прутки из мягкой стали

Везде, где в перегородках предусмотрена кладка из блоков AAC, она усиливается с помощью подходящих стержней из мягкой стали или торцевой стали через равные промежутки по горизонтали.Иногда также предусмотрены полосы через вертикальные интервалы. Прутки из мягкой стали диаметром 6 мм обычно используются и устанавливаются на каждом третьем этапе кладки блоков AAC.

Фактор затрат

Если сравнивать только стоимость кирпичей и блоков AAC, блоки AAC оказываются дороже. Однако, если сравнить стоимость кладки, кладка из блоков AAC оказывается дешевле кирпичной. Один кубический метр кирпича содержит 450 кирпичей, которые стоят около 1800 рупий. В зависимости от размера используемых блоков AAC можно определить количество блоков на кубический метр.В среднем 1 кубический метр блоков стоит 3000 рупий. В кладке экономится стоимость раствора, используемого в стыках, за счет меньшего количества стыков в кладке блоков AAC. Кроме того, сокращаются затраты на рабочую силу, так как блоки больше по размеру, чем кирпичи, но их легко обрабатывать из-за их небольшого веса. Большая экономия достигается при штукатурных работах, так как поверхность бетонных блоков намного более гладкая, чем у кирпичной кладки, и требуется меньшая толщина штукатурки.

(Автор — HOD и главный инженер отдела гражданского строительства в Пенджабском PSU)


Автоклавный газобетон

Под автоклавным бетоном мы понимаем бетон, отвержденный паром в автоклаве.Под газобетоном мы подразумеваем бетон, облегченный методом аэрации. При использовании метода аэрации в бетоне химически образуется газ в результате химической реакции или в него вводится воздух, когда цементно-песчаная смесь все еще находится в виде суспензии. В бетоне образуются миллионы крошечных ячеек с воздухом или газом. После автоклавирования, которое проводится в течение периода от 15 до 18 часов при определенном давлении и высоких температурах, произведенные блоки из газобетона могут иметь свой низкий вес до 500 кг на кубический метр, в то время как вес обычного бетона находится в диапазоне 2000 кг на кубический метр.Газобетон также известен как ячеистый бетон.

Грузоподъемность

Блоки

AAC могут использоваться как в несущих стенах, так и в ненесущих стенах или перегородках. Максимально они используются в конструкциях с RCC-каркасом, где эти блоки заполняют пространства стеновых панелей между колонной и балочной сетью. Когда эти блоки используются в несущих стенах, толщина стены не должна быть меньше 200 мм, хотя для внутренних несущих стен иногда также используются стены и блоки толщиной 150 мм.Однако для наружных стен толщина стены и блока должна составлять 200 мм или более.

.
Опубликовано в категории: Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *